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Abstract—  Nowadays, social network analysis receives big attention 

from academia, industries and governments. Some practical 

applications such as community detection and centrality in economic 

networks have become main issues in this research area. Community 

detection algorithm for complex network analysis is mainly  

accomplished by the Louvain Method that seeks to find communities  

by heuristically finding a partitioning with maximal modularity . 

Traditionally, community detection applied for a network that has 

homogeneous semantics, for instance indicating friend relationship 

between people or import-export relationships between countries etc. 

However we increasingly deal with more complex network and also 

with so-called multiplex networks. In a multiplex network the set of 

nodes stays the same, while there are multiple sets of edges. In the 

analysis we would like to identify communities, but different edge sets 

give rise to different modularity optimizing partitions into 

communities. We propose to view community detection of such 

multilayer networks as a many-objective optimization problem. For 

this apply Evolutionary Many Objective Optimization and compute 

the Pareto fronts between different modularity layers. Then we group 

the objective functions into community in order to better understand 

the relationship and dependence between different layers (conflict,  

indifference, complementarily). As a case study, we compute the 

Pareto fronts for model problems and for economic data sets in order 

to show how to find the network modularity tradeoffs between 

different layers.  

 
Keywords—Multiplex networks, community detection, many-

objective optimization, modularity maximization 

I. INTRODUCTION  

In  many  d is cip lines complex s ys tems  can be s tudied 

th rough  network modeling  and  analys is. Th is  y ields  a 

bet ter understanding of complex phenomena, including  

conflict ing s ocio logy phenomena, s p reading of d is ease, 

conflict ing economic s ituat ions, telecommunication 

systems, biological systems, and networks in engineering. The 

networks or a collection of nodes are joined in pairs by edges. 

Clustering such groups of nodes in the network has become an 

important part of research. Network data becomes increasingly 

available but also complex due to the omnipresence of data 

measurement and inquiry as a recent trend.  

In this work we will focus on a special class of networks – 

so-called multiplex networks. Often for the same set of network 

nodes, several or many network layers can be defined. Network 

defining trade in different types of commodities is an example  

and it will provide a case study for this paper. Other examples  

include multiplex networks 

 in communication via different channels  (social 

media, telephone, peer-to-peer),  

 in biology, the different types of signaling networks 

of trees or plants (via scents, via insects, via 

underground root networks), 

 in sociology, defined by different types of 

relationships, such as personal friendship, relatives, 

business relationships, which might partially  

overlap. 

This paper presents a first step into the analysis of such 

multiplex networks by means of modularity optimization , 

where modularity is a measure of the quality of how well a 

partition of a network is representing communities . We 

consider the optimization of modularity for the different layer 

as the objective functions. Optimizing several (2, 3) objectives 

simultaneously can be addressed by multi-objective 

optimization and many (>3) objectives by many-objective 

optimization resulting in a high dimensional Pareto front. By  

computing the Pareto fronts of pairs of different layers we find  

relationships between the objectives . Layers can be ‘in conflict’ 

with each other, meaning that they yield very different optimal 
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modularity structures. They can be also complementary , 

meaning that maximizing the modularity of the one layer also 

maximizes the modularity of the other layer. In this case it is 

possible to merge the layers without losing essential 

information. Finally, it is also possible that the maximization of 

modularity of one layer does not affect the optimization of the 

modularity of another layer, in which case the problem could 

be easily decomposed. 

II. RELATED WORK 

To optimize many objectives simultaneously various 

approaches have been developed. Some of them aim at reducing 

complexity, such as Objective Reduction in Many-objective 

Optimization: Linear and Nonlinear Algorithms [3], Reducing 

Complexity in Many Objective Optimization Using 

Community Detection [4], and Objective Reduction Based on 

Nonlinear Correlation Information Entropy [5]. Other 

approaches are based on Evolutionary Multi-objective 

optimization (EMO) extended to deal with many objectives, cf. 

[2].  

In this paper we will follow the approach by Maulana et al. 

[4]. They proposed a method to reduce complexity in many  

objective optimization by forming groups of objective 

functions based on the correlation between objective functions: 

Objectives are either conflicting (negative correlation), 

supporting each other (positive correlation), or indifferent w.r.t . 

each other (zero correlation) – here assuming that all objectives 

are to be maximized (or all objectives are to be minimized) . 

Based on the correlation matrix one can form groups of 

networks with similar structure and oppose them to groups with 

conflicting structure. Moreover independent sub-problems can 

be separated. Thereby one can reduce the complexity of the 

overall multiple modularity maximization problem and gain 

insight into the structure of the many-objective problem. 

III. PRELIMINARIES  

Next we will introduce a formal definition of a multip lex 

network, modularity optimization and many objective 

optimization.  

For comparative study, we apply NSGA-II [16], MOEA/D [17] 

and SMS-EMOA [14, 15] algorithms. 

A. Multiplex Network  

A multiplex network is a (possibly edge-weighted) graph that 

consists of a number of nodes connected by links of different 

type, whereby two edges connecting the same nodes must have 

different type and can have different edge weights [9,10].  

For the formal definition of a multiplex network assume 𝐺𝑙  =

 {𝑉, 𝐸𝑙 } is a network of layer l, where V refers to a set of network 

nodes, and El to a set of edges of layer l with 𝑙 ∈  {1 …  𝑀} . The 

set of nodes V is the same for each layer and has cardinality 

|V|= 𝑚, whereas the set of links 𝐸𝑙   depends on the layer 𝑙. A 

visual illustration of the layers is shown in Figure 1. A 

multiplex network is represented formally as  𝐺 =

 (𝐺1 , 𝐺2 , … 𝐺𝑙 , …  𝐺𝑀 ). Here we assume that every network 𝐺𝑙  is 

fully described by the adjacency matrix  𝐴𝑙   with elements 𝑎𝑖𝑗
𝑙 =  

𝑊𝑖𝑗
𝑙  > 0, where 𝑎𝑖𝑗

𝑙 = { 𝑊𝑖𝑗
𝑙  > 0 } if there is a link with positive   

weight between nodes i and j in layer 𝑙, and 𝑎𝑖𝑗
𝑙 = 0 otherwise. 

From now on, in order to simplify the formalization of weighted 

multiplex networks, we will assume that the weight of the link 

between any pair of nodes 𝑖 and 𝑗: 𝑎𝑖𝑗
𝑙 =  𝐺𝑖𝑗

𝑙 , can only take 

positive integer values or zero. This does not impose a major 

limitation because in a large number of weighted multip lex 

networks the weights of the links can be seen as multiples of a 

minimal weight. 

B. Community Detection 

Community detection is a very well-known method in social 

network analysis. A community is a group of nodes with many  

links between nodes of the group, but not so many links to 

nodes outside the group. The most popular community  

detection method for network clustering is the Louvain method, 

which is based on modularity maximization. Modularity is a 

concept that originates from social network analysis [1]. It is a 

quality measure or strength of partitioning of a graph into 

communities (partitions, groups or clusters). Maximizing  

modularity groups the nodes of a graph in such a way that intra-

cluster graph distances (or edge weights) are minimized and 

inter-cluster graph distances (or edge weights) are maximized . 

Let 𝑨𝒊𝒋 denote the weight of the edge from node 𝒊 to node 𝒋. Let  

Figure 1 A visual illustration of multiplex network consists of two layers of networks distinguished by blue and red colour. Each layer 

has different type of links but nodes remain the same. The union of these layers, indicated by ∪, forms the multiplex network. 



𝒎 denote the number of nodes, and 𝒌𝒊 = ∑ 𝑨𝒊𝒋𝒋  denote the sum 

of weights of edges belonging to node 𝒊. Moreover, 𝒄𝒊 is the 

community to which node 𝒊 is assigned. Finally 𝜹(. , . ) is the 

Kronecker symbol, which is equal to 1 if and only if both 

arguments are equal to each other. Otherwise it obtains the 

value of 0. Now the modularity is defined formally as: 

𝑄 =
1

2𝑚
 ∑ [𝐴𝑖𝑗 −

𝑘𝑖 𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖 , 𝑐𝑗)

𝑖𝑗

 

It can be shown by polynomial reduction of 3-PARTITION that 

modularity maximization is NP complete [6], and thus, in  

general, is difficult to solve this problem exactly. There are 

however several fast heuristics available, such as the Louvain 

method [1], which is a greedy heuristic that finds high 

modularity partitions of a network in short time. The first phase 

of Louvain method begins by placing each node in its own 

singleton ‘community’. Then the looping over all nodes is 

done in the following way:  

For each node 𝑖 all neighbors, that is, all the nodes 𝑗  such that 

𝐴𝑖𝑗  is nonzero, are analyzed from the point of view of the gain 

computed after removing 𝑖  from its community and placing it 

in the community of 𝑗. The node 𝑖 is then put in the community  

for which the increase in modularity is largest. If none of the 

potential re-assignments of 𝑖 into other communities is 

associated with positive gain in modularity, 𝑖 stays in its 

original community and the algorithm moves on to the next  

node. The loop is repeated until no further improvements are 

obtained, i.e. when the modularity has reached a local optimum. 

In the next phase of the algorithm, a new network is constructed 

with the communities of nodes obtained at the first phase of the 

Louvain method. The weights of the edges between the new 

nodes are given by the sum of the weights between all nodes 

between communities of the previous phase. When this phase 

is finished, a new phase is started, and so on. This creates a 

hierarchy of communities . The algorithm stops when a 

maximum of the modularity is obtained, or in practice, when 

the last performed pass did not further increase modularity. 

C. Many-Objective Optimization 

A multi-objective optimization problem is defined by a number 

of objective functions 𝑓𝑖 ∶  𝑋 → ℝ , 𝑖 =  1, … , 𝑚  to be 

maximized (or maximized) for some search space 𝑋. A solution 

𝑎 ∈ 𝑋 is said to dominate a solution 𝑏 ∈ 𝑋 if and only if 

∀ 𝑖: 𝑓𝑖
(𝑎) ≥  𝑓𝑖 (𝑏) and ∃ 𝑗: 𝑓𝑗 (𝑎)  >  𝑓𝑗 (𝑏). Two solutions in 

𝑎 ∈ 𝑋 and 𝑏 ∈  𝑋 are non-dominated w.r.t. each other if neither 

𝑎 dominates 𝑏 nor 𝑏 dominates 𝑎. The efficient set 𝑋𝑒  is the set 

of solutions in 𝑋 that is not dominated by any solution in 𝑋. The 

Pareto front 𝑃𝐹  is the image set of 𝑋𝑒 , i.e. 𝑃𝐹 = {𝑓(𝑥)|𝑥 ∈  𝑋}. 

 

Many-objective optimization (MOP) applies to problems with  

more than three objective functions [7]. The research problem 

of optimizing modularities in multiplex networks discussed in 

this work is formulated as a MOP. The two main issues 

differentiating many-objective problems from multi-objective 

problems are the following: on the one hand, a large number of 

objective functions makes visualization of the Pareto front 

impractical; on the other hand, analysis of Pareto fronts is 

difficult due to the tendency that a majority of solutions will be 

non-dominated. Hence, the tradeoff analysis of conflicts 

between objective functions  and the representation of the entire 

Pareto front can become difficult and in-transparent. Moreover, 

a high number of objectives can yield to a significant increase 

in the computational time complexity required to compute 

Pareto fronts. In spite of these difficulties many techniques and 

approaches have been tried to deal with many objective 

optimization [2, 3, 4, 5]. 

IV. PROBLEM DEFFINITATION OF MANY-OBJECTIVE 

COMMUNITY DETECTION IN MULTIPLEX NETWORK 

Our research approach is to perform many-objective 

optimization of network modularity by computing and 

visualizing a matrix of Pareto fronts for pairs of objectives. 

Then we use community detection algorithms to group 

objective functions in order to understand and visualize the 

conflict or correspondence of community structures w.r.t . 

different edge sets. For every edge set one objective function is 

defined, which is to maximize the modularity for this edge set. 

The search space 𝑋 is the space of all partitionings of the node 

sets. In this way for a multiplex network G with layers 

𝐺1 , … , 𝐺𝑀  we define 𝑀 objective functions 𝑄1: 𝑋 →

ℝ0
+ ,𝑄2: 𝑋 → ℝ0

+ , … , 𝑄𝑀 : 𝑋 → ℝ0
+. All objective functions are  

to be maximized.  

Our first goal is to compute Pareto optimal solutions . Then we 

analyze projections to pairs  of objective functions 

(corresponding to pairs of layers), in order to understand the 

relationship between layers in terms of modularity structure. In 

this way we aim to gain insight into essential aspects of the 

community structure of a given multiplex network. 

V. NETWORK ANALYSIS METHOD 

Given as an input a multiplex network with 𝑀 layers 

represented by a set of graphs 𝐺1 , … , 𝐺𝑀 , the approach is called 

Pareto front Modularity for Multiplex  Network (PaMoPlex ). 

It is summarized in a work flow which consists of two major 

phases: (1) Preparation of data by optimization, (2) Analysis of 

data.  

The preparation of data in step (1) of the analysis consists of 

solving optimization tasks to find non-dominated solutions. In 

order to get more precise results we also compute single 

objective optima and marginal Pareto fronts  for every pair of 

two objective functions (between the modularities (objectives) 



associated with two layers, each). The first phase is 

summarized in the next three steps:  

 Single Objective Optimization: Optimize the modularity  

of each network separately using evolutionary single 

objective optimization based on a genetic algorithm. 

 Many Objective Optimization: Optimize the modularity  

of network, all layers together, as one unity in multip lex 

network. For this we use a 𝑀-objective many optimization  

algorithm. 

 Pairwise Pareto-Front Computation: Optimize 

modularity for pairs of objectives.  

The optimization method is evolutionary multi-objective 

optimization based on NSGA-II [16], MOEA/D [17] and SMS 

EMOA [14, 15]. (Population size: 100, number of generations: 

2000). For small examples, we use complete enumeration of 

partitions. Since NSGA-II is not really appropriate for Many-

Objective Optimization problem we more rely on both 

MOEA/D and SMS-EMOA algorithm for the experiment. 

In the second phase the obtained data are analyzed. This is 

conducted in the following three steps: 

 Matrix of Pareto Fronts Analysis: Visualization of 

Pareto Fronts is done on a plot matrix, where each tile with  

𝑗 ∈ {1, … , 𝑀}, 𝑖 ∈ {1, … , 𝑀}, 𝑗 > 𝑖 consists of a plot of a 

Pareto front of tradeoffs between objectives 𝑄𝑖 and 𝑄𝑗.  

(see Figures 5). 

 Correlation Heat map Analysis: Computation of the 

correlation coefficients matrix from the projections of the 

output of many-objective optimization. The heat map has 

as many rows and columns as the number of network layers 

(or objectives). The Pearson correlation coefficients of the 

projected 2-objective function vectors  have values in the 

range of [-1, 1] for each pair of objective functions; see 

Table 2 for an example. In the heat map, see Figure 6 for 

an example, blue color represents negative correlations, 

whereas red color represents positive correlations. The 

intensity (darkness) and size of the colored square in each 

matrix cell grows with the absolute value.  

 Community Analysis: This tool is based on the result of 

the correlation analysis. The correlation matrix is used for 

community detection by the Louvain method to detect 

communities using the information of correlation  

coefficients matrix and interpreting it as  edge weights. 

Here the analysis proposed by Maulana et al. [4] is used, 

where the edge weight is determined by the absolute value 

of the correlation coefficient. This leads to a separation of 

independent communities of layers. Conflicting  

communities are placed opposite to each other (see Figure 

7).   

Further details on the analysis on examples and interpretation 

of results will be discussed in the subsequent sections. 

VI. EXAMPLE 

A. Analysis on Synthesized Multiplex Networks 

As an illustrative example on how to interpret results of mult i-

objective modularity optimization, we compute the exact  

Pareto fronts for three synthesized multiplex networks 

consisting of only two layers each. The networks and the 

corresponding Pareto fronts are displayed in Figure 2, 3 and 4. 

Red edges denote edge weights of 3, blue edges represent edge 

weights 1, and omitted edges have weight 0.  Complete 

enumeration of all 203 possible portioning was used to compute 

the exact Pareto fronts (cf. Bell 1934 [8]).  

 

Figure 2 A visual depiction of Pareto front for network modularity between 

two network layers N1 and N2 corresponding to highly conflicting objectives 

O1 and O2  

 

Figure 3 A visual depiction of Pareto front for network modularity 

between two networks N1 and N2 corresponding to highly correlated 

objectives O1 and O2  

 



Figure 4. A visual depiction of Pareto front for network modularity between 

two networks N1 and N2 corresponding to objectives O1 and O2  with exact 

modularity 

The first network in Figure 2 is a multiplex network where the 

maximization of modularity is conflicting, due to non-

overlapping communities w.r.t. both layers. The linear Pareto 

front indicates a strong conflict between the maximizat ion of 

two types and it is difficult to find a compromise solution that 

optimizes both objectives at the same time.  

In the second example, in Figure 3, the optimal modularity for 

the first network is achieved by grouping the upper nodes in the 

graph, while for the second network it is important to group the 

lower nodes. Thereby the value of the modularity is widely  

indifferent to how the remaining nodes are grouped. This 

represents a case where the modularity optimization for the two 

layers is almost independent and the Pareto front has a knee 

point solution where both objective functions almost obtain 

their maximum. The correlation is close to zero.  

Finally, the third example in Figure 4 shows a multip lex 

network consisting of two equal edge sets. Here solutions can 

be found that cluster for one layer optimally w.r.t. modularity  

necessarily also do so for the modularity of the second network. 

In other words, optimizing one network coincides with  

optimizing the other network. This is indicated by a perfect 

correlation between the modularities of sampled points – even 

for random inputs. The Pareto front consists of only a single 

solution.  

In real world applications, it is of course not so obvious how 

the structure of the Pareto front looks like. These three 

examples should be seen as boundary cases, which can help to 

interpret and understand the observed shape of Pareto fronts in 

such real world networks. 

B. Economic Trade Multiplex Network Analysis 

Next, a full PaMoPlex analysis on an economic dataset is 

provided. The data originates from network economy (trade 

data) using import-export commodities network between 

countries in 2011. (see [11], Appendix) The data represents the 

import-export relationships between some countries of the 

world, disaggregated for different traded commodities. This 

network can be defined as a multiplex network composed by 

many layers, where each layer is given by a different  

commodity. The nodes are given by 207 countries. A link 

between two countries in a 𝑖-th layer defined as weight will 

exists if there is trade between them in the 𝑖-th commodity, for 

𝑖 ∈ {1, … , 11}. Data are presented in matrix form: rows and 

columns represent countries, and the entries of the matrices are 

the volumes of trade. It is therefore a weighted multip lex 

network. The general classification is based on 96 different  

commodities. The classification performed by grouping 

together similar commodities; this procedure leads to 11 

aggregated 'super-commodities'.   

 

Table 1 A modularity for each single network and optimization result 
for those modularity based on single objective optimization using 

genetic algorithm 

The single objective optimization was conducted by a genetic 

algorithm and by the Louvain method. In all cases the genetic 

algorithm found a better result. The results are summarized in  

Table 1. The typical number of communities when maximizing  

modularity is between 5 and 9. 

The genetic algorithm is from the software package JMetal 

(gGA). It has population size 2000 and 100 generations were 

conducted. The default parameter settings for the genetic 

operators were used (http://jmetal.sourceforge.net/, February 

2015). We suppose that by tuning of parameters better results 

can be achieved, but defer such studies to future research in 

order to focus more on the overall analysis method in this paper. 

The many-objective optimization yields a Pareto front that is 

embedded in an 11 dimensional space. The analysis of the 

correlation and community between objectives was conducted 

after the approach mentioned in [4].  

From this we compute the heat map of correlation between 

objectives (Figure 6) and the community structure (Figure 7). 

The results are also reflected in the Pareto front plot matrix 

(Figure 5). Our interpretation of results is as follows: Strong 

conflicts occur between 𝑄3 and 𝑄8, 𝑄3 and 𝑄9,  𝑄1 and 𝑄8, 𝑄4 

and 𝑄5. . Contrarily there is high correlation between  𝑄1 and 

𝑄2, 𝑄1 and 𝑄3,  𝑄4 and 𝑄11, 𝑄4 and 𝑄10, 𝑄4 and 𝑄11. 

 

Trade  
network  

Modularity based on  

standard Louvain 
method  

Single objective 

optimization 
 by Genetic 
Algorithm 

Modularity 

Number 

of 
 cluster 

Modulari

ty 

Number 

of  
 cluster 

Trade 1 0.34392 9 
0.35162 9 

Trade 2 0.34794 9 0.35225 9 

Trade 3 0.30513 9 
0.30801 8 

Trade 4 0.33691 7 0.33771 7 

Trade 5 0.29084 6 0.29968 6 

Trade 6 0.26811 5 
0.27008 5 

Trade 7 0.24781 7 0.24873 7 

Trade 8 0.18622 6 
0.18863 5 

Trade 9 0.29881 5 0.29882 4 

Trade 10 0.22961 5 0.22966 4 

Trade 11 0.15493 4 
0.15494 4 

http://jmetal.sourceforge.net/


 

Figure 6 Correlation heat map  for many-objective optimizations of 11 node 

trade network 

 

 

 

 

Figure 7 community structure for many-objective optimizations of 11 node 

trade network 

 

 

 

Figure 5 Pairwise Pareto Fronts Matrix for Economic Trade Network Analysis 

 



From the analysis we can for instance conclude that for trade-

networks of 𝑄3 and 𝑄8 the countries cannot be clustered in a 

way that community structures for both groups of commodities  

are well represented. On the contrary, for 𝑄1 and 𝑄2 there exists  

a clustering that represents the community structures for both 

communities very well (see Appendix for commodity  

description). It seems logical that the mainly agricultural 

products of group 𝑄1 and 𝑄2 appear to adhere to similar trade 

community structures, whereas for the very disjoint products in 

group 𝑄3 and 𝑄8, it might have been difficult to predict a priori 

how their trade networks will overlap. 

VII. CONCLUSION AND FUTURE WORK 

The paper showed how to apply many-objective optimization  

for the analysis of multiplex networks. Different ways on how 

to analyze the community structure in multilayer networks were 

shown, all relying upon data from many-objective optimization .  

First we discuss the meaning of the Pareto fronts between 

modularities by exact computations of Pareto fronts on three 

illustrative examples, which represent important boundary 

cases. Then, on the example of trade networks for commodities , 

we perform a full analysis. First we generate data using many-

objective optimization, biobjective optimization (of any pair of 

layers), and single objective optimization (of any single layer). 

The results are analyzed using three tools suggested here: 

Correlation heatmap, community of objectives analysis, and 

Pareto-front plot matrix. These were computed for an economic 

trade network with 11 groups of commodities. Clearly a 

grouping emerges in terms of complementarity and/or in terms  

of indifference. NSGA-II, MOEA/D, SMS-EMOA and single-

objective genetic algorithms can be used as a search engine. For 

future work, envisaging to apply NSGA-III [18] will be a good 

consideration since it has been proposed for solving Many-

Objective Optimization problems. In addition more in-depth 

analysis an extended benchmark will be conducted. Moreover 

it is also promising to look at other network metrics, such as 

centrality, to gain further insights into multiplex network 

structure. 

 

Appendix 

 

Description on selected commodities in trade network: 

 

We will not go in detail about all commodities, due to space 

limitations, but briefly describe those mentioned above: 

𝑄1 = {Live animals, Meat and edible meat offal, Fish, 

crustaceans and aquatic invertebrates,  Dairy produce; birds 

eggs; honey and other edible animal products } 

𝑄2 = {Live trees, plants; bulbs, roots; cut flowers and 

ornamental foliage tea and spices ; Edible vegetables and certain 

roots and tubers; Edible fruit and nuts; Citrus fruit or melon  

peel; Coffee, tea, mate and spices; Cereals; Milling products; 

malt; starch; inulin; wheat gluten; Oil seeds and oleaginous 

fruits; miscellaneous grains, seeds and fruit;  Industrial or 

medicinal plants; straw and fodder} 

𝑄3 = { Lac; gums, resins and other vegetable sap and extracts  

Vegetable plaiting materials and other vegetable products ; 

Animal, vegetable fats and oils, cleavage products, etc; Edible 

preparations of meat, fish, crustaceans, molluscs or other 

aquatic invertebrates; sugars and sugar confectionary; Cocoa 

and cocoa preparations; Preparations of cereals, flour, starch or 

milk; bakers wares; Preparations of vegetables, fruit, nuts or 

other plant parts; Miscellaneous edible preparations; 

Beverages, spirits and vinegar; Food industry residues and 

waste; prepared animal feed; Tobacco and manufactured 

tobacco substitutes} 

𝑄8 = {Carpets and other textile floor coverings; Special woven 

fabrics; tufted textile fabrics; lace; tapestries; trimmings ;  

embroidery; Impregnated, coated, covered or laminated textile 

fabrics; textile articles for industrial use; Knitted or crocheted 

fabrics;  Apparel articles and accessories, knitted or crocheted;  

Apparel articles and accessories, not knitted or crocheted;  

Other textile articles; needlecraft sets; worn clothing and worn  

textile articles; rags;  Footwear, gaiters and the like and parts 

thereof; Headgear and parts thereof; Umbrellas, walking sticks, 

seat sticks, riding crops, whips, and parts thereof; Prepared 

feathers, down and articles thereof; artificial flowers; articles of 

human hair} 

(See COMTRADE 96 Classification of commodities for 2011 

on http://comtrade.un.org/db/mr/rfCommoditiesList.aspx) 

Moreover we use the following grouping of commodities  

- from 1 to 5: comm 01; 

- from 6 to 12: comm 02 

- from 13 to 24: comm 03 

- from 25 to 35: comm 04 

- from 36 to 40: comm 05 

- from 41 to 49: comm 06 

- from 50 to 56: comm 07 

- from 57 to 67: comm 08 

- from 68 to 82: comm 09 

- from 83 to 88: comm 10 

- from 89 to 96: comm 11  

The commodity data we used was from 2011 for all 207 

countries. 
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1 0.3548 0.3059 0.1378 0.1695 0.0577 0.0759 -0.2474 0.0891 0.0578 0.0695 

0.3548 1 0.1247 -0.0447 0.1351 -0.1596 0.1172 0.0715 -0.2689 -0.0937 0.0017 

0.3059 0.1247 1 0.2332 -0.17 0.0345 -0.1839 -0.3465 -0.3371 0.0853 0.2283 

0.1378 -0.0447 0.2332 1 -0.279 0.1558 -0.2159 0.1382 -0.0122 0.1928 0.2393 

0.1695 0.1351 -0.17 -0.279 1 0.0468 0.1544 0.1428 0.1049 -0.0278 -0.1891 

0.0577 -0.1596 0.0345 0.1558 0.0468 1 -0.2646 0.2314 0.2439 -0.1592 0.081 

0.0759 0.1172 -0.1839 -0.2159 0.1544 -0.2646 1 -0.1495 -0.0774 -0.1515 -0.0504 
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0.0578 -0.0937 0.0853 0.1928 -0.0278 -0.1592 -0.1515 -0.2256 0.1913 1 -0.2531 

0.0695 0.0017 0.2283 0.2393 -0.1891 0.081 -0.0504 -0.0349 -0.2738 -0.2531 1 

Table 2 A correlation Matrix of modularity for 11 node trade network based on many-objective optimization by SMS-EMOA algorithm. 
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