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Abstract—Ant Colony Optimisation (ACO) has been exten-
sively applied to the network routing problem. Simulated ants
are used to explore the network while recording information re-
garding their success by means of pheromones that are deposited
on the route. A balance must be found between exploration
of new routes and exploitation of established routes. Modern
Monte Carlo game play algorithms, like Upper Confidence Bound
applied to Trees (UCT), also have to decide which game branches
to explore and which solutions should be exploited. The Upper
Confidence Bound 1 (UCB1) formula is used to choose move
branches, thus creating a balance between exploration and ex-
ploitation. This paper investigates the use of the UCB1 formula in
an ACO algorithm to determine which routes should be selected.
UCB1 was incorporated into an ACO algorithm that allocates a
path (from source to destination) and an appropriate wavelength
to packets to be routed in a network, which employs Optical
Burst Switching (OBS). The new algorithm was evaluated against
an existing ant-based algorithm on three network topologies in
order to determine its effectiveness. Results obtained indicated
that the proposed algorithm outperformed the existing algorithm
in most scenarios.

I. INTRODUCTION

ACO is a bio-inspired system based on the social and
foraging behaviour patterns of ants seeking an optimal path
between their food source and colony [1]. This behaviour
has been imitated and adapted for use in solving various
graph based computational problems. ACO algorithms have
been extensively applied to solve routing problems within
telecommunication networks [2]. ACO is of particular interest
for routing problems as it is run continuously adapting to
changes in the network state and traffic load in real time.
Several ACO algorithms have been used for solving the routing
and wavelengths assignment problem in Wavelength Division
Multiplexing (WDM) optical networks [3]–[5].

Monte Carlo tree search is often applied to game playing
algorithms. The branches of the tree consist of all possible
moves that can be made by the players. These trees are too
large to be exhaustively searched (for all but the simplest
games). Monte Carlo based algorithms randomly explore

branches and then make a move based on the ratio of the
random games that yielded a victory for the player. One of the
most effective and widely applied variant of these algorithms
is the UCT algorithm [6]. The unique aspect of UCT is that
branches are not explored purely randomly. Rather, promising
branches that are more likely to result in victory are explored
in more detail. The mechanism that is used to guide the
search process is the UCB1 formula of Auer et al. [7]. The
UCB1 formula was initially developed to solve the N-Armed
Bandit problem [8], which refers to a gambler being faced
with a series of slot machines, and having to determine which
machines to play more often so as to maximise winnings. The
UCB1 policy balances the exploration of the game tree with
the exploitation of promising branches in the UCT algorithm.
This paper investigates the hybridisation of ACO with UCB1.
The UCB1 policy is used to determine paths and wavelengths
that ant following in the network. The formula ensures that all
paths are explored, but that more successful paths are selected
more often.

OBS is a technology that offers a more flexible and dy-
namic optical network compared to traditional Optical Circuit-
Switched (OCS) networks [9], [10]. However, OBS does suffer
from burst losses due to a lack of cost effective optical
buffers and resource reservation schemes. The Routing and
Wavelength Assignment (RWA) is especially difficult in an
optical network with no wavelength converters and buffers
within the core increasing the risk of burst losses. In an optical
network with the Wavelength Continuity (WC) constraint, the
RWA process must be efficient to minimise burst losses and
make effective use of network resources.

This work explores the use of an entire path, route and
wavelength combination, from source to destination as a
method for RWA. Contributing a distributed RWA protocol
which balances exploitation and exploration within a buffer-
less dynamic OBS network under the wavelength continuity
constraint (same wavelength must be used during traversal
within the network from source node to destination node).



This paper is organised as follows: Section II outlines the
background of OBS, RWA and introduces the motivation
behind this work. Section III details an existing ant-based
protocol. Section IV describes in detail the proposed RWA
protocol and its implementation. Section V explains the set-up
of the simulation and analysis of the gathered results. Section
VI presents a summary of main conclusions for the paper.

II. BACKGROUND AND MOTIVATION

OBS is an optical switching paradigm designed to achieve
increased bandwidth flexibility with a lack of efficient optical
buffers. In OBS, instead of converting and transmitting a
single packet of data, the packets are aggregated into large
chunks of data at the edge of the network and transmitted
in the form of a burst [10]. The bursts are preceded by a
Burst Control Packet (BCP) which is responsible for reserving
the optical resources [11]. The bursts of data are transmitted
using a wavelength channel and are switched through the core
nodes of the network. The bursts are later disassembled at the
destination node and its packets are delivered accordingly [12].
Selection of appropriate optical resources is the RWA problem
[13]. With respect to the aforementioned, routes through the
network are calculated according to some form of heuristic
applied to the network. However, each of the links within the
network have multiple wavelengths each of which are capable
of carrying different bursts. To satisfy the burst request, it is
necessary to assign a route and wavelength while avoiding
wasting resources and utilising good network management.
Many algorithms have been applied to RWA in OBS [3]–[5]. In
particular, ant-based algorithms have motivated many studies
on this topic. This is because ACO is able to run continuously
and adapt to changes in real-time which provides a dynamic
solution to the RWA problem. Furthermore, the use of ants
traversing the network is analogous of OBS BCPs reserving
optical resources therein.

In previous works [3]–[5], the route and wavelength se-
lection are treated separately, such that the route is often
calculated on a hop for hop basis with initially either first-
fit or random wavelength assignment. To our knowledge,
pheromones for an entire path have not been investigated, a
route and wavelength tuple in OBS. We propose investigating
the use of a tuple for the RWA problem. The tuple would
contain a wavelength, route, and the number of success and
failures. Each tuple in a set of tuples would have its own
reward distribution independent of all the other tuples. This
can be considered to be a bandit-problem. The algorithm
would essentially need to select one of K possible tuples
that would maximise the reward or likelihood of successful
transmission through the network. The choice of the tuple can
thus be seen as a separate decision problem. The reward of
each tuple is not known initially. This exploitation-exploration
scenario is a trade off between searching tuples discovered to
have a higher reward and tuples that exhibit lower reward but
could have been classified incorrectly.

In a bandit-problem, if the upper confidence bound (UCB)
of optimality of each arm is known, regret can be minimised.

TABLE I: Pheromone Table [3]

Output Link
Input Link Wave Link1 Link 2

Link 1

1 τ1,1,1 τ1,2,1
2 τ1,1,2 τ1,2,2
3 τ1,1,3 τ1,2,3
4 τ1,1,4 τ1,2,4

Link 2

1 τ2,1,1 τ2,2,1
2 τ2,1,2 τ2,2,2
3 τ2,1,3 τ2,2,3
4 τ2,1,4 τ2,2,4

The upper confidence bound is a statistical measure of the
highest confidence interval of an unknown distribution. Auer
et al. [7] proposed a policy, named UCB1, that minimises this
regret by assigning a penalty to moves that have been played
too often, thus providing an automatic means of selecting
when to exploit good moves, and when exploration becomes
favourable. UCB1 allows the regret to grow logarithmically
over the span of cT plays without a priori knowledge of the
distribution of each arm. The arm with the highest UCB is
played calculated using the following equation:

UCB(j) = µ̄j + C

√
2 ln(cT )

cj
(1)

where µ̄j is the mean reward of arm j, cj is the total number
of times arm j has been played, and cT indicates the total
number of plays so far. The two terms of Equation 1 encourage
exploitation and exploration respectively. The mean reward of
the arm µ̄j encourages UCB1 to play moves that have been
demonstrated to be effective.

√
2 ln(cT )
cj

is a penalty term to
encourage exploration of less visited branches by weighting
branch cumulative payout values by the number of times that
they have been played. An additional scaling C term is added
in practice to the decaying penalty term to further control the
exploration and exploration rates of the approach.

III. ACRWA

Ant Colony Routing and Wavelength Assignment (ACRWA)
utilises a distributed approach optical resource assignment in
which the ant colonies shared information with one another
[3]. ACRWA describes an ant colony based solution to the
RWA problem for dynamic WDM OBS networks with the
WC constraint. ACRWA performs an initialisation process at
each node in the network. This process populates a list of
neighbour nodes, the available wavelengths and generates a
list of k-shortest routes to all the remaining nodes within the
network with each route using a different output port. The
pheromone table for each node in the network consists of
pheromone values assigned to every switching configuration
of input port i, output port j and wavelength k at a node.
Table I is an example of an initialised pheromone table for a
node with 2 ports, in a network with 4 wavelengths.

The RWA protocol governing the specific behaviour of the
ants begins once the initialisation process has been completed.
This protocol is run by the nodes within the network for each
new transmission request. The objective of the algorithm is



to select the most beneficial output port u and wavelength λ
combination to assign the ant. This assignment is a greedy
selection of the u and λ pair that has the greatest benefit
calculated using the product of desirability of a certain output
port and pheromone deposition described by the following
equation:

u, λ = {argmax{τijk(t)ηβnj(t)}|j ∈ S
m
n (t), k ∈ Dm

n (t)}

where u is the selected output port and λ the selected
wavelength. τijk is the pheromone level stored at the node
for input port i and output port j on wavelength k and
where Dm

n is the set of existing wavelengths at node n that
have been initialized for destination m. Smn is the set of
currently available and feasible nodes from n to m. ηnj is
equal to the reciprocal of a function of the shortest path from
the the source to destination node through output port j. β
is a constant used to emphasize the use of shorter paths.
After the initial selection, the transition rule is responsible for
selecting the next hop (output link) in the ant routing process
toward its destination. The user-specified parameter r0 ∈ [0, 1]
is used to balance between exploitation and exploration. If
it is determined the ant must exploit, the algorithm selects
the output port with the greatest value using the following
equation:

u = argmaxj∈Sm
n (t){τijk(t)ηβnj(t)}

Otherwise, the ant will choose to explore by iterating
through each output port j assigning it a probability as follows:

Piuk(t) =
τiuk(t)ηβnu(t)∑

j∈Sm
n
τijk(t)ηβnj(t)

The output port is selected based on an empirical distribu-
tion based on the assigned probabilities above. ACRWA ants
are implemented as the BCP. The BCPs perform the RWA and
update the pheromone concentrations while reserving optical
resources for the burst. Successful reservation performs a local
update using equation:

τijk(t+ 1) = τijk(t) + αe−φ∆l

where α and φ are user-specified values. The feedback BCP
backtracks the path of the ant and updates the pheromone trails
using the global update as follows:

τijk(t+ 1) = (1− ρ)τijk(t) + γijρ∆τijk

where ρ is a user-specified value for the pheromone evap-
oration coefficient. γij = 1 for a successful reservation
otherwise γij = −1. The amount of deposited pheromone
∆τijk = e−ω∆l depends on the difference in length ∆l of the
reverse path followed by the feedback ant so far and the length
of the shortest path to the origin of that ant from the current
node that processes it where ω is a user-specified value.

TABLE II: Routing Table

Route Wave Success Fail
AB 1 59 0
ACB 2 2 33
AB 3 22 19
AC 1 16 4
ABC 2 103 7
AC 3 42 25

IV. UCBRWA

The proposed Upper Confidence Bound Routing and Wave-
length Assignment (UCBRWA) algorithm describes a dis-
tributed protocol which treats the combination of a wavelength
and a route to destination as a single candidate solution (or
tuple). The different network nodes do not share information
and function independently of one another.

A. Routing Table

Each node, n, in the network has a routing table RTn.
The updating and assignment rules make use of the routing
table. The routing table, RT , contains a number of can-
didate solutions εi. Each candidate solution, εi, is a tuple
< Nnmi, λi, κi, χi >. A tuple is composed of a route Nnmi
from node n to m, wavelength λi, number of successes κi
and number of failures χi. Table II gives an example of the
routing table for a node, A, with 2 links in a network running
3 wavelength channels.

B. Initialisation

The UCBRWA protocol is composed of two main algo-
rithms, the initialization and routing algorithms. The initial-
ization algorithm, Algorithm 1, is responsible for running the
first stage of the protocol. This includes the generation of
routing information, configuring the UCBRWA parameters,
setting up the routing tables and managing traffic generation
in the network. N represents the set of all network nodes.
Local routing information is generated for each node n ∈ N
in the network. The routing table is formed by calculating for
every possible destination m ∈ (N \ {n}), a candidate list
Nnm of k-shortest routes at node n. A routing table RTn for
each node n ∈ N is initialised. This process is performed by
creating candidate solutions and adding them to the routing
table. The routing table RTn, for node n is composed of
J randomly generated candidate solutions. A total of J

|N |−1
candidate solutions are generated for each destination node
m ∈ (N \ {n}). Each candidate solution is composed of
a destination node m, a randomly selected route from the
candidate list Nnm from node n to m and the wavelength is
generated from a random number within the valid wavelength
range. Once all of these steps have been completed, the
network nodes are ready to process burst transmissions.

C. Routing and Wavelength Assignment

The RWA algorithm, Algorithm 2, is run by each of the
nodes within the network for each new data transmission
request. The objective of the algorithm is to calculate the best
candidate solution for the transmission request. The candidate



Algorithm 1: Initialization

Variables: N
Initialize parameters: α1, C, J
foreach node n ∈ N do

Initialize local routing information
m ∈ (N \ {n})
foreach possible destination m do

Initialize candidate route list Nnm

end
Initialize routing table RTn

end
while Burst to transmit do

Run RWA Algorithm
end

solution is selected by making use of the routing table at
the source node. It is responsible for selecting a candidate
solution, route and wavelength combination, for the burst
routing process to the destination node.

Algorithm 2: Routing and Wavelength Assignment

r ← random();
if r < α1 then

Find εi ∈ RTnm using (2)
Return λi and Nnmi

else
λ← select a random wavelength
N ← select a random route from Nnm

Return λ and N

For exploitation and exploration, the objective is to calcu-
late the best possible route wavelength combination ε. The
selection process makes use of the RTnm using Equation (2).
RTnm is the set of valid route wavelength combinations to
forward a burst, avoiding loops or ports without a feasible
route from source n to destination m.

ε̂ = argmaxεj∈RTnm

κj
κj + χj

+ C

√
2 ln(κnm + χnm)

κj
(2)

where C is a user-specified value for exploration and κj

κj+χj

is the mean reward for εj . κj is the number of successes for
εj . χj is the number of failures for εj . κnm =

∑
εj∈RTnm

κj
is the total number of successes for all εj ∈ RTnm.
χnm =

∑
εj∈RTnm

χj is the total number of failures for all
εj ∈ RTnm.

If creation is selected, it is determined that the algorithm
must calculate a new candidate solution. During the creation
of a new candidate solution, a random wavelength is selected
and a route from source node n to destination node m is
selected from Nnm. This new candidate solution is given to
the burst and added to the set of candidate solutions located in
RTnm. However, there is a set limit to the number of candidate
solutions contained within the RT . The candidate solution
εj with the lowest mean reward, κj

κj+χj
, where εj ∈ RTnm

is removed and replaced with the newly created one. The

limit ensures that low performing candidate solutions do not
linger on and decrease network performance. Limiting the
removal of a low performing candidate solutions from the
same destination set as the newly created one, ensures that
all destinations are given an equal allocation of candidate
solutions. Otherwise, if the lowest overall candidate solutions
were removed it would result in a poor performing destination
not having a fair share of candidate solutions and vice versa.

D. OBS Implementation

The BCP for each burst is responsible for reserving the
optical resources. The OBS implementation makes use of a
one way reservation scheme according to which the source
node transmits the set-up request, the BCP, and then trans-
mits the data burst without waiting for the reservation set-
up acknowledgement. As soon as the BCP is received by
the switch, the switching elements are configured for the
coming burst. Until the intermediate node receives a BCP
release acknowledgement (BCP-RA), the switching elements
will remain in their current configuration [14]. Upon successful
transmission of a data burst, the BCP, the destination node
transmits the BCP-RA (a positive feedback) to the source of
the burst. The BCP-RA releases the resource reservations and
informs the burst source of successful transmission. This pre-
vents further channel collisions, but places additional overhead
to the network. A blocked BCP will initiate a BCP-RA (a
negative feedback) on the reverse path initially followed by
the BCP. The algorithm terminates once the BCP-RA arrives
at the source of the burst transmission.

E. Global Update

The global update is performed by the BCP-RA. The BCP-
RA contains the the information regarding the success or
failure of the bursts delivery to the destination. The BCP-RA
follows the reverse path of the BCP and only applies the update
at the source of the BCP. The BCP-RA updates the χ and κ
values for the candidate solutions within RT . κi is the count
of the success of candidate solution εi and likewise χi is a
count of the failure of the candidate solution. The values for
χi and κi for candidate solution εi are increased in increments
of 1.

V. NUMERICAL EVALUATION

This section presents the numerical results obtained in
simulations to measure the performance of the routing proto-
col implementations in an OBS environment. Three different
network topologies are adopted in the simulations. A small
test network topology composed of 6 nodes with 8 links in
Figure 1a, a medium test network topology of 11 nodes with
26 links in Figure 1b and a large test network topology of
14 nodes with 21 links in Figure 1c. The purpose of the
different network topologies is to evaluate the performance of
the protocol in a simple network, a more connected example
(COST239 topology in Figure 1b) and also within a more
realistic scenario (NSFNET-14 topology in Figure 1c).



(a) Small 6-Node network topology (b) Medium 11-Node network topology (c) Large 14-Node network topology

Fig. 1: Test Network Topologies

Each of the simulations were tested under various network
loads. These simulations were performed a total of 30 times
and the mean results calculated. Each simulation attempts to
transmit 5X105 bursts, including the initial learning phase.
The source and destination nodes are randomly selected for
each burst. Two values are measured throughout the duration
of a simulation. The number of successful burst transmissions
κT and the number of burst blocks χT . The success ratio R
used as a performance measure is calculated as follows:

R =
κT

χT + κT

The routing algorithm used for comparison with UCBRWA
was an existing ant based routing algorithm, ACRWA. The
simulation test scenarios were performed without buffer and
wavelength conversion capability. The bursts must fulfil the
WC constraint and ensure that no burst is stored within a buffer
for any length of time. The test scenario is a representation
of a traditional WDM OBS network with a static grid in
which no linear and non-linear effects are taken into account.
The test simulations gather information on the number of
successful and unsuccessful (or blocked) burst transmissions.
The higher the number of successful burst transmissions that
occur, the higher the measure of an algorithms performance.
The parameters of the UCBRWA protocol used throughout the
simulations are as follows: α1 = 0.995, C = 2.0. J = 200 for
the small, J = 400 for the medium and J = 700 for the large
network topology. The parameters of the ACRWA protocol
used throughout the simulations are a follows: ρ = 0.01, ω =
0.75, α = 0.001, φ = 0.75, β = 2.0. r0 = 0.8 for the small,
r0 = 0.7 for the medium and r0 = 0.8 for the large network
topology.

A. Small Network

The first scenario considers the small network topology
Figure 1a which has 8 available wavelengths on each of
the links within the network configuration. Figure 2 shows
a comparison of the success ratio performance of UCBRWA
and ACRWA as a function of load on the network using 8
wavelengths. A clear differentiation can be observed regarding
the performance of each of the protocols except between the
load of 15 to 25. The performance of each of the protocols
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Fig. 2: Small Network Topology with 8 Wavelengths

TABLE III: Success ratio and 95% confidence interval at a spe-
cific load on the small network topology with 8 wavelengths.

Load ACRWA UCBRWA p-value
5 62.67 ± 0.08 84.83 ± 0.40 0.000

10 59.40 ± 0.06 70.35 ± 0.39 0.000
15 52.58 ± 0.66 57.91 ± 0.31 0.000
20 42.63 ± 0.69 42.41 ± 0.27 0.003
25 30.61 ± 0.67 32.80 ± 0.14 0.000
30 22.74 ± 0.43 27.75 ± 0.09 0.000
35 14.81 ± 1.41 24.15 ± 0.08 0.000
40 10.14 ± 0.16 21.35 ± 0.05 0.000
45 9.16 ± 0.13 19.18 ± 0.05 0.000

converge from a load of 15 and diverge once more at a load
of 25. The limited number of wavelengths in this simulation
under the higher network loads causes a lower burst success
ratio. The congestion generated by the increasing load on the
network is the main cause of this difference.

The mean success ratios over 30 repeats of each algo-
rithm are reported along with the 95% confidence interval
in Table III. Outcomes of Mann-Whitney U tests comparing
the results of ACRWA and UCBRWA are included. Results
which are statistically significantly better are printed in italics.
At a load of 10, UCBRWA is approximately 10.95% higher
than ACRWA. At a load of 20, ACRWA is approximately
0.22% higher than UCBRWA. At a load of 30, UCBRWA
is approximately 5.01% higher than ACRWA. At a load of
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Fig. 3: Success ratio over time in the small network topology
at a load of 15

40, UCBRWA is approximately 11.21% higher than ACRWA.
On average, UCBRWA performs approximately 9.84% higher
than ACRWA.

Figure 3 is an illustration of the algorithms adapting to
a network load of 15 over the duration of the simulation.
UCBRWA is initially highly successful, thereafter it steadily
declines in performance and stabilizes below that of ACRWA.
ACRWA has an small initial increase which stabilizes into a
very gradual decline.

Figure 4 is an illustration of the algorithms adapting to a
network load of 30 over the duration of the simulation. Under
this higher load on the network, UCBRWA plummets initially
but stabilizes into a gradual increase. ACRWA has an almost
identical trend with lower performance, stabilizing with no
noticeable increase.

From Figure 3, it can be seen that UCBRWA has an
initial high performance which decreases to below that of
ACRWA. At the lower loads (up to a load of approximately
25) UCBRWA performs better than ACRWA, but the values
are skewed due to UCBRWAs initial success during the simu-
lation. Once the high loads (above a load of approximately 25)
are placed on the network, UCBRWA as seen in Figure 4 was
able to perform better. ACRWA and UCBRWA do have similar
performances from a load of 15 to 25. Overall, UCBRWA is
more successful in the small network topology.

B. Medium Network

The second scenario considers the medium network topol-
ogy Figure 1b which has 12 available wavelengths on each of
the links within the network configuration. Figure 5 shows a
comparison of the success ratio performance of UCBRWA and
ACRWA as a function of load on the network using 12 wave-
lengths. Clearly, the results gathered on the medium network
topology are higher than that of the small network topology.
The medium network differs from the others topologies as it
is more connected and makes use of more wavelengths per
link creating a larger solution space.
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Fig. 4: Success ratio over time in the small network topology
at a load of 30
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Fig. 5: Medium Network Topology with 12 Wavelengths

TABLE IV: Success ratio and 95% confidence interval at
a specific load on the medium network topology with 12
wavelengths.

Load ACRWA UCBRWA p-value
5 78.64 ± 0.12 91.42 ± 0.11 0.000

10 77.36 ± 0.07 86.34 ± 0.14 0.000
15 75.71 ± 0.06 82.82 ± 0.12 0.000
20 73.99 ± 0.06 80.30 ± 0.11 0.000
25 72.45 ± 0.06 78.23 ± 0.12 0.000
30 70.98 ± 0.05 76.33 ± 0.11 0.000
35 69.57 ± 0.05 74.54 ± 0.10 0.000
40 68.20 ± 0.05 73.11 ± 0.09 0.000
45 66.87 ± 0.04 71.65 ± 0.08 0.000
50 65.51 ± 0.06 70.17 ± 0.08 0.000
55 62.26 ± 0.17 68.79 ± 0.09 0.000
60 60.32 ± 0.07 67.32 ± 0.08 0.000

The mean success ratios over 30 repeats of each algorithm
are reported along with the 95% confidence interval in Table
IV. Outcomes of Mann-Whitney U tests comparing the results
of ACRWA and UCBRWA are included. Results which are
statistically significantly better are printed in italics. At a load
of 15 UCBRWA is approximately 7.11% higher than ACRWA.
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Fig. 6: Success ratio over time in the medium network
topology at a load of 20

At a load of 30 UCBRWA is approximately 5.35% higher than
ACRWA. At a load of 45 UCBRWA is approximately 4.78%
higher than ACRWA. At a load of 60 UCBRWA is approx-
imately 7.0% higher than ACRWA. On average, UCBRWA
performs approximately 6.97% higher than ACRWA.

Figure 6 is an illustration of the algorithms adapting to
a network load of 20 over the duration of the simulation.
ACRWA steadily increases in performance over the duration
of the simulation, stabilizing at the end. UCBRWA has an
initial decrease which levels out, leading to a steady increase
in performance to the end. Similar trends were present at the
other load levels on the medium network topology.

Noticeably, UCBRWA is more successful in the medium
network topology. ACRWA is unable to perform as well as
UCBRWA.

C. Large Network

The third scenario considers the large network topology
Figure 1c which has 16 wavelengths on each of the links
within the network. Figure 7 displays the behaviour of the
UCBRWA and ACRWA algorithms in terms of success ratio
as a function of network load. This is a comparison of the
algorithms on a network similar to the NSFNET-14 node
network. Notably, the success ratios in the large network
topology are lower than that of the medium network topology.
The large network has more nodes and wavelengths per link,
but is less connected.

The mean success ratios over 30 repeats of each algorithm
are reported along with the 95% confidence interval in Table
V. Outcomes of Mann-Whitney U tests comparing the results
of ACRWA and UCBRWA are included. Results which are
statistically significantly better are printed in italics. At a load
of 15 ACRWA is approximately 8.07% higher than UCBRWA.
At a load of 30 UCBRWA is approximately 2.38% higher
than ACRWA. At a load of 45 UCBRWA is approximately
8.77% higher than ACRWA. At a load of 60 UCBRWA is
approximately 11.22% higher than ACRWA.

0 10 20 30 40 50 60

Burst Requests

30

40

50

60

70

80

90

100

S
u
cc

e
ss

 R
a
ti

o
 (

%
)

ACRWA

UCBRWA

Fig. 7: Large Network Topology with 16 Wavelengths

TABLE V: Success ratio and 95% confidence interval at a spe-
cific load on the large network topology with 16 wavelengths.

Load ACRWA UCBRWA p-value
5 77.86 ± 0.15 75.07 ± 0.11 0.000

10 73.83 ± 0.15 66.90 ± 0.11 0.000
15 70.39 ± 0.09 62.32 ± 0.08 0.000
20 66.23 ± 0.09 59.20 ± 0.07 0.000
25 59.37 ± 0.29 56.93 ± 0.08 0.000
30 52.62 ± 0.21 55.00 ± 0.07 0.000
35 47.36 ± 0.13 53.29 ± 0.05 0.000
40 44.61 ± 0.05 51.82 ± 0.05 0.000
45 41.72 ± 0.22 50.49 ± 0.05 0.000
50 39.09 ± 0.09 49.19 ± 0.03 0.000
55 37.05 ± 0.07 47.91 ± 0.03 0.000
60 35.24 ± 0.05 46.46 ± 0.05 0.000

Figure 8 is an illustration of the algorithms adapting to a net-
work load of 20 over the duration of the simulation. ACRWA
has a rapid increase in performance stabilizing approximately
halfway. UCBRWA has an initial decrease which levels out,
stabilizing into a steady increase in performance to the end.

Figure 9 is an illustration of the algorithms adapting to
a network load of 40 over the duration of the simulation.
UCBRWA initially decreases in performance which stabilizes
into a gradual increase in performance to the end. ACRWA has
a rapid increase in performance that levels out and stabilizes
for the duration of the simulation.

For the lower loads placed on the network, ACRWA out-
performs UCBRWA. In Figure 8, ACRWA increases in perfor-
mance from the beginning. UCBRWA however, only increases
in performance towards the end, stopping on an upwards trend
as UCBRWA took more time to learn as compared to ACRWA.
UCBRWA performs much better under the higher loads which
can also be seen in Figure 9.

The algorithms performances cross each other on two occa-
sions, the start and mid way through the loads placed on the
network. UCBRWA has a better initial performance which is
short lived, being overtaken by ACRWA at a load of 4 placed
on the network. ACRWA remains ahead in performance up to
a load of 27 placed on the network. Thereafter, UCBRWA has
an improved performance with an increase in load placed on
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Fig. 9: Success ratio over time in the large network topology
at a load of 40

the network compared to that of ACRWA.
A trend can be seen with respect to Figures 6, 8, 9 and to

some respect in 4. These above mentioned figures are an illus-
tration of UCBRWA ability to learn over time and make use
of good candidate solutions. UCBRWA initially explores the
various candidate solutions within the routing table, thereafter
exploiting the more successful candidate solutions. Therefore,
UCBRWA effectively explores and establishes a good set of
candidate solutions.

VI. CONCLUSION

This work proposed an algorithm, UCBRWA, which in-
vestigated using an entire path (wavelength and route tuple)
from source to destination. UCB was used to select the path
providing a balance between exploitation and exploration of
the tuples similar to that of the bandit problem. The protocol
was evaluated on three separate network topologies in a buffer-
less OBS network with a WC constraint. In the small network
scenario UCBRWA performed better than ACRWA under low
and high loads, performing similarly under medium load.

UCBRWA performed significantly better than ACRWA for all
the loads tested on the medium network scenario. In the large
network scenario ACRWA was able to perform better than
UCBRWA under lower loads, however, UCBRWA faired better
than ACRWA under high loads. In the evaluation, UCBRWA
displayed the tendency of initially exploring candidate so-
lutions, thereafter exploiting the successful solutions which
resulted in UCBRWA having a better performance under high
loads on the tested network scenarios. When compared to an
existing ant-based algorithm (ACRWA) the proposed protocol
displayed similar and improved performance throughout most
of the test network scenarios.
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