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Abstract—There exists a wealth of theoretical analysis on
particle swarm optimization (PSO), specifically the conditions
needed for stable particle behavior are well studied. This paper
investigates the effect that the stability of the particle has on
the PSO’s actually ability to optimize. It is shown empirically
that a majority of PSO parameters that are theoretically
unstable perform worse than a trivial random search across
28 objective functions, and across various dimensionalities.
It is also noted that there exists a number of parameter
configurations just outside the stable-2 region which did not
exhibit poor performance, implying that a minor violation of
the conditions for order-2 stability is still acceptable in terms
of overall performance of the PSO.

I. INTRODUCTION

Particle swarm optimization (PSO) is a stochastic
population-based search algorithm developed by Kennedy
and Eberhart [1]. PSO has been effectively utilized to solve
numerous real world optimization problems, a summary of
which can be found in the work of Poli [2].

PSO has undergone a substantial amount of theoretical
analysis, the majority of which focus on the conditions
that are both necessary and sufficient for particle stability.
Some of the more recent works are [3], [4], [5], [6], [7],
[8]. Currently the conditions needed for order-1 and order-2
stability are well known. Order-1 and order-2 stability are
respectively defined as convergence in expectation of the
particle’s position and convergence of the particle’s variance.

This paper investigates the effect of selecting parameters
that theoretically yield unstable particle behavior (non order-
2 behavior). This paper considers a wide range of objective
functions across various dimensionalities. Performance is
also considered across differing iteration counts.

A description of PSO is given in section II. Section III
contains an discussion about the theoretical PSO results
directly relevant to this paper. The experimental setup is
presented in section IV, followed by the experimental results
and a discussion thereof in section V. Section VI presents a
summary of the findings of this paper.

II. PARTICLE SWARM OPTIMIZER

Particle swarm optimization (PSO) was originally devel-
oped by Kennedy and Eberhart [1] to simulate the complex

movement of birds in a flock. The standard variant of
PSO this section focuses on includes the inertia coefficient
proposed by Shi and Eberhart [9].

The PSO algorithm is defined as follows: Let f : Rd → R
be the objective function that the PSO algorithm aims to
find an optimum for, where d is the dimensionality of the
objective function. For the sake of simplicity, a minimization
problem is assumed from this point onwards. Specifically,
an optimum o ∈ Rd is defined such that, for all x ∈ Rd,
f(o) ≤ f(x). The analysis of this paper focuses on objective
functions where the optima exist. Let Ω (t) be a set of N
particles in Rd at a discrete time step t. Then Ω (t) is said to
be the particle swarm at time t. The position xi of particle
i is updated using

xi (t+ 1) = xi (t) + vi (t+ 1) , (1)

where the velocity update, vi (t+ 1), is defined as

vi (t+ 1) = wvi (t) + c1r1(t)⊗ (yi(t)− xi (t))

+ c2r2(t)⊗ (ŷi(t)− xi (t)), (2)

where r1,j(t), r2,j(t) ∼ U (0, 1) for all t and 1 ≤ j ≤ k. The
operator ⊗ is used to indicate component-wise multiplication
of two vectors. The position yi(t) represents the “best”
position that particle i has visited, where “best” means the
location where the particle had obtained the lowest objective
function evaluation. The position ŷi(t) represents the “best”
position that the particles in the neighborhood of the i-th
particle have visited. The coefficients c1, c2, and w are the
cognitive, social, and inertia weights, respectively.

A primary feature of the PSO algorithm is social inter-
action, specifically the way in which knowledge about the
search space is shared amongst the particles in the swarm.
In general, the social topology of a swarm can be viewed as a
graph, where nodes represent particles, and the edges are the
allowable direct communication routes. The social topology
chosen has a direct impact on the behaviour of the swarm as
a whole [10], [11], [12]. Some of the most frequently used
are the star, ring, and Von Neumann topologies.

III. THEORETICAL CONSIDERATIONS

This section presents a brief description of the theoretical
PSO results that are directly related to this paper are pre-–/$– c©2016 IEEE



Algorithm 1 PSO algorithm

Create and initialize a swarm, Ω (0), of N particles uni-
formly within a predefined hypercube redof dimension k.
Let f be the objective function.
Let yi represent the personal best position of particle i,
initialized to xi(0).
Let ŷi represent the neighborhood best position of particle
i, initialized to xi(0).
Initialize vi(0) to 0.
repeat

for all particles i = 1, · · · , N do
if f(xi) < f(yi) then

yi = xi

end if
for all particles î with particle i in their nhb do

if f(yi) < f(ŷî) then
ŷî = yi

end if
end for

end for
for all particles i = 1, · · · , N do

update the velocity of particle i using equation (2)
update the position of particle i using equation (1)

end for
until stopping condition is met

sented. This section also discusses what instability of a PSO
particle implies.

There is a relatively large amount of theoretical work on
PSO. Currently, the most general theoretical PSO model is
currently from Bonyadi and Michalewicz [8], which is an
extension of the work of Poli [4], relying on a recurrence
relation of the form

zt = Mzt−1 + b, (3)

where zt, b ∈ Rq and M a matrix from Rq to Rq .
The order-2 stability of a PSO particle relies upon the

spectral radius of M being less than 1, where the spectral
radius is defined as the maximum absolute value of the
eigenvalues of the matrix M , denoted ρ(M). The spectral
radius of M is less than 1 for PSO update equations (1) and
(2) if the following criteria are satisfied (illustrated in figure
1):

c1 + c2 > 0, |w| < 1, c1 + c2 <
24(1− w2)

7− 5w
(4)

The criteria for order-2 stability has also been empirically
verified without the presence of simplifying assumptions by
Cleghorn and Englebrecht [13].

An important aspect of an unstable particle is at what
rate the positional variance would increase. For the sake
of simplicity, consider M as symmetric, with ρ(M) > 1
(what follows still holds if M is not symmetric; however,
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Fig. 1: Order-2 stable region

the technical detail would detract from the discussion). Now,
unwinding of equation (3) leads to

zt = Mn−1z1 +

n−2∑
j=0

M ib (5)

Since M is symmetric it is possible to represent any z1

as a weighted sum of M ’s eigenvectors, specifically z1 =
q∑

i=0

ηiei, where ei are the eigenvectors of M , which have

the corresponding eigenvalues λi. Consider the first term of
equation (5):

Mn−1z1 = Mn−1
q∑

j=0

ηjej =

q∑
j=0

ηiλ
n−1
i ei (6)

Since ρ(M) > 1, at least one eigenvalue of M is greater
than 1 so at least one term in the summation in equation (6)
will diverge (assuming the corresponding ηi 6= 0). Not only
will the term diverge, but it will do so exponentially.

The exponential divergence is very important to note as
small increases in ρ(M) could drastically increase the long
term particle trajectory. The immediate question is how
tolerant the PSO is to having control parameters selected
that have slightly larger than 1 spectral radius. It would be
ideal to derive the required conditions for different spectral
radius’s of M . While the criteria of equation (4) appear
relatively simple, they are not directly derivable from the
condition ρ(M) < 1 even with assistance of a symbolic
solver. Instead, necessary conditions where derived using a
technique first used by Blackwell [5], and then empirically
verified to hold for ρ(M) < 1 [8]. This approach was
needed as the individual eigenvalues of M require over a
1000 characters to express. Unfortunately, this indicates that
finding the explicit condition for ρ(M) < s, where s is any
non-negative number is intractable.

IV. EMPIRICAL SETUP

This section summarizes the experimental procedure used
for this paper. The experiment aims to illustrate that most
unstable parameter configurations actually result in such poor



performance of PSO that a random search can outperform
them.

The performance of the PSO was measured for each
parameter configuration across the following region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 5.5] (7)

where step sizes of 0.1 were used for w and c1 + c2. This
results in 1264 parameter configurations, of which 761 are
unstable and 504 are stable according to equation (4). A fully
connected star neighborhood topology was used. Velocities
where initialized to 0. A population size of 20 was used.
The results for each configuration were derived from 35
independent runs.

The performance of PSO is compared to that of a random
search, with the premise that if a specific configuration of
PSO does worse than a random search it is not effectively
optimizing. The random search algorithm used, samples
uniformly within a given objective function’s defined do-
main. For the sake of comparison each iteration of the PSO
algorithm is seen as comparable to 20 random samples of
the search space, one for each of the particles in the PSO
swarm.

The objective functions used in this paper used are pre-
sented in table I. Full definitions of the objective functions
can be found in following works, [14], [15], [16]. Each
objective function is tested in 5, 10, and 30 dimensions.
The performance is measured at 500, 1000, 2000, and 5000
iterations.

V. EMPIRICAL RESULTS AND DISCUSSION

This section presents the results of the experiments de-
scribed in section IV.

For each parameter configuration Mann-Whitney U tests,
using a confidence level of 95%, were performed to de-
termine, whether a given parameter configuration resulted
in a PSO that was in fact better or worse than a random
search, or if the PSO showed no statistical difference with
the performance of the random search. This information is
summarized into four categories for each test case:

• CP BR: The percentage of parameters that are theoret-
ically stable that resulted in the PSO performing better
than random search.

• CP NDR: The percentage of parameters that are theo-
retically stable that resulted in the PSO performing with
no statistical difference to random search.

• DP BR: The percentage of parameters that are theoreti-
cally unstable that resulted in the PSO performing better
than random search.

• DP NDR: The percentage of parameters that are theo-
retically unstable that resulted in the PSO performing
with no statistical difference to random search.

For each dimensionality tested, a table summarizing the
performance information is given. In which the performance
results for 500, 1000, 2000, and 5000 iterations are reported.

The first thing to note is that, over all the results shown
in tables II, III, and IV for 5, 10, and 30 dimensions respec-
tively, the percentage of unstable parameter choices that were

TABLE I: Objective Functions

Function name Domain
F1 Absolute Value x ∈ [−100, 100]d

F2 Ackley x ∈ [−32, 32]d

F3 Alpine x ∈ [−10, 10]d

F4 Bent Cigar x ∈ [−100, 100]d

F5 Discus x ∈ [−100, 100]d

F6 Egg Holder x ∈ [−512, 512]d

F7 Elliptic x ∈ [−100, 100]d

F8 Expanded F9+F19 x ∈ [−100, 100]d

F9 Griewank x ∈ [−600, 600]d

F10 HappyCat x ∈ [−2, 2]d

F11 HGBat x ∈ [−2, 2]d

F12 Hyper Ellipsoid x ∈ [−5.12, 5.12]d

F13 Katsuura x ∈ [−5, 5]d

F14 Michalewicz x ∈ [0, π]d

F15 Norwegian x ∈ [−1.1, 1.1]d

F16 Quadric x ∈ [−100, 100]d

F17 Quartic x ∈ [−1.28, 1.28]d

F18 Rastrigin x ∈ [−5.12, 5.12]d

F19 Rosenbrock x ∈ [−2.048, 2.048]d

F20 Salomon x ∈ [−100, 100]d

F21 Schaffer 6 x ∈ [−100, 100]d

F22 Schwefel 2.21 x ∈ [−100, 100]d

F23 Schwefel 2.22 x ∈ [−10, 10]d

F24 Shubert x ∈ [−10, 10]d

F25 Spherical x ∈ [−5.12, 5.12]d

F26 Step x ∈ [−20, 20]d

F27 Vincent x ∈ [0.25, 10]d

F28 Weierstrass x ∈ [−0.5, 0.5]d

able to outperform random search were significantly low. The
highest percentage of unstable parameter configurations able
to outperform random search was 34.67% for Griewank in 5
dimensions, at 500 iterations. The performance on Griewank
decreases with a increase in iteration count, down to 27.2%
at 5000 iterations. The exact parameter configurations failing
to beat random search can be seen clearly in figure 2. What is
interesting is that all the unstable parameter configurations
that did in fact outperform random search are in a region
which appears to be a natural extension of the stability
boundary of equation (4), specifically a region with a slightly
larger spectral radius. Similar results can be seen for both
Rosenbrock and Solomon in 5-dimensions at 5000 iterations
as illustrated figures 4 and 3 respectively.

It might appear as if there is a fair degree of tolerance
on the stability boundary of equation (4). However, a quick
scan of tables II, III, and IV, shows numerous cases where the
performance of unstable parameters is terrible, for example,
only 6.18% of unstable parameters where able to outperform
random search on Michalewicz in 30 dimensions at 1000
iterations, whereas 100% of stable parameter configurations
outperformed random search. It can be seen in figure 5 that
there is nearly a perfect relationship between convergent
parameter configurations and the ability of the PSO to
outperform random search when optimizing Michalewicz.

There are actually two objective functions that seem to
illustrate how finely tuned PSO sometimes needs to be,



namely Egg Holder and Elliptic. Over all tested dimensions
even stable parameter configurations were more often than
not outperformed by random search. This requirement of
fine tuning can be seen in figure 6 for the Elliptic objective
function in 5 dimensions at 5000. What is worth noting in
figure 6 is that there are some unstable parameter configura-
tions that outperform some stable parameters. However, all
unstable parameter configurations that were successful are
still near the apex of the stable region of equation (4). The
performance of PSO was very poor for Egg Holder, with
only less than 12% of parameter configurations (stable and
unstable) outperforming random search in 5 dimensions at
500 iterations, and decreasing to less than 11%. Looking
at figure 7 it very clear that only a very small number of
parameter configurations are effective at optimizing the Egg
Holder objective function. But, what is interesting is that
once again the optimal parameter configurations appear to be
clustered around the boundary of the stable region, however
in the case of the Egg Holder objective function most are
just slightly outside the stable region.

There is a very clear trend throughout all the data, namely
that stable parameter configurations improve as the dimen-
sionality of the problem increases. This behavior is observed
on all tested objective functions except of the Happy Cat
objective function. This is not surprising since a random
search’s performance is likely to degrade quickly as dimen-
sionality increase. However, what is interesting is that the
performance across nearly all the objective functions worsens
for unstable parameter configurations. This implies that the
higher the dimensionality, the more important selecting stable
parameter configurations becomes.
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Fig. 2: Griewank, 5-dimensions, 5000 iterations
1 = performed better than random search, 2 = no statistical
difference, 3 = random search performed better
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Fig. 3: Salomon, 5-dimensions, 5000 iterations
1 = performed better than random search, 2 = no statistical
difference, 3 = random search performed better
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Fig. 4: Rosenbrock, 5-dimensions, 5000 iterations
1 = performed better than random search, 2 = no statistical
difference, 3 = random search performed better

VI. CONCLUSION

It was shown that the majority of parameter configurations
that are theoretically unstable perform worse than random
search on all objective functions tested. It was also shown
that there is a degree of tolerance from which parameters
can be selected just outside of the convergent region with-
out extreme performance degradation. However, the degree
to which parameter values can be selected outside of the
stable region is very problem dependent. For most tested



TABLE II: Performance of PSO versus Random Search: 5-Dimensions

500 Iterations 1000 Iterations 2000 Iterations 5000 Iterations
f S BR S NDR US BR US NDR SP BR SP NDR US BR US NDR S BR S NDR US BR US NDR S BR S NDR US BR US NDR
F1 100.00 0.00 32.72 9.46 100.00 0.00 30.62 8.67 100.00 0.00 29.70 4.99 99.21 0.79 27.07 4.86
F2 100.00 0.00 32.59 9.99 100.00 0.00 30.09 8.67 99.80 0.20 28.12 6.70 97.62 2.38 26.68 5.52
F3 98.21 1.79 21.81 4.73 86.31 13.49 20.24 3.42 79.17 20.24 19.97 2.89 72.42 24.40 19.97 2.50
F4 100.00 0.00 32.19 9.72 99.80 0.20 29.96 6.83 98.21 1.79 26.94 5.52 95.44 4.56 25.10 5.52
F5 41.87 50.20 20.50 4.34 35.32 31.15 20.24 2.89 30.75 15.28 19.58 2.23 28.97 9.52 19.84 1.58
F6 3.77 8.93 7.88 6.57 1.39 6.94 7.62 6.96 0.60 5.16 9.20 5.26 0.20 2.98 10.38 4.34
F7 30.75 5.95 17.87 2.76 30.56 5.36 18.40 1.45 29.37 6.15 18.27 1.18 28.97 4.56 18.40 0.92
F8 98.81 1.19 31.14 8.67 95.63 4.17 27.46 6.83 92.66 6.94 26.68 4.73 87.10 10.52 24.57 3.94
F9 100.00 0.00 34.69 9.72 100.00 0.00 30.62 6.96 99.40 0.60 29.30 5.78 97.22 2.78 27.20 4.86
F10 86.90 13.10 19.19 3.81 85.32 14.29 19.45 3.15 77.18 22.02 19.05 2.50 68.85 29.56 19.05 1.58
F11 14.48 41.87 13.67 6.57 9.52 20.24 14.19 4.20 8.53 9.52 14.32 3.29 6.94 5.95 14.98 2.50
F12 100.00 0.00 32.46 7.75 99.21 0.79 30.62 6.70 98.61 1.39 28.78 5.65 94.05 5.75 26.54 5.39
F13 100.00 0.00 28.78 6.70 100.00 0.00 26.02 5.78 99.40 0.60 24.84 4.99 92.06 7.94 24.05 3.29
F14 82.14 17.86 22.08 4.99 69.84 26.39 21.29 3.15 65.28 27.78 21.29 2.37 55.95 24.01 20.50 2.37
F15 29.56 29.96 15.24 5.39 29.96 27.58 16.82 2.89 27.58 24.60 17.74 1.31 25.60 21.63 17.87 1.58
F16 99.21 0.79 28.91 6.04 96.43 3.57 26.81 4.99 90.48 9.52 25.76 4.99 76.39 23.02 24.84 3.68
F17 98.41 1.59 29.57 8.54 95.63 3.97 27.99 5.12 94.64 4.76 27.07 3.81 88.49 9.52 24.97 3.81
F18 98.21 1.79 22.08 5.52 95.44 4.56 21.02 4.47 92.46 5.95 20.11 3.42 82.54 13.89 19.58 1.84
F19 99.40 0.60 28.25 8.94 97.42 2.58 26.81 5.65 94.44 5.56 25.49 4.73 84.92 14.09 23.39 3.94
F20 100.00 0.00 31.67 10.64 99.80 0.20 29.04 6.96 97.62 2.38 26.54 5.91 94.05 5.95 24.70 4.07
F21 100.00 0.00 19.32 3.42 99.80 0.20 18.92 2.50 97.02 2.98 18.92 1.97 85.91 14.09 18.79 1.84
F22 96.63 3.37 29.96 8.80 92.46 6.75 26.68 6.18 90.08 8.33 25.23 5.26 86.90 9.92 24.44 3.94
F23 100.00 0.00 31.80 8.67 100.00 0.00 29.30 6.96 99.21 0.79 27.60 4.60 96.03 3.97 25.49 4.20
F24 61.31 24.60 16.69 2.37 53.57 16.27 17.21 1.31 51.19 14.48 17.48 1.31 43.06 12.30 17.48 0.92
F25 100.00 0.00 32.72 9.59 99.21 0.79 30.35 7.49 97.62 2.38 28.91 5.91 95.24 4.37 26.94 4.60
F26 100.00 0.00 33.77 8.54 98.81 1.19 31.01 7.36 97.22 2.78 28.91 6.18 94.05 5.95 26.68 3.94
F27 68.65 16.07 19.45 2.89 66.87 11.71 19.19 2.50 65.48 9.13 19.19 1.84 63.29 5.75 18.66 1.58
F28 100.00 0.00 29.30 9.59 100.00 0.00 28.52 5.91 100.00 0.00 27.60 4.60 100.00 0.00 25.49 4.07
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Fig. 5: Michalewicz, 30-dimensions, 1000 iterations
1 = performed better than random search, 2 = no statistical
difference, 3 = random search performed better

cases it was found that convergent parameter configurations
drastically increased the chance of outperforming random
search. However, selecting parameter values within the stable
region near the apex was the best strategy to ensure that PSO
was always superior to random search. It was also observed
that the higher the dimensionality of the problem, the more
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Fig. 6: Elliptic, 5-dimensions, 5000 iterations
1 = performed better than random search, 2 = no statistical
difference, 3 = random search performed better

important selecting stable parameter configurations became.
Future work could include an investigation into defining a

region between two spectral radius values that encompasses
the region around the apex where the PSO outperforms
random search in all the tested objective function. While this
region may be problem dependent to a degree, there appears



TABLE III: Performance of PSO versus Random Search: 10-Dimensions

500 Iterations 1000 Iterations 2000 Iterations 5000 Iterations
f S BR S NDR US BR US NDR SP BR SP NDR US BR US NDR S BR S NDR US BR US NDR S BR S NDR US BR US NDR
F1 100.00 0.00 33.25 9.33 100.00 0.00 30.22 8.28 100.00 0.00 27.33 6.04 100.00 0.00 25.10 4.86
F2 100.00 0.00 29.43 7.36 100.00 0.00 27.73 5.65 100.00 0.00 26.15 4.99 100.00 0.00 24.70 4.73
F3 100.00 0.00 19.45 6.70 100.00 0.00 18.40 4.47 100.00 0.00 17.35 3.94 100.00 0.00 16.95 2.50
F4 100.00 0.00 27.99 7.62 100.00 0.00 25.62 6.04 100.00 0.00 24.57 5.39 98.81 1.19 23.52 3.55
F5 85.91 14.09 16.95 4.20 59.52 37.70 16.03 2.76 44.05 34.13 15.90 1.97 36.11 20.04 15.77 1.71
F6 23.61 21.23 9.99 1.58 13.89 17.06 10.38 1.71 11.51 13.69 11.70 1.31 7.74 7.34 11.83 1.84
F7 29.96 8.13 12.88 1.71 28.37 6.75 13.53 1.05 27.18 5.75 13.80 1.31 25.20 6.15 14.72 0.66
F8 100.00 0.00 27.60 7.49 99.80 0.20 25.62 6.44 99.60 0.40 25.10 6.04 96.83 2.98 22.60 4.20
F9 100.00 0.00 32.19 8.02 100.00 0.00 29.43 7.49 100.00 0.00 28.91 5.26 100.00 0.00 26.54 5.39
F10 72.62 20.04 14.32 3.55 53.97 34.92 13.80 2.76 44.05 38.49 13.80 3.15 36.71 36.31 14.72 2.23
F11 100.00 0.00 25.89 8.94 99.60 0.40 20.89 7.62 98.61 1.39 18.92 6.04 48.21 51.59 15.77 3.81
F12 100.00 0.00 29.57 8.02 100.00 0.00 27.46 5.91 100.00 0.00 25.76 5.26 100.00 0.00 24.84 4.20
F13 100.00 0.00 22.08 5.91 100.00 0.00 20.76 5.12 100.00 0.00 19.19 4.34 100.00 0.00 19.58 3.29
F14 98.21 1.79 15.77 3.68 96.63 3.37 16.43 2.50 90.08 9.52 15.77 2.10 79.17 18.65 15.77 1.58
F15 68.06 9.52 14.98 3.42 67.66 5.75 14.98 2.76 67.06 3.57 15.37 1.84 66.87 2.98 15.77 1.18
F16 100.00 0.00 25.76 6.04 100.00 0.00 24.70 5.26 100.00 0.00 22.86 5.26 98.61 1.39 21.81 2.89
F17 100.00 0.00 25.89 6.96 99.80 0.20 24.31 5.65 98.81 1.19 23.13 4.73 94.44 5.16 21.55 2.76
F18 100.00 0.00 18.79 6.70 100.00 0.00 18.40 4.86 100.00 0.00 17.48 3.81 98.61 1.39 17.08 1.84
F19 100.00 0.00 26.81 7.62 100.00 0.00 23.78 6.31 100.00 0.00 23.26 5.78 99.21 0.79 22.34 3.42
F20 100.00 0.00 29.17 10.38 100.00 0.00 27.07 6.44 100.00 0.00 26.54 5.39 100.00 0.00 23.26 4.86
F21 100.00 0.00 13.27 3.02 100.00 0.00 13.80 1.97 100.00 0.00 14.19 1.71 100.00 0.00 13.80 2.76
F22 99.60 0.40 24.18 6.31 98.61 1.39 22.86 4.73 96.03 3.97 21.81 4.20 94.05 5.75 20.37 5.26
F23 100.00 0.00 24.84 6.83 100.00 0.00 22.86 5.78 100.00 0.00 22.21 4.20 100.00 0.00 21.81 3.42
F24 69.25 23.61 11.83 2.10 66.67 21.83 12.75 1.31 62.30 14.29 13.01 1.58 53.57 13.10 13.80 1.45
F25 100.00 0.00 30.75 8.94 100.00 0.00 29.04 6.96 100.00 0.00 26.15 5.91 100.00 0.00 24.57 5.39
F26 100.00 0.00 31.27 7.36 100.00 0.00 30.22 5.52 100.00 0.00 27.07 5.78 100.00 0.00 24.44 4.99
F27 70.24 11.31 14.06 2.76 68.65 11.11 14.59 2.63 66.47 10.12 15.51 1.45 63.89 7.34 15.51 1.18
F28 100.00 0.00 28.91 8.80 100.00 0.00 26.81 6.57 100.00 0.00 24.57 6.44 100.00 0.00 22.60 4.73
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Fig. 7: Egg Holder, 5-dimensions, 5000 iterations
1 = performed better than random search, 2 = no statistical
difference, 3 = random search performed better

to be enough of a pattern to warrant further investigation.
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