
Evolving the Structure of Evolution Strategies

Sander van Rijn, Hao Wang, Matthijs van Leeuwen, Thomas Bäck
Natural Computing Group
LIACS, Leiden University

Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

Email: {s.j.van.rijn, h.wang, m.van.leeuwen, t.h.w.baeck}@liacs.leidenuniv.nl

Abstract—Various variants of the well known Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) have been
proposed recently, which improve the empirical performance of
the original algorithm by structural modifications. However, in
practice it is often unclear which variation is best suited to the
specific optimization problem at hand. As one approach to tackle
this issue, algorithmic mechanisms attached to CMA-ES variants
are considered and extracted as functional modules, allowing for
combinations of them. This leads to a configuration space over ES
structures, which enables the exploration of algorithm structures
and paves the way toward novel algorithm generation. Specifically,
eleven modules are incorporated in this framework with two
or three alternative configurations for each module, resulting
in 4 608 algorithms. A self-adaptive Genetic Algorithm (GA) is
used to efficiently evolve effective ES-structures for given classes
of optimization problems, outperforming any classical CMA-ES
variants from literature. The proposed approach is evaluated
on noiseless functions from BBOB suite. Furthermore, such an
observation is again confirmed on different function groups and
dimensionality, indicating the feasibility of ES configuration on
real-world problem classes.

I. INTRODUCTION

Evolutionary Algorithms (EAs) such as Genetic Algorithms
(GAs) [14] and Evolution Strategies (ESs) [26] have been
studied for decades, leading to the many variants proposed
in the literature [5]. The performance of all these algorithms
depends not only on the specific optimization task, but also
on appropriately tuning the algorithm’s parameters such as
population size and mutation rate. As a result, the ideas of
online tuning [9] and automated parameter optimization have
been proposed [4]. These were later reinforced by the realization
that an increase in performance for some problem instances
will necessarily cause a decrease in performance for some
other instances. This implies that the potential performance
improvement that can be gained from optimizing parameters is
always limited by the algorithm that is chosen. To limit the bias
imposed by the choice of a specific (evolutionary) algorithm,
researchers have proposed to instead evolve the structure of an
EA itself (e.g., [17], [16], [27]).

The class of optimizers derived from the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [13] are the preferred
optimization method for many real-valued black-box problems,
and are therefore also the scope of this paper. As discussed in
more detail shortly, many variations of the CMA-ES have been
separately introduced and discussed in the literature. However,
only few combinations of these variations have been empirically
tested and compared. As a result, in practice it is often unclear

which variation is best suited to the optimization task at hand.
This leads to the three main questions in this work:

1) Can we define a modular and extensible CMA-ES
framework that allows to unify the many variations that
have been introduced in the literature?

2) Within the framework defining a large number of CMA-
ES variations, how to determine an efficient ES structure,
given limited function evaluation budget?

3) Are there any novel variations, i.e., combinations of
methods that have been proposed in the literature, that
outperform the known variants?

Approach and contributions Firstly, a modular and
extensible CMA-ES framework is proposed based on the
original CMA-ES [13], for adapting the structure of Evolution
Strategies in particular. A number of independent, functional
modules are extracted from various existing ES variants. By
allowing each of these modules to be activated independently,
a set of 4 608 so-called ES-structures can be instantiated,
many of which have never been considered before. A detailed
overview of the framework and all selected modules is given
in Section III.

Secondly, a metaheuristic is proposed to search in the
configuration space containing ES-structures. In Section IV
a simple yet effective genetic encoding scheme is used,
facilitating a mutation-only and self-adaptive GA optimization.
Although it is possible to deploy an exhaustive search (brutal
force) on such a combinatorial configuration space, the time
complexity of exhaustive search would grow polynomially with
increasing number of ES modules and makes it computationally
infeasible in practice. Additionally, Section IV-A investigates
how we can robustly evaluate evolution strategies. The proposed
approach combines a stable fitness measure—based on Fixed
Cost Error (FCE) and Estimated Running Time (ERT)—with a
statistical estimation of the number of runs required to reliably
compare different strategies.

Finally, the third contribution consists of an extensive
empirical evaluation to investigate the potential of the CMA-
ES configuration framework and metaheuristic used for the
configuration. The experiments described in Section V, using
the noiseless optimization functions from BBOB [12], show
that the meta-GA consistently converges quickly and produces
results that are on par with the best possible configurations
found by brute force search, needing only 5% of the evaluations.
Furthermore, the effectiveness of various modules is shown
on each function group and dimensionality, indicating that
searching for a suitable ES structure is a better solution than
always resorting to a single ‘default’ configuration.978-1-4799-7492-4/15/$31.00 c©2016 IEEE

II. RELATED WORK

The idea of evolving the structure of Evolutionary
Algorithms (EAs) is first motivated in [18], using the Genetic
Programming (GP) technique. Multiple attempts have been
made for this purpose, e.g. meta-evolution on graph-based
programs [17], [16]. In those studies, varying numbers of meta-
levels are used, each responsible for evolving the program
used in the level below and potentially itself. The Push
language [27] was later dedicated to enable autoconstructive
evolution whereby a population of programs is expected to
produce other programs.

Later approaches focused more on applying evolution within
the existing structure of an EA. In [28] GP is used to create
new mutation, recombination and selection operators, from
which a standard EA structure is constructed. Oltean et al. use
existing operators as the genes to create new structures in [24],
[22], [23], while tree-based structures of multiple EAs with
different parameters are evolved in [21] by Martin et al.

The Grammatical Evolution (GE) approach by Lourenço et
al. [20] is highly related to this work. The structure of an EA
is represented as a context free grammar with parameters and
operators as terminals. Treating an EA as a collection of atomic
operators in a fixed framework allows arbitrary combinations,
similar to our proposed approach.

III. CMA-ES FRAMEWORK

This section introduces the modular and extensible CMA-
ES framework. Short summaries of all considered modules are
first given in Section III-A, after which Section III-B introduces
the modular framework. Implementation details are described
in Section III-C.

A. ES Variations

Eleven possible modules are considered in total, nine of
which have two available options, and the remaining two have
three options. This results in 29 · 32 = 4608 different ES-
structures. For each module, a brief description is given below.

1) Active Update: The update of covariance matrix C
is normally only done by taking the most successful
mutations into account. The Active Update, introduced
by Jastrebski et al. [15], adapts the covariance matrix
using the negative factor based on the least successful
individuals, in addition to the standard covariance matrix
update.

2) Elitism: Both (µ, λ)- and (µ+λ)-strategy are proposed
together in evolutionary algorithms. In this work, elitism
is considered as an alternative.

3) Mirrored Sampling: A technique to ensure more evenly
spaced sampling of the search space is Mirrored Sampling
by Brockhoff et al. [7]. Half of the mutation vectors are
still sampled from the normal distribution, but every other
mutation vector is the mirror image of the previous random
vector.

4) Orthogonal Sampling: A later addition to Mirrored
Sampling was Orthogonal Sampling by Wang et al. [29].
The desired number of samples is first drawn from the
normal distribution. The Gram-Schmidt process is then
used to orthonormalize the set of vectors.

5) Sequential Selection: Without parallel execution, all λ
individuals are first evaluated in order, and then selection
is applied. The sequential selection method proposed by
Brockhoff et al. [7] immediately compares the function
value of each newly evaluated individual to the best found
so far, and does not evaluate any additional offspring
individuals when an improvement has been found.

6) Threshold Convergence: Becoming stuck in a local
optimum is a common problem when using an ES. Piad
et al. propose Threshold Convergence [25] as a method
of forcing the evolution to stay in an exploratory phase
for longer, by requiring mutation vectors to reach a
length threshold. This threshold then decreases after every
generation to slowly transition into local search.

7) Two-Point Step-Size Adaptation (TPA): The step size
σ of the CMA-ES is adapted after every generation
according to the evolution path, which incorporates the
latest successful individuals. Hansen et al. proposed
TPA [10], which reserves two individuals from the λ
offspring. These are used to evaluate two mutations after
selection and recombination has taken place: one with a
longer, the other with a shorter version of the weighted
average mutation vector belonging to the µ selected
individuals. Which of these two results in a lesser function
value, determines whether the step-size should increase
or decrease.

8) Pairwise Selection: Mirrored Sampling can cause a bias
in the length of mutation vectors, as two mirrored vectors
will (partially) cancel each other out in recombination.
Pairwise Selection was introduced by Auger et al. [1]
to prevent this. In this paper, the best offspring is first
selected from each mirrored pair. The regular selection
operator is then applied to all offspring that were selected
in this previous step.

9) Recombination Weights: In the CMA-ES, recombination
is performed with the following weight vector:

wi = log(µ+
1

2
)− log(i)∑

j wj

for i = 1, . . . , µ. Alternative weights are the arithmetic
mean wi = 1

µ .
10) Quasi-Gaussian Sampling: Samples are not necessarily

uniformly drawn from the normal distribution. Alterna-
tively, the vectors can be drawn from a quasi-random
uniform sequence, which are then transformed to a
Gaussian distribution, as proposed in [3]. As quasi-random
sequences, the Sobol and Halton sequences can be used.

11) Increasing Population Size (IPOP): Restarting an ES
can be done when no improvements have been found in
recent generations. Auger et al. proposed an increasing
population scheme IPOP [2] to use the remaining function
evaluations more effectively after a restart. Later, Hansen
et al. introduced the bi-population (BIPOP) [11] variation
which alternates between a larger and smaller population
size.

Note that although pairwise selection and orthogonal sam-
pling were introduced in combination with mirrored sampling,
each can be activated independently in this framework.

B. ES Framework

To easily allow the combination of all ES-variations listed
in Section III-A, we introduce a modular framework based
on the CMA-ES (see Algorithm 1). It is designed such that a
module can be activated by replacing a function or passing an
additional variable. Any endogenous variables of the CMA-ES
and its variations are abstracted into a single global params
object (lines 9, 14) that is accessible from all other functions.

Default values are available in literature for all relevant
parameters, whether belonging to the standard CMA-ES or to
any particular variant. These defaults are only used when no
other values are specified at initialization (line 6).

Algorithm 1 Modular CMA-ES Framework

1: options ← which modules are active
2: // Local restart loop
3: while not terminate do
4: t← 0
5: x̄← randomly generated individual
6: SetParameters(init-params)
7: // ES execution loop
8: while not terminate local do
9: params ← Initialize(init-params)

10: ~x← Mutate(x̄, options) // Sampler, Threshold
11: ~f ← Evaluate(~x, options) // Sequential
12: P (t+1) ← Select(~x, ~f , options) // Elitism, Pairwise
13: x̄← Recombine(P (t+1), options) // Weights
14: UpdateParams(params, options) // Active, TPA
15: t← t+ 1
16: end while
17: AdaptParams(init-params) // (B)IPOP
18: end while

The variable functions are the mutation (line 10), selection
(line 12), recombination (lines 13) and parameter update (line
14). Here, the variability is shown by the added options
argument in all function calls. The sampler is a special case
that merges three variations: Quasi-Gaussian sampling replaces
the regular Gaussian sampling that is used as base-sampler.
Mirrored sampling and Orthogonal sampling are added on top
of the base-sampler instead.

Sequential selection (line 11) is performed in the abstracted
Evaluate function that otherwise acts as a simple call-through to
the evaluation function. The local restart criteria checked in line
8 are all those from [2], [11], and population size adaptations
for (B)IPOP are performed in line 17.

Each module can be activated independently of all others.
Furthermore, new variations on existing modules can easily be
created, and new modules can be added without rewriting the
entire algorithm.

C. Implementation Details

Our aim is to allow any possible combination of the modules
listed in Section III-A such that the resulting ES will run with
minimal need of checking dependencies between variants, and
without causing runtime errors. Two of the considered modules
have to be adapted before they can be used in this way, because
they were proposed for different evolution strategies.

• Sequential Selection: Originally intended to be used in
(1, λ)-strategies, a delay in the cut-off is introduced to
ensure evaluation of at least µ individuals when µ > 1.
This represents a more robust solution than accepting < µ
individuals and adapting all following calculations.

• Threshold Convergence: In the original paper by Piad et
al. [25], Threshold Convergence is used in a regular (µ, λ)-
ES. The threshold is applied to the mutation vector after it
has been scaled by the step size σ. If this method is equally
applied in our framework, the benefit of the CMA-ES is
lost for small mutations, because the covariance matrix C
scales mutations in different directions differently. Instead,
the threshold is applied to the randomly sampled vector,
before it is used in any further calculations. This forces
the mutation vector to have a minimal length, without
losing benefits of the covariance matrix C.

Furthermore, selection modules can cause problems when
they require more than µ individuals for the selection process.
Descriptions of the encountered issues and our solutions are
given below.

• Pairwise Selection and Sequential Selection: For
pairwise selection to return µ individuals, a selection
must be made from at least 2µ individuals. This causes a
problem when sequential selection is allowed to stop the
generation after µ individuals. To solve this, the cut-off
point for sequential selection is artificially increased to
2µ. If λ < 2µ, λ is also increased to 2µ.
• Pairwise Selection and TPA: TPA reserves two individ-

uals from the λ offspring, preventing them from being
used for selection and recombination. This leaves the ES
with λeff = λ− 2 individuals. When pairwise selection is
used and λ = 2µ, we are one pair short of being able to
select µ individuals. In this case, µ is set to λeff/2.

• Pairwise Selection, Sequential Selection and TPA:
When pairwise selection, sequential selection and TPA
are all active, the cut-off point for sequential selection is
based on λeff.

IV. EVOLVING ES STRUCTURES

As mentioned in Section III-A, the modular framework
(Algorithm 1) can be used to instantiate many different ES-
structures. There is no interest in the performance of every
individual combination, both because there are far too many
and because most will perform poorly. Instead, it is far more
interesting to determine the best performing ES-structure for
different classes of optimization problems.

For a GA tasked with this optimization problem, a valid
way of comparing ESs is required. The considerations to be
taken into account in establishing a robust comparison are
examined in Section IV-A. Next, Section IV-B explains the
encoding that is used during the search process. Details of the
GA used can be found in Section IV-C.

A. Evaluating Evolution Strategies

Let f be some (black-box) function to be minimized, i.e.
the aim is to approach xopt as closely as possible, where xopt
is defined by f(xopt) ≤ f(x) ∀x. Now, let O be a set of
stochastic continuous optimization methods, e.g. Evolution

Strategies (ESs). To keep things simple, the aim is to define a
quality measure based on the output of f(x) to compare any
two of these optimization methods.

Let O ∈ O be some optimization method of interest. Then
we define yO,f = f(xOopt)

1, where xOopt is the best instance of
x that was found by a run of optimizer O.

Although the optimizers in question are stochastic, a well-
tuned optimizer will on average result in much lower values
for yO than a poorly tuned optimizer. By treating a single yO
as a sample from the distribution of possible outcomes, the
mean yO = 1

n

∑n
i=1 y

O
i of multiple runs can be used as a more

stable quality measure because of the Central Limit Theorem,
given a large enough sample size n.

A value for this parameter n must be chosen as low as
possible to reduce computational effort. But, as n increases,
the standard error sO =

√
1
n

∑n
i=1(yOi − yO)2 associated with

yO will decrease. This can be used to calculate the uncertainty
of a comparison between any two optimizers.

Let A,B ∈ O be two optimizers to be compared. When
yA < yB , we say that A performs better than B. However,
there is a non-zero probability that A and B are at least
indistinguishable in terms of quality. This probability, denoted
here as P (A ≡ B), will be used as an uncertainty indication
for the comparison P (A ≡ B) = 2(1− cdf(t)), where t is the
Welch’s t-test

t =
| yB − yA |

se
(1)

and the standard error se is calculated as se =
√

(sA)2+(sB)2

n
Furthermore, cdf is the cumulative distribution function of the
t-distribution with 2n− 2 degrees of freedom.

To limit the number of variables for these calculations, the
relative distances d = (yB − yA)/yA are considered, where
yA < yB . The standard errors are proportionally set to sB =
(1 + d)sA. Specifically, this reduces Equation 1 to t = d/se,
and establishes the relationship between the parameter n and
the uncertainty of comparisons between any two optimizers A
and B. The experiments that were performed to determine a
useful value for this n are described in Section V-B.

B. Encoding

Table I provides a summary of the ES modules considered
in this paper in the same order as introduced in Section III-A.
By choosing integers to represent the different modules and
listing them in the specified order, the structure of an ES can
be represented as a list of integers ~r = r1r2 . . . rm, where
m is the number of available module choices. The resulting
representations range from 00000000000 (default CMA-ES),
to 11111111122 (CMA-ES with all modules activated).

Decoding a given representation ~r works as follows: For
each integer ri in the representation ~r, find the ES module i in
Table I, and use the option indicated by ri. For example, the
representation ~r = 01100000100 represents the non-default
option for ES modules 2, 3 and 9: elitism, mirrored sampling

1The function f will be omitted from the notation of yO,f in the following,
as comparisons between different functions are meaningless.

TABLE I: Overview of the available ES modules studied in this
paper. For most of these modules the only required options are
off and on, encoded by the values 0 and 1. For quasi-Gaussian
sampling and increasing population, the additional option is
encoded by the value 2. The entries in row 9, recombination
weights, specify the formula for calculating each weight wi.

Module name 0 (default) 1 2
1 Active Update off on -
2 Elitism (µ, λ) (µ+λ) -
3 Mirrored Sampling off on -
4 Orthogonal Sampling off on -
5 Sequential Selection off on -
6 Threshold Convergence off on -
7 TPA off on -
8 Pairwise Selection off on -
9 Recombination Weights log(µ+ 1

2
)− log(i)∑

j wj

1
µ

-

10 Quasi-Gaussian Sampling off Sobol Halton
11 Increasing Population off IPOP BIPOP

and pairwise selection. In other words: A (µ+λ)-mirrored-CMA-
ES with pairwise selection.

C. Genetic Algorithm

A mutation only, self-adaptive GA according to Kruissel-
brink et al. [19] is used as optimizer for the ES-structure
(see Algorithm 2). Crossover is omitted to reduce the number
of exogenous parameters of the GA. An individual in the
GA consists of an ES-structure ~r (previously described
in Section IV-B) and the self-adaptive mutation rate pm.
This algorithm was chosen because of its fast and reliable
convergence, as shown in [19].

Algorithm 2 (1, λ)-self-adaptive GA
1: t← 0
2: P (0) ← generate individual ~I , randomly
3: while not terminate do
4: for i = 1 to λ do // Create λ offspring
5: (~ri, pm,i) = ~Ii ← copy(P (t))
6: pm,i ← mutate p(pm,i) // Update mutation rate
7: ~ri ← mutate(~ri, pm,i) // Update ES structure
8: // with mutation rate pm,i
9: fi ← evaluate(~ri)

10: end for
11: P (t+1) ← ~I1:λ, select single best from λ
12: t← t+ 1
13: end while

The mutation of ~r (line 7) occurs by changing each value
rj in ~r with probability pm,i. The value rj is flipped between
zero and one if there are two available options. For the cases
where there are three options, a random 50/50 choice is made
from the two remaining options, ensuring that a value selected
for mutation, is always actually changed.

V. EXPERIMENTS

The performed experiments and their results are described
in this section. The setup for all experiments is listed in
Section V-A. Next, the process by which the number of runs
per ES was determined is described in Section V-B, with the
final results following in Section V-C.

A. Setup

All 24 noiseless functions of the well-known black-box
optimization benchmark (BBOB) suite [12] are used in 2, 3, 5,
10 and 20-D (dimensions), for a total of 120 experiments. As
target values are known, Fixed Cost Error (FCE) and Estimated
Running Time (ERT) values can be calculated for every ES.
The combination of these two values will be referred to as the
fitness of an ES. The ERT values are more informative, but can
only be calculated if a target value is reached by at least one of
the independent runs. Comparisons between ESs are therefore
initially done only by comparing ERT values. If an ERT value
is only available for one of two ESs, that ES is declared to be
better. Only when both ESs do not have an ERT value available,
is the FCE value used for the comparison. The BBOB default
target value of 10−8 is used for these experiments.

A (1,12)-GA with a budget of 240 ES-structure evaluations
is used, based on initial experiments with various population
and budget sizes. Every run of an ES in turn is given a budget of
103D function evaluations. Our framework is written in Python
using the mpi4py package [8] and was run on the DAS-4 cluster
[6], allowing parallelization of both the twelve individuals per
generation of the GA and the number of independent runs n
(determined in Section V-B) per ES.

A brute force search over all possible ES-structures with
default parameter values from literature is performed to evaluate
convergence of the search towards the best ES possible within
the framework. Although this brute force search is at the limit
of what is computationally practical, it has a large benefit for
the GA runs. Instead of running the encoded ES again for every
individual the GA has to evaluate, the associated ERT/FCE
values can simply be retrieved from storage. This vastly reduces
the additional time spent on running the GA and allows us to
use the average results from 30 runs for each experiment.

B. Uncertainty of Comparisons Between ESs

For these initial experiments, a set of 256 independent
runs for around 4 000 ES-structures is used. The used ESs
are generated by the GA described in Section IV-C, spread
out over a representative sample of test functions in multiple
dimensionalities. When ERT values were available for both
ESs, or if only FCE values were available, the distance is
easily calculated by |yA − yB |. When only one ERT value
was available, the distance is calculated between the FCE of
the ES without ERT, and the target value. As the absolute
resulting values can differ a lot between different functions and
dimensionalities, these distances are calculated only between
ES results for each function/dimensionality combination.

First, an empirical distribution of relative distances is
obtained from these preliminary runs. For the 40% smallest
distances, d ≤ 1 holds, while d ≥ 100 is the case for the 30%
largest distances. Due to the large spread of these distances, the
uncertainty will be calculated for the distances at 5% intervals
according to the cumulative distribution.

Next, 100-fold subsampling is used to simulate having
run each ES only 2 ≤ n ≤ 256 times. The standard error is
calculated for every sample, and averaged over all samples.
Small subsamples can be used as accurate representations of
expected samples, but for (much) larger samples, this accuracy

0 20 40 60 80 100 120

number of runs

0.0

0.2

0.4

0.6

0.8

1.0

p
-v

a
lu

e

P-value of ES comparison at relative distance VS number of runs

5th %-ile: 0.029

10th %-ile: 0.074

15th %-ile: 0.13

20th %-ile: 0.2

25th %-ile: 0.3

30th %-ile: 0.43

35th %-ile: 0.64

40th %-ile: 0.95

45th %-ile: 1.5

50th %-ile: 2.4

Fig. 1: Uncertainty upper bound of comparisons between ESs
for the x% smallest distances d

is lost as the samples always converge to the mean and variance
of the set that is sampled from.

Figure 1 shows how the uncertainty decreases with the
number of runs. For the 15-20% smallest distances, there is
still a relatively high uncertainty at a large number of runs. As
the relative distances are only 20%, such high uncertainty is
to be expected. For greater relative distances, the uncertainty
drops rapidly once a sample size n ≥ 10 is used.

In this case, we care about the comparison uncertainty
because it is of importance to the automated optimization
performed by the GA. For all large differences, we want to
be very sure that the better one is always chosen, but for
increasingly smaller differences, the GA is effectively only
building a set of similarly performing ESs. For this reason, we
choose to accept ≤ 5% uncertainty for the largest 80% of all
distances as sufficient. Combined with the DAS-4 architecture
accommodating 16 parallel processes per computation node, a
value of n = 32 is used for all further experiments.

C. Results

A GA can effectively evolve improving ES structures using
our framework. The average runtime of a full brute force run
for a single function-dimensionality combination is between
four and five hours on the DAS-4 cluster. Calculating from
this, a single GA run will on average last around 15 minutes.

The evolved ES-structures are often (much) better when
comparing the ERT and FCE values of ES-structures found
by the GA to those of some standard ES configurations. For
example: the ERT values of IPOP-CMA-ES are on average 3.9
times higher than that of structures found by the GA and at best
is only outperformed by 20%. Because we are more interested
in what kind of structures the GA has produced, further results
can be found in the extended version of this paper2.

Figure 2 illustrates that all runs of the GA show convergence
in their budget of 20 generations. The behavior of the GA for
eight of the “easier” functions can be seen in Figure 2a. For
these functions, most of the possible ES-structures are able to
consistently reach the target value of 10−8, and the GA is able
to improve on the ERT over time.

For functions that are more difficult for an ES to optimize,
behavior similar to that in Figure 2b is seen. Not all ES

2see https://arxiv.org/abs/1610.05231

https://arxiv.org/abs/1610.05231

TABLE II: Ranking of GA-found ESs. The Fitness row lists
the cumulative percentage out of 120 experiments in which
the average ERT/FCE values of the ESs found by the 30 runs
of the GA reaches at least given rank when placed among all
results from the BF runs, sorted by fitness.

Rank 1 2 3 4–5 6–9 10–17 18+
Fitness (%) 0.0 12.5 37.5 73.33 92.5 99.17 100

runs are able to reach the target value, so improvements in
the FCE measure can be seen alongside ERT improvements.
When none of the runs reach the target value, an ERT value
is unavailable. This occurs most often in the 10- and 20-
dimensional experiments. Note that the FCE measure is not
strictly decreasing when an ERT measure is available, as FCE
values are ignored in the comparison between ERT values.

Figure 2c shows convergence for functions where the GA
only achieves minimal improvements. Whereas the FCE for
high-dimensional cases shows improvement in Figure 2b, this
is much less the case for these functions.

A ranking of the aggregated results by the 30 runs of the
GA among all BF runs is shown in Table II. This ranking
overwhelmingly positive: the aggregated results always rank
among the top-20 out of the 4 608 possible structures. Although
the 0% at rank one indicates that the GA was unable to find the
best possible solution in all of the 30 runs, the 12.5% at rank
two shows that the GA often finds the best possible solution.

Having established that most GA-found results correspond
to the best ES-structures found by BF, Table III shows the
relative activation of the eleven available modules over all
experiments. These results again show a lot of similarity
between the GA and BF runs, with minor differences. Overall,
some modules are only activated in few cases such as
alternative recombination weights (15–20%) and threshold
convergence (23–29%), while others seem to be activated
more evenly such as Orthogonal Sampling and Elitism with
total activation percentages around 50%. Most successful are
Mirrored Sampling (58%), Increasing Population (78%) and
Quasi-Gaussian Sampling (84%).

Separating the activation percentages by function subgroups
provides some additional insight. For most subgroups, the
percentages correspond quite well to the aggregated values, but
the third and fourth subgroups (F10–F14 and F15–F20) show
interesting behavior. Table III illustrates this with highlighted
outlying values. All higher than average activation percentages
occur with the third subgroup of unimodal functions with high
conditioning. Especially Elitism with Threshold Convergence
seems to be very effective for this group of functions.
Meanwhile, most of the lower than average percentages are for
the fourth subgroup of multi-modal functions with adequate
global structure. Elitism, Threshold Convergence and Two-
Point step-size Adaptation are almost never active in the best
performing ESs for these functions. This is almost a complete
opposite of the results for the third subgroup.

Table IV separates the activation percentages by problem
dimensionality. This highlights a trend of increasing or
decreasing performance for some of the available modules.
Active, Elitism and Threshold Convergence for example

are selected more often for lower dimensionality problems,
while Mirrored and Orthogonal Sampling are increasingly
activated for problems with higher dimensionality. Combined
with the consistently high activation percentages of Quasi-
Gaussian sampling, these results suggest that especially in
high-dimensional problems, the success of an ES depends on
its ability to uniformly sample the neighboring search space.

A particular case to examine is the correlation between
Mirrored Sampling and Pairwise Selection, because of their
paired introduction to reduce sampling bias. With exception of
the third subgroup, Mirrored Sampling is active in 60% or more
of all cases. Pairwise selection however is only active in 20–
25% of the experiments, or only one third as often. A similar
effect is seen also in the third subgroup, where both modules
are only activated half as often as in the other subgroups,
maintaining the ratio between them.

VI. CONCLUSIONS AND OUTLOOK

By extracting structural features from different CMA-ES
variations, a modular framework for running new ES-structures
is created, in which the structures (configurations) of CMA-ES
are optimized for different optimization problems. ES-modules
considered in this work are implemented in a way that they can
be activated independently, with minimal dependency checking.
In addition, this framework is also extensible for other modules
that are not considered in this research.

Based on the empirical study using the well-known BBOB
function suite, is it clear that the proposed approach on
ES structure configuration, exploiting a self-adaptive genetic
algorithm, consistently produces results that are comparable
to the top 0.5% of the best results from the brute force
search. The GA achieves such a result on 240 ES-structures,
constituting only 5% of the whole configuration space, showing
the advantage of the GA when more ES structure modules are
incorporated into the framework. Furthermore, note that in
real applications where function evaluations are costly, the
overhead on determining the fitness of ES structures could
grow drastically. In this case, the proposed GA-based search is
more computational tractable than the exhaustive search.

Across function groups and problem dimensions, the
analysis of the selected ES-structures clearly confirms that
different modules or ES-variants may excel in some cases,
at the cost of reduced performance for other cases. Overall,
the most successful modules are Increasing Population and
Quasi-Gaussian Sampling. Note that (B)IPOP is chosen
very often, even with the limited budget of 103D function
evaluations. Elitism, Two-Point Step-Size Adaptation and
Threshold Convergence perform best for unimodal functions
with high conditioning. Alternatively, Elitism, Active update and
Sequential Selection are recommended for low dimensionality
problems, while for increasingly higher dimensionalities, use
of Mirrored and Orthogonal Sampling give the most likely
increase in performance.

In the future research, the impact of each ES module can
be analyzed by constructing a data-driven model (e.g. decision
tree) on the ES structures and their performance measures. The
most influential ES module on a particular function class can
be related to the landscape features (e.g. convexity, ruggedness)
of this function. Such relations could help to verify theoretical

0 5 10 15 20
Generation

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104
FC

E

2-dim
3-dim
5-dim
10-dim
20-dim

0 5 10 15 20
Generation

102

103

104

105

106

E
R

T

2-dim
3-dim
5-dim
10-dim
20-dim

Convergence for F6

(a) Convergence for F6, similar to 1, 2, 5, 8,
10, 11 and 14.

0 5 10 15 20
Generation

10-2

10-1

100

101

102

FC
E

2-dim
3-dim
5-dim
10-dim
20-dim

0 5 10 15 20
Generation

103

104

105

106

E
R

T

2-dim
3-dim
5-dim
10-dim
20-dim

Convergence for F18

(b) Convergence for F18, similar to 7, 9 13,
16, 17, 23 and 24.

0 5 10 15 20
Generation

10-1

100

101

102

103

FC
E

2-dim
3-dim
5-dim
10-dim
20-dim

0 5 10 15 20
Generation

103

104

105

106

E
R

T

2-dim
3-dim
5-dim
10-dim
20-dim

Convergence for F3

(c) Convergence for F3, similar to 4, 12, 15,
19, 20, 21 and 22.

Fig. 2: GA convergence. The above graphs show the average rate of convergence during the optimization of ES-structures by
30 runs of the GA for different BBOB optimization functions. Both the FCE and ERT of the best found structure over time is
shown. Results for the optimization process in all five dimensionalities have been plotted per function. As the graphs for groups
of several functions are similar, an example has been chosen as representative for each group. The group of functions that a
single graph represents is listed below the graph.

TABLE III: Module activation percentages by function subgroup. This table lists the frequency of activated algorithmic modules
among the experimental cases, obtained by both all 30 runs per experiment of the Genetic Algorithm (GA) and Brute Force search
(BF). Results are separated by the BBOB function subgroups. Except for the second subgroup that consists of four functions, five
functions make up each subgroup, for a total of 20 or 25 experiments. For the bottom two rows, the two slash-separated values
indicate which of the two choices for the module was chosen. Bold values indicate a relatively high activation percentage for a
module in a particular subgroup, while a bold italic value indicates a relatively low activation percentage.

F1–F5 F6–F9 F10–F14 F15–F19 F20–F24 Average

Module name GA BF GA BF GA BF GA BF GA BF GA BF

Active Update 33 36 11 20 40 44 19 20 29 32 27.0 30.8
Elitism 41 44 45 45 70 72 12 12 54 48 44.3 44.2
Mirrored Sampling 61 60 62 60 39 40 73 68 59 60 58.4 57.5
Orthogonal Sampling 61 68 54 45 49 44 56 64 51 52 54.1 55.0
Sequential Selection 40 36 39 45 45 48 21 12 30 44 34.8 36.7
Threshold Convergence 26 36 17 25 53 56 2 4 15 24 22.6 29.2
TPA 38 44 35 45 53 56 9 4 21 28 31.1 35.0
Pairwise Selection 24 20 23 20 6 4 20 24 35 20 21.3 17.5
Recombination Weights 16 20 7 5 30 32 20 24 15 12 17.9 19.2
Sobol/Halton 51/32 48/32 55/32 45/45 45/47 40/56 52/35 56/40 42/38 48/44 48.8/36.8 47.5/41.7
IPOP/BIPOP 42/35 52/32 37/37 30/25 28/25 36/20 53/46 40/60 34/57 36/56 38.9/39.9 39.2/39.2

TABLE IV: Module activation percentages by dimensionality. This table lists the frequency of activated algorithmic modules
among the experimental cases, obtained by both all 30 runs per experiment of the Genetic Algorithm (GA) and Brute Force
search (BF). For the bottom two rows, the two slash-separated values indicate which of the two choices for the module was
chosen. Bold values indicate a relatively high activation percentage for a module in a particular subgroup, while a bold italic
value indicates a relatively low activation percentage.

2D 3D 5D 10D 20D Average

Module name GA BF GA BF GA BF GA BF GA BF GA BF

Active Update 53 67 40 50 25 17 5 8 13 13 27.0 30.8
Elitism 72 75 66 71 42 46 23 13 19 17 44.3 44.2
Mirrored Sampling 36 33 50 42 66 71 72 75 68 67 58.4 57.5
Orthogonal Sampling 38 37 35 33 60 75 74 75 63 54 54.1 55.0
Sequential Selection 47 46 42 46 29 25 31 33 24 33 34.8 36.7
Threshold Convergence 35 42 38 50 19 29 11 13 10 13 22.6 29.2
TPA 41 46 45 50 30 42 22 21 18 17 31.1 35.0
Pairwise Selection 21 21 27 25 18 8 16 8 24 25 21.3 17.5
Recombination Weights 24 25 16 21 18 25 18 17 14 8 17.9 19.2
Sobol/Halton 47/43 33/54 51/38 54/42 27/63 21/71 55/26 67/25 63/14 63/17 48.8/36.8 47.5/41.7
IPOP/BIPOP 35/39 38/42 34/44 25/46 38/39 46/33 37/51 38/54 50/27 50/21 38.9/39.9 39.2/39.2

hypothesis on the optimization problem or even gain more
knowledge on the problem. The proposed framework should
be extended with other modules, which make the configuration
space even larger. In addition, this framework should be tested
on some problem class that are summarized from complex
real-world optimization problems.

VII. ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
helpful comments.

REFERENCES

[1] A. Auger, D. Brockhoff, and N. Hansen. Mirrored sampling in
evolution strategies with weighted recombination. In Proceedings of
the 13th Annual Conference Companion on Genetic and Evolutionary
Computation, GECCO ’11, pages 861–868. ACM, 2011.

[2] A. Auger and N. Hansen. A restart CMA evolution strategy with
increasing population size. In Evolutionary Computation, 2005. The
2005 IEEE Congress on, volume 2, pages 1769–1776. IEEE, 2005.

[3] A. Auger, M. Jebalia, and O. Teytaud. Algorithms (x, sigma, eta):
quasi-random mutations for evolution strategies. In Artificial Evolution:
7th International Conference, Revised Selected Papers, pages 296–307.
Springer, 2006.

[4] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, Oxford, UK, 1996.

[5] T. Bäck, C. Foussette, and P. Krause. Contemporary Evolution Strategies.
Natural Computing Series. Springer Berlin Heidelberg, 2013.

[6] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff. A Medium-Scale Distributed System for
Computer Science Research: Infrastructure for the Long Term. Computer,
49(5):54–63, May 2016.

[7] D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm.
Mirrored Sampling and Sequential Selection for Evolution Strategies.
In R. Schaefer, C. Cotta, J. Kołodziej, and G. Rudolph, editors, Parallel
Problem Solving from Nature, PPSN XI: 11th International Conference,
Kraków, Poland, September 11-15, 2010, Proceedings, Part I, pages
11–21, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[8] L. Dalcn, R. Paz, and M. Storti. MPI for Python. Journal of Parallel
and Distributed Computing, 65(9):1108–1115, 2005.

[9] J. J. Grefenstette. Optimization of Control Parameters for Genetic
Algorithms. IEEE Transactions on Systems, Man, and Cybernetics,
16(1):122–128, Jan. 1986.

[10] N. Hansen. CMA-ES with Two-Point Step-Size Adaptation. CoRR,
abs/0805.0231, 2008.

[11] N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-
2009 function testbed. In Proceedings of the 11th Annual Conference
Companion on Genetic and Evolutionary Computation Conference: Late
Breaking Papers, GECCO ’09, pages 2389–2396. ACM, 2009.

[12] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-
Box Optimization Benchmarking 2009: Noiseless Functions Definitions.
Research Report RR-6829, INRIA, 2009.

[13] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation.
In Evolutionary Computation (CEC), 1996 IEEE Congress on, pages
312–317. IEEE, 1996.

[14] J. H. Holland. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, volume viii. U Michigan Press, Oxford, England, 1975.

[15] G. Jastrebski, D. V. Arnold, et al. Improving evolution strategies through
active covariance matrix adaptation. In Evolutionary Computation (CEC),
2006 IEEE Congress on, pages 2814–2821. IEEE, 2006.

[16] W. Kantschik, P. Dittrich, M. Brameier, and W. Banzhaf. Empirical
Analysis of Different Levels of Meta-Evolution. In Evolutionary
Computation (CEC), 1999 IEEE Congress on, volume 3, page 2093 Vol.
3, 1999.

[17] W. Kantschik, P. Dittrich, M. Brameier, and W. Banzhaf. Meta-Evolution
in Graph GP. In R. Poli, P. Nordin, W. B. Langdon, and T. C.
Fogarty, editors, Genetic Programming, number 1598 in Lecture Notes
in Computer Science, pages 15–28. Springer Berlin Heidelberg, May
1999.

[18] J. R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[19] J. Kruisselbrink, R. Li, E. Reehuis, J. Eggermont, and T. Bäck. On
the Log-Normal Self-Adaptation of the Mutation Rate in Binary Search
Spaces. In Proceedings of the 13th Annual Conference Companion on
Genetic and Evolutionary Computation, GECCO ’11, pages 893–900.
ACM, 2011.

[20] N. Lourenço, F. Pereira, and E. Costa. Evolving Evolutionary Algorithms.
In Proceedings of the 14th Annual Conference Companion on Genetic
and Evolutionary Computation, GECCO ’12, pages 51–58, New York,
NY, USA, 2012. ACM.

[21] M. A. Martin and D. R. Tauritz. Evolving Black-box Search Algorithms
Employing Genetic Programming. In Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation,
GECCO ’13, pages 1497–1504, New York, NY, USA, 2013. ACM.

[22] M. Oltean. Evolving evolutionary algorithms for function optimization.
In K. C. (et al), editor, The 7th Joint Conference on Information Sciences,
volume 1, pages 295–298, North Carolina, Sept. 2003. Association for
Intelligent Machinery.

[23] M. Oltean. Evolving Evolutionary Algorithms using Linear Genetic
Programming. Evolutionary Computation, 13(3):387–410, 2005.

[24] M. Oltean and C. Groşan. Evolving Evolutionary Algorithms Using
Multi Expression Programming. In W. Banzhaf, J. Ziegler, T. Christaller,
P. Dittrich, and J. T. Kim, editors, Advances in Artificial Life, number
2801 in Lecture Notes in Computer Science, pages 651–658. Springer
Berlin Heidelberg, Sept. 2003.

[25] A. Piad-Morffis, S. Estevez-Velarde, A. Bolufe-Rohler, J. Montgomery,
and S. Chen. Evolution strategies with thresheld convergence. In
Evolutionary Computation (CEC), 2015 IEEE Congress on, pages 2097–
2104, May 2015.

[26] I. Rechenberg. Evolutionsstrategie – Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog-
Verlag, 1973.

[27] L. Spector and A. Robinson. Genetic Programming and Autoconstructive
Evolution with the Push Programming Language. Genetic Programming
and Evolvable Machines, 3(1):7–40, Mar. 2002.

[28] J. Tavares, P. Machado, A. Cardoso, F. B. Pereira, and E. Costa. On the
Evolution of Evolutionary Algorithms. In M. Keijzer, U.-M. O’Reilly,
S. Lucas, E. Costa, and T. Soule, editors, Genetic Programming, number
3003 in Lecture Notes in Computer Science, pages 389–398. Springer
Berlin Heidelberg, Apr. 2004.

[29] H. Wang, M. Emmerich, and T. Bäck. Mirrored Orthogonal Sampling
with Pairwise Selection in Evolution Strategies. In Proceedings of the
29th Annual ACM Symposium on Applied Computing, pages 154–156.
ACM, 2014.

APPENDIX

TABLE V: Common ES Variants A selection of ten common
ES variants is listed here, as referred to in Section IV-B.

Variant Representation

CMA-ES 00000000000
Active CMA-ES 10000000000
Elitist CMA-ES 01000000000
Mirrored-pairwise CMA-ES 00100001000
IPOP-CMA-ES 00000000001
Active IPOP-CMA-ES 10000000001
Elitist Active IPOP-CMA-ES 11000000001
BIPOP-CMA-ES 00000000002
Active BIPOP-CMA-ES 10000000002
Elitist Active BIPOP-CMA-ES 11000000002

	Introduction
	Related Work
	CMA-ES Framework
	ES Variations
	ES Framework
	Implementation Details

	Evolving ES Structures
	Evaluating Evolution Strategies
	Encoding
	Genetic Algorithm

	Experiments
	Setup
	Uncertainty of Comparisons Between ESs
	Results

	Conclusions and Outlook
	Acknowledgments
	References
	Appendix

