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Abstract—Neuro-evolutionary algorithms optimize the synaptic
connectivity of sets of candidate neural networks based on a
task-dependent fitness function. Compared to the commonly used
methods from machine learning, many of them not only support
the adaptation of connection weights but also of the network
topology. However, the evaluation of the current fitness requires
running every candidate network in every generation. This
becomes a major impediment especially when using biologically
inspired spiking neural networks which require considerable
amounts of simulation time even on powerful computers. In
this paper, we address this issue by offloading the network
simulation to SpiNNaker, a state-of-the art neuromorphic hard-
ware architecture which is capable of simulating large spiking
neural networks in biological real-time. We were able to apply
SpiNNaker’s simulation power to the popular NEAT algorithm
by running all candidate networks in parallel and successfully
evolved spiking neural networks for solving the XOR problem
and for playing the Pac-Man arcade game

I. INTRODUCTION

Biological neural networks are computing systems.
They perform a variety of complex tasks, including sensory
processing and muscular control. As such, biological networks
have inspired artificial intelligence (AI) researchers since the
beginning of the field. Some of the oldest concepts in AI
are the McCulloch-Pitts neuron model [1] and Rosenblatt’s
perceptron [2]. These neurons follow a digital threshold logic.
Advancing these neuron models by enabling a continuous
output, rather than a binary, resulted in networks that are
proven to be universal function approximators (given a small
number of requirements [4]). Indeed, their computational
power has resulted in outstanding performance on a variety of
pattern recognition tasks, including supervised classification,
natural language processing and robot control [5], [6].

Regardless of their performance, these artificial neural
networks are still comprised of neuron models that are
vast abstractions of biological neurons. Biological neurons
integrate incoming spikes which affect the membrane potential
and emit a spike if some threshold is crossed. The spike is
a stereotypical event, therefore all information is assumed to
be contained in the timing of the spike. The neuron models
used in spiking neural networks (SNN) aim to better mimic
their biological counterparts. The output of these neurons is
no longer a simple function of its inputs, rather the internal
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state of the neuron is modelled and incoming spikes have
a temporal effect [7]. The outputs are single, stereotypical
events. A range of neuron models is available such as the
leaky integrate-and-fire neuron [8] or the Hodgkin-Huxley
model [9]. Maass [3] proved that SNNs are computationally
more powerful than other types of artificial neural networks
of the same size.

To create a functional SNN, a number of network
architecture design choices have to be addressed, like the
network size and connectivity. Evolutionary algorithms offer
automated evolution of neural networks, some of them
determining complete network topology (altering the number
of neurons and their connectivity). Another advantage of
evolutionary algorithms is that the performance criterion
can be defined in a more flexible manner compared to
other learning algorithms for neural networks. The main
computational cost for neuro-evolution of SNNs is usually the
numerous network simulations that are required for evaluating
the networks.

SpiNNaker (Spiking Neural Network Architecture) is a
neuromorphic hardware designed to efficiently simulate large
numbers of neurons. SpiNNaker can simulate networks of
virtually any topology, including multiple networks in parallel.
It is therefore advantageous to apply its simulation power
in the evaluation of the networks in the evolutionary algorithm.

In the following sections, the NEAT algorithm and the SpiN-
Naker hardware are briefly introduced. The methods section
presents the experimental setup that combines SpiNNaker and
NEAT in order to create functional SNNs. The setup is tested
by solving the XOR problem and next used to create functional
SNNs that play Pac-Man1, a classic arcade game originally
developed by Toru Iwatani for the Namco Company in 1980.

A. Neuro-Evolution of Augmenting Topology (NEAT)

Functional networks for a variety of problems have been
found by the NEAT algorithm [14], [15] and by other
neuro-evolutionary algorithms, including the design of robotic
morphology and/or control [18]–[21] and the design of agents
for different games [22]–[24].

1https://en.wikipedia.org/wiki/Pac-Man



NEAT is an evolutionary algorithm that creates neural
networks [16]. It evolves both topology and connection
weights. NEAT employs a direct encoding system, all neurons
and connections in a given network are directly represented
by a neuron or link gene. It is particularly suited for evolving
neural networks because of (i) gradual complexification,
starting with minimal networks and incrementally adding
neurons and/or connections, (ii) a structured crossover
mechanism that allows inheritance of network functionality,
(iii) innovation protection by maintaining multiple species.

NEAT starts with a population of minimal networks.
Each networks consists of only input and output neurons,
which are fully connected with random connection weights.
The number of input and output nodes are given by the
experimenter and remain static. The fitness of each network
determines its chance to create offspring. Offspring can differ
from its parents through any of three mutation types: change
of connection weight, addition/removal of a connection
and addition/removal of a hidden neuron. Networks of
the population can thus gradually grow in size with each
generation.

Structural mutations often decrease fitness initially even if
they are required for a solution in the long run. Some time
may be needed for a new structure to be integrated. Due
to the initial decrease in fitness the network is less likely
to survive and the innovation might become extinct before
optimization revealed its added value. Therefore the NEAT
algorithm has a mechanism to protect innovation: speciation.
Speciation implies the maintenance of multiple species among
the entire population of networks. Offspring is only created
based on two parents from the same species. Different species
can thus evolve in parallel and networks compete primarily
within their species. NEAT uses explicit fitness sharing [17],
forcing networks of the same species to share their fitness.
The result is that the size of each species is proportional
to the performance of its networks. Fitness sharing prevents
a single species from dominating the entire population and
allows some time for new mutations to optimize.

B. SpiNNaker

SpiNNaker is a neuromorphic hardware designed to
simulate large scale spiking neural networks in biological
real-time [10], [11]. SpiNNaker is built with standard
computer hardware components, but the architecture is
optimized for spike transmission [12]. In SNNs, spikes are
stereotypical all-or-none events. All the information carried
by a spike is contained in the source of the spike and the
timing of the spike. Therefore, a SNN can be efficiently
modelled with packet-based communication using the
AER protocol [13]. This communication scheme detaches the
topology of the neural network from the actual physical wires.
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Fig. 1. Overview of the experimental loop. Based on the fitness values of the
parent generation, the NEAT algorithm creates new networks (the offspring
generation, below). All offspring networks are simultaneously simulated on
SpiNNaker to assess their performance (here N Pac-Man games, top). The
score achieved by each network is used as fitness values by the NEAT
algorithm.

On SpiNNaker, AER packets contain a source neuron
identifier and are sent to the on-chip packet router that
relays the packet to any possible location. The routing
mechanism of the SpiNNaker architecture [11] is optimized
to communicate large numbers of small AER packets.
The unit of a SpiNNaker machine is a chip containing 18
ARM968 processors and local memory. All chips together
form a toroidal grid, a spike emitted in one chip can be
routed to any other location on the grid. The topology of
the simulated network is therefore easily reconfigurable by
adjusting the routing tables. SpiNNaker can emit spikes much
faster than biological networks. Therefore many biological
wires (axons) can be replaced by few electronic wires.
This difference in operational speed between SpiNNaker
and biological networks enables topology virtualization and
simulations on a biologically realistic time-scale. Spike timing



is implicit. The combination of a packet arriving at a specific
time and at a specific location is equivalent to the biological
synaptic event where one neuron receives input from another
neuron.

The number of neurons that can be simulated in practice
depends on a number of factors including the neuron model,
synapse model, number of synapses per neurons, average
firing rate of neurons and network connectivity. Each chip
can simulate a few thousand simple neuron models such as
leaky integrate-and-fire neurons, with approximately 1000
input synapses per neuron. The SpiNNaker architecture is
highly scalable, from a single chip up to 65 536 chips
[12]. SpiNNaker is built with energy efficient components.
Power consumption is further optimized by its event-driven
operation. A single chip consumes only 1 W. This makes
SpiNNaker affordable to operate and suitable for use on
mobile, wireless robotic platforms.

II. METHODS

The NEAT algorithm and a 48-chip SpiNNaker machine
(SpiNN-5) are both integrated in an automatized loop
that constitutes the evolutionary experiment (fig. 1 on the
preceding page). Each experiment starts with NEAT creating
a random initial population of networks. In order to create
the next generation, the NEAT algorithm needs the fitness
of each network. To obtain these fitnesses, SpiNNaker is
configured to simulate all networks of the population in
parallel. Each network can communicate inputs and outputs
via an ethernet connection with a host PC. An open source
C++ implementation of NEAT 2 is used to find functional
networks for the XOR problem and for playing a Pac-Man 3

game. Table I displays used values of the NEAT algorithm’s
main parameters.

All neurons are simple leaky integrate-and-fire neurons
(fig. 2) with alpha-shaped synaptic currents. When the
threshold potential (-50mV) is reached, a spike is emitted
and the membrane potential is set to -70mV for 2ms (the
refractory period). Connection weights are real-valued and
kept in the range [-8.0, 8.0], and can change between
inhibitory and excitatory by connection weight mutations.
Only feed forward connections are used.

To run multiple networks on SpiNNaker in parallel, all
networks together are simulated as one big network, described
with pyNN [25]. Individual networks will not affect each
other due to the lack of connectivity. For evolving Pac-Man
controllers (see section III.B), a Pac-Man game is instantiated
on the host PC for each individual network simulated on
SpiNNaker. Inputs for the networks are extracted from Pac-
Man game frames. The inputs activate the corresponding input

2MultiNEAT, https://github.com/peter-ch/MultiNEAT
3Edx-ai-project1, https://github.com/kalys/edx-ai-project1
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Fig. 2. Membrane voltage of a leaky integrate-and-fire neuron simulated
on SpiNNaker. Red dots indicate the arrival of a spike from an excitatory
synapse. The arrow indicates time of crossing firing-threshold.

Parameter Value

population size 250
survival proportion 0.2
overall mutation rate 0.25
crossover rate 0.75
elitism proportion 0.1
mutation probability change connection weight 0.5
mutation probability add node 0.1
mutation probability remove node 0.1
mutation probability add connection 0.1
mutation probability remove connection 0.1
mutation probability remove simple neuron 0.1

TABLE I
MAIN PARAMETERS OF THE NEAT ALGORITHM.

neurons and are processed through the network simulations.
The activity of the output neurons is sent back to the host
PC. Based on the output activity, a decision for each Pac-Man
game instance is extracted and the next frame is simulated
on the host PC. This loop continues until game over occurs
or a specified number of frames is reached. The score of the
Pac-Man game at this point is used as the networks fitness
value by NEAT algorithm that creates the next generation of
networks.

III. RESULTS

A. The XOR problem

To test the experimental set-up, the benchmark XOR
problem is used. The XOR problem cannot be solved by a
linear classifier and artificial neural networks require hidden
neurons to solve non-linear problems.

Each network has two input neurons and two output
neurons. The number of hidden neurons, connections and
connection weights were evolved by the NEAT algorithm.
Table II displays the training pattern used. Classification was
determined by the output neuron with highest firing rate. The
NEAT algorithm in this set-up could find a solution to the XOR
problem in 199 generations (fig. 3 on the following page).



Input1 Input2 Output

5 Hz 5 Hz 1
20 Hz 5 Hz 2

5 Hz 20 Hz 2
20 Hz 20 Hz 1

TABLE II
INPUT/OUTPUT FIRING PATTERNS FOR THE XOR PROBLEM. OUTPUT

REFERS TO THE OUTPUT NEURON WITH HIGHEST FIRING RATE.
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Fig. 3. Result for the XOR problem. Maximum (red, middle trace) and
average (black, bottom trace) score (number of correctly classified input
patterns) of each generation. Score of 4 (dashed line, top) means all input
patterns were correctly classified.

B. The Pac-Man controller

The Pac-Man task used is a traditional game of 11x20
square tiles (fig. 4). It includes all components of the classic
Pac-Man game. Ghosts have a random component in their
decision making, and can eat Pac-Man (’hungry ghost’).
Except if Pac-Man has eaten a power-pill (the large dots),
which makes the ghosts eatable (’scared ghost’). The initial
position of Pac-Man is random in each game, ghosts always
start at the same central position.

The sensory inputs that the Pac-Man controller receives
(table III) consist of only local information, i.e. things that
occur within a radius of 1 or 2 tiles from Pac-Man. This
resembles the case of a natural agent or a mobile robot that
has only sensory input of its immediate surrounding available.
Among the inputs are presence of environmental objects
(walls, dots, power-pills) and ghosts (hungry or scared),
and the previous position of Pac-Man (if Pac-Man moved
since the previous frame, the neuron corresponding to the
previous position of Pac-Man will be active, otherwise all
will be silent). Each object can be detected in four directions
(up/right/down/left, N=4 input neurons), this makes a total
of 24 input neurons. All input neurons operate in a binary
mode, meaning that the input neuron is maximally active if
the object is present and silent otherwise.

N (Input neurons) Object Radius

4 dot 1
4 wall 1
4 powerpill 1
4 hungry ghost 2
4 scared ghost 2
4 prev. position 1

= 24

TABLE III
SENSORY INPUTS FOR THE PAC-MAN CONTROLLER NETWORKS.

Action Points

eat dot +10
eat ghost +200
be eaten -100
each frame -1

TABLE IV
SCORE SYSTEM OF A PAC-MAN GAME.

Fig. 4. Game maze. All classic Pac-Man ingredients are included.
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Fig. 5. Result for the Pac-Man game. Maximum (red), average (black) and
average of best species (blue) are shown for each generation (we refer to the
online version for the color coding). Gray dashed line indicates the theoretical
maximum score.
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Fig. 6. A. Example network from the best species in the last generation (blue nodes = inputs, white = hidden, brown = outputs). Thickness of the excitatory
(blue) and inhibitory (red) connections corresponds to its weight (we refer to the online version for the color coding). B. Example trajectory of a Pac-Man
controlled by the network in A. Red dot indicates start position. C. Histogram of the performance of the network in A (250 games, bin width = 40).

There are 4 output neurons per network, each representing
an action by Pac-Man (go up/right/down/left). The action of
Pac-Man is decided by the output neuron with highest firing
rate, given that it surpasses a threshold of 7 Hz. This threshold
is arbitrary and allows the controller to undertake no action
given a low output firing rate.

By interacting with it’s environment, Pac-Man can gain or
lose points (table IV). Pac-Man receives points for eating dots
and ghosts. It loses 1 point per frame, which serves as a penalty
for doing nothing. When being eaten, Pac-Man gets a penalty
plus the game is terminated. Each network gets to play two
games. The average end score of both games is used as the

fitness value assigned to the network controlling Pac-Man.

The NEAT algorithm ran for 518 generations and was
capable of creating neural controllers of increasing quality
(fig. 5 on the preceding page). The theoretical maximum
score was never reached, which can be expected given that
the networks receive only local information and thus cannot,
for instance, hunt down far-away ghosts. A network of the
last generation had on average 18 hidden neurons and 111
connections. Fig 6A displays an example network from the
best species in the last generation. It scored on average 602
± 323 (N=250) (fig. 6 C).



This experiment took approximately 15 hours. The relatively
long experiment time is due in part to the time required to
load the networks onto the SpiNNaker machine. This loading
time increases with larger networks and higher connectivity.
A lot of time is also used by the Python program, there is
great room for reducing experiment time by rewriting the
program and make full use of parallel computing (e.g. for
the simulation of the Pac-Man games). Up to 11.5k neurons
were simulated in parallel, meaning that only a fraction of the
simulation power of the 48-chip SpiNNaker was used. This
was again a consequence of the limitations of the specific
Python program used (it could handle only a certain rate of
input) but is by no means a fundamental limit. Simulating
more neurons on SpiNNaker could allow for instance to assess
the same network design multiple times in parallel, improving
network assessment quality and, depending on the problem at
hand, the search speed.

IV. CONCLUSION

Spiking neural networks can serve as neural controllers.
NEAT is an evolutionary algorithm that can evolve such
neural controllers for a given application. This algorithm
requires a great amount of simulations. The simulation
power of neuromorphic hardware such as SpiNNaker can
be harvested to perform these evaluations in parallel and in
real-time. Running the same SNN simulations on standard
computers would be much less efficient.

The experiments presented here deliver a proof-of-concept,
showing that the combination of neuro-evolution and
neuromorphic hardware can produce functional networks for
the XOR benchmark problem and the more complex problem
of the Pac-Man arcade game.

The experimental set-up could be easily adopted for other
I/O applications of similar complexity. Furthermore, many
improvements are available that could boost the performance
of this approach and could allow more complex problems to be
solved. For instance, an online learning rule like Spike Time
Dependent Plasticity can be implemented in SpiNNaker SNN
simulations [26], or a more powerful version of the NEAT
algorithm that exploits geometrical information of the problem
domain (HyperNEAT [27]) could be used.
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