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Abstract—Accelerated network technologies are crucial for
implementing packet processing in high-speed computer net-
works and therefore, network routers accelerated by field-
programmable gate arrays (FPGAs) are becoming common. One
of the time-critical jobs in routers is packet classification which
requires rapid lookup in tables. Fast hash computation is a must
in order to process the packets in time. Adaptive development
of hash functions is proposed in this paper. The hash functions
are based on non-linear feedback shift registers and configured
by an evolutionary algorithm. The hash functions are developed
inside of an FPGA-based network router and fine-tuned for
the given table content. The experiments on the problem of
hashing Internet Protocol (IP) addresses demonstrate that the
evolved simple hash functions provide faster hash computation,
better memory resource utilization and require smaller chip
area in comparison with conventional hash functions. The best
conventional hash function was able to store by a couple of
hundred less IP addresses in a 8k hash table, the computation
of hashes was by 42% slower, and the implementation required
15-times more hardware area.

I. INTRODUCTION

The increasing speed of computer networks puts high re-
quirements on packet processing. There are only a couple of
nanoseconds available in future 400 Gbit/s networks for per-
forming low-latency routing and filtering of network packets.
Therefore, accelerated network technologies are crucial for
implementing network applications in high-speed computer
networks and solutions based on field programmable gate
arrays (FPGAs) are becoming required [1], [2].

Packet filtering and classification jobs usually require find-
ing records in tables. For example, the packet should be
dropped if the Internet Protocol (IP) address of the sender
is in the table of blacklisted IP addresses.

Hash tables provide a fast way of finding table records by
transforming the searched key into an address by means of a
hash function. It is possible that the hash function produces
the same address for two or more different keys. In this case
a collision exists. One of the most popular ways of resolving
collisions is storing these records in linked lists [3]. This is
unacceptable for FPGA-based network solutions because the
lookup time of records cannot be guaranteed. The processing
of packets may not be finished in time if the lookup is
prolonged by sequential search in these linked list. Choosing
larger hash tables can reduce the number of collisions, reduce
the number of records in linked lists and consequently, reduce

the lookup time. However, this approach is not practical for
FPGAs because of their limited memory resources.

Cuckoo hashing [4] offers constant worst-case lookup time
by allowing to be only one record at the given address in the
table. It uses two or more hash functions and collisions are
resolved by rehashing the record into another address by the
other hash function.

Cuckoo hashing can be used for FPGA-based network
routers [5] but there are some issues which require attention.
Hash functions are optimized in a way that they work well
for various keys. However, there is no known conventional
approach for developing hash functions which work well when
these functions are used together for Cuckoo hashing.

Probably the most important issue is the table-load factor
(table utilization ratio). New hash functions should be selected
and all records must be rehashed if no more records can be
stored without collision in the table. Hash functions allowing
higher table-load factor are desirable.

Hash functions produce usually 32-, 64- or 128-bit hash
values. Even 32-bit hash values are too large for addressing in
small hash tables of FPGAs. Allocation of 232 = 4 G tables
is not practical in FPGAs. One can select some of the bits
for addressing and discard other bits, or combine bits, for
example, by XOR folding [6]. There are a lot of possibili-
ties to be considered and there are no known conventional
approaches/methods for addressing this issue.

The production of a 32-bit hash value while a part of
it is discarded wastes the programmable resources of the
FPGA because 32-bit operations and pipeline registers for
high processing speed are expensive in terms of hardware
resources. Conventional hash functions use operations like
addition or multiplication in order to work well for various
applications [6], [7] which might be unnecessary for hash
tables with a given specific type of records. Cryptographic
hash functions enforced for security are even more inefficient
in term of speed of hashing and area requirements for FPGA-
based hash tables, therefore they will not be considered in this
paper.

Adaptive development of hash functions is proposed in
this paper. The developed hash functions are based on non-
linear feedback shift registers (NLFSRs) which ensures fast
hash computation and requires low hardware resources in
comparison with conventional hash functions. A NLFSR can



be viewed as a state automaton where the internal state is
updated in each clock cycle by a one-position shift of the
state and application of a non-linear function, i.e. a function
consisting of AND and XOR operations.

The proposed NLFSR is fine-tuned by evolutionary algo-
rithm (EA). The goal of the EA is to optimize the table-load
factor and find such hash function solutions which work well
together for Cuckoo hashing in FPGAs. The hash functions
are fine-tuned also for the given type of table content.

The preliminary results were published in [8] where experi-
ments performed on software simulator were considered only.
The hardware implementation in the Zynq all programmable
(AP) system-on-chip (SoC), other approaches of artificial
evolution and detailed comparison including hardware-based
implementation of conventional hash functions are considered
only in this paper. The contributions of the work presented in
this paper are as follows. (1) The developed hash functions are
optimized for high table-load factor and for Cuckoo hashing.
Better utilization of memory resources ensures storage and fast
lookup of more table records without the need of rehashing
or replacing the FPGA device with a one with more pro-
grammable resources. (2) The developed hash functions ensure
fast hash computation with low requirements of hardware
resources in FPGAs in comparison with human-created hash
functions. Fast hash computation is crucial for FPGA-based
network routers.

The rest of the paper is organized as follows. Cuckoo
hashing is introduced in Section II. The related work is
discussed in Section III. Section IV describes the proposed
adaptive development of hash functions for FPGA-based net-
work routers. Section V is devoted to the case study of
IP address filtering. The achieved results are evaluated in
Section VI and Section VII concludes the paper.

II. CUCKOO HASHING

Cuckoo hashing [4] ensures that at most one key is stored
in a given table location. This results in worst-case constant
lookup time because it is guaranteed that there is no additional
search in linked lists after the table location was determined.
Potentional collisions are resolved by rehashing the table
record into another table position by means of an additional
hash function.

The principle of Cuckoo hashing using two hash functions
is demonstrated in Figure 1 where T is the hash table;
K1,K2,K3 are keys; and y1, y2 are hash functions. Let us
assume that keys K1 and K2 are already stored in hash table
T and the insertion of key K3 requires the replacement of
table records because y1(K1) = y1(K3), i.e. the key is hashed
to an occupied table position. The replacement is performed
as follows. (1) K3 pushes-out K1 from the table. (2) The
pushed-out key K1 is rehashed with the other hash function
y2 into another table location. Let us assume that this location
is occupied as well, by K2. Then K1 pushes-out K2 from
the table. (3) K2 is rehashed by the other hash function y1 to
another table location. This location is not occupied, therefore

y1(K3)
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y2(K1)

(2)
y1(K2)

(3)

T T’

K1

K2

K3

K1

K2

Figure 1. Record insertion with cuckoo hashing

the replacement ends. The table content after the resolution is
shown in table T’ in the figure.

It is possible that the same key is pushed-out again during
the replacement. In this case, replacement is not enough and
whole table need to be rehashed with new hash functions.

III. RELATED WORK

Hash functions can be developed by optimizing some
desired characteristics, e.g. collision rate, table-load factor,
output uniform distribution [7]. This will lead to general-
purpose hash functions which probably would work well
in various scenarios. However, one cannot specify the hash
function which would fit the current needs exactly. Bio-
inspired methods usually work well in application domains
where the search problem cannot be well defined [9].

Genetic programming (GP) [7], [10] and grammatical evo-
lution [11] were successfully used for evolving hash func-
tions. However, the evolved solutions cannot be implemented
effectively in FPGAs because the candidate solutions have
variable size and the reconfiguration of candidate solutions
might be difficult. The structure of the candidate solutions
contains elements which cannot be effectively implemented in
hardware (e.g. modulo division) or would require a large chip
area (e.g. multiplication).

Cartesian genetic programming (CGP) [12] uses a structure
with bounded area which makes it advantageous for FPGA-
based evolvable hardware [9]. CGP-based hash function evo-
lution has the disadvantage that the structure of the candidate
solution can be encoded by larger chromosome [13] in com-
parison with the work presented in this paper. Therefore, the
search space is bigger, the evolution slower and it is more
difficult to find suitable solutions.

The hash function development is usually guided by the
avalanche effect [7], i.e. small change in the inputs should
result in large change in the outputs, or minimize the collision
rate [11]. These approaches would contribute to developing
hash functions for general use.

The work presented in this paper is aimed at the develop-
ment of hash functions which are fine-tuned for the given table
content. The hash functions are optimized for table-load factor
and are developed for using with Cuckoo hashing, therefore
they are optimized for working well together. They use simple
operations which can be effectively implemented in FPGAs.
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Figure 2. Overview of the system implemented in Zynq AP SoC

IV. DEVELOPMENT OF HASH FUNCTIONS IN FPGA

The proposed adaptive development fine-tunes the evolved
hash functions for Cuckoo hashing and also for the given
table content. The development is based on the creation
and evaluation of hash functions which are represented as
NLFSRs. The creation is performed by the use of bio-inspired
operators. The evaluation of candidate solutions is based on
the insertion of the desired content into the hash table as it was
described in Section II. The evaluation computes the fitness
value for the solution as the number of records which can be
inserted without collision into the hash table. It is assumed
that a set of training records is available. For example, the
hash table T’ in Figure 1 contains three keys. If the insertion
of the fourth key would fail then the candidate solution (hash
functions y1 and y2) would obtain 3 as the fitness value.

The goal of the EA is finding candidate solutions with the
highest fitness. This is done through the use of bio-inspired
operators: selection and mutation. The search starts with
random initial population of candidate solutions. The solutions
are evaluated and the one with the highest fitness is selected for
reproduction. This solution together with offspring solutions
creates the new generation. The offspring solutions are created
by mutating the best solution. The mutation operator changes h
randomly selected parts of the solution. If the EA is well tuned
for the particular problem then candidate solutions with higher
and higher fitness can be found in the process of evolution.
This means that it is possible to improve the fitness starting
with random candidate solutions and eventually develop hash
functions which are able to store a lot of records in the hash
table.

A. The system for evolution implemented in FPGA

The system for evolution implemented in the Zynq AP SoC
is shown in Figure 2. The evolution of candidate solutions
is performed as follows. (1) The search is guided by the EA
which is running in the ARM-processor-based processing sys-
tem (PS) of Zynq. The PS is available in the Zynq architecture
without any additional implementation cost. Candidate solu-
tions are generated and are established in the programmable
logic (PL) by writing the chromosome into the configuration
register. The chromosome is the NLFSR configuration which
represents the candidate solution (hash functions). (2) The
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Figure 3. Proposed reconfigurable NLFSR architecture for hashing

configuration register sets the hash functions by reconfiguring
it through multiplexers. (3) The key is extracted from the
memory (training data). (4) The hash function computes the
hash for the given key. (5) The insertion of the key is attempted
into the hash table to the address given by the hash. (6) If the
key pushes-out another key from the hash table then the steps
from 4 are repeated and the pushed-out key is rehashed into
another position. (7) The insertion ends by either successfully
storing all the keys which were pushed-out as the consequence
of inserting the key in step 3; or detecting an unresolvable
collision, i.e. the same key is pushed-out twice. If all keys were
successfully inserted then the insertion counter is incremented
and the insertion continues from step 3 with another key.
(8) If a collision was detected then the inserted number of
keys is sent to the EA. The EA assigns this number to the
candidate solution as the fitness which measures the quality
of the solution. The process is repeated from step 1 until the
desired number of generations are created and evaluated.

B. Proposed NLFSR-based reconfigurable architecture

The candidate solution is established in the PL by writing
the chromosome into the configuration register. The chro-
mosome contains the following items for each hash func-
tion under the assumption that 12-bit hashes are desired:
(M0, . . . ,M11, selA, selB, selC, selD,En) where Mi turns
on/off the state variable xi for XOR in the feedback function
for all i ∈ {0, . . . , 11}; selA, . . . , selD select state bits into
the AND gates; and En turns on/off the second optional AND
gate. The proposed configurable NLFSR for hash computation
is shown in Figure 3 where the key is applied to the NLFSR
sequentially bit-after-bit through “input” and the hash is stored
in x0, . . . , x11 after all input bits were processed.

The proposed NLFSR architecture can be set up to generate
as many bits as required for addressing in the hash table.
Furthermore, it contains only simple one-bit AND and XOR
gates which require low chip area.

The proposed reconfigurable architecture can create
NLFSRs with one or two AND gates in comparison with
general NLFSRs which does not place any restriction on



the feedback function. This constrain was incorporated into
the proposed architecture in order to reduce the number of
possibilities which are considered during search and therefore,
find acceptable solutions in shorter time. The choice was
motivated by the fact that NLFSRs with maximum period used
in practice contain only one or two AND gates in the feedback
function [14].

Linear feedback shift registers were previously considered
also but the preliminary experiments proved that NLFSRs can
be more advantageous for hash computation [8].

V. CASE STUDY: IP ADDRESS FILTERING

Let us assume that there is a given list of suspicious IP
addresses and all communication originating from these ad-
dresses must be monitored in the FPGA-based network router
(monitor). Then IP filter must be implemented in the monitor
in order to filter-out packets from the listed IP addresses. The
suspicious IP addresses are stored in a hash table using Cuckoo
hashing in order to be able to determine rapidly a hit or miss
for the transfered packet.

Further assume that the list of suspicious IP addresses
will be extended in time because additional addresses need
to be filtered. As a consequence, it is possible that the
addresses cannot be inserted into the hash table even after
the replacement of the hash functions and rehashing the table.

Let us consider the filtering of 32-bit IPv4 addresses and
a hash table with 213 = 8 k records requiring 13-bit hashes
for addressing the records, or two 12-bit hashes when Cuckoo
hashing with two hash functions is used.

The discussion of three approaches follow for designing
hash functions for IP address filtering: the conventional and
two unconventional approaches based on EAs.

A. Conventional approach

The conventional approach for this case study would be the
pre-implementation of several general-purpose hash functions.

Another hash function would be selected in the case when
rehashing is required. However, it not guaranteed that re-
hashing will resolve the collision even when all the pre-
implemented hash functions are considered. One might face
the fact that no additional IP address can be inserted into the
list. In this case, the redesign of the system is required: the
use of a larger hash table is needed if there are free memory
resources available in the FPGA, or the replacement of the
FPGA device otherwise.

B. State-of-art unconventional approach based on CGP

CGP can be considered as the state-of-the-art unconven-
tional approach for evolving solutions in FPGAs [9], [12]. It
is possible to evolve hash functions with sequential or parallel
hash computation. The parallel implementation is created by
“unrolling” the iterative loop of the sequential implementation,
therefore it requires more hardware elements [15]. More con-
figurable hardware elements result in longer chromosome for
encoding the candidate solution and consequently, the problem
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Figure 4. Array of PEs of CGP showing a candidate hash function

space becomes bigger and the search slower. Therefore, se-
quential hash computation is considered for the unconventional
approach based on CGP and for the proposed NLFSR-based
approach as well.

CGP develops solutions in a two-dimensional array of
processing elements (PEs) resembling the structure of FPGAs.
The reconfigurable array of 12-bit PEs is shown in Figure 4
where “input” is the 8-bit input value, “seed” is the 12-bit
input seed and “hash” is the 12-bit hashed output under the
assumption that 12-bit hash values are required for addressing.
The PEs are able to implement multiplication, bitwise XOR
and rotation operations as it was determined as the best set of
elementary functions for hash function evolution (optimized
for the quality of solutions) [7]. The use of the multiplication
is necessary which is very unfortunate because its implemen-
tation requires considerable chip area and multiplication must
be present in all of the PEs.

The IP address is hashed by the candidate solution as
follows. The first byte of the address is sent into the PE
array through input with seed value 0. The value propagates
through the PE array while the hash is computed. This process
is repeated with all the four bytes of the IP address. The hash
output for the previous byte is used as the seed for the current
byte. The hash value of the IP address is the hash output after
all four bytes were processed.

The EA is used for finding suitable candidate solutions by
changing the interconnections between PEs. The number of
records insertable into the table without collision is used as
the fitness value measuring the quality of candidate solutions.
The evolution is started by random initial population and each
population contains the candidate solution with the highest
fitness from the previous generation and 4 offspring solutions
created by mutations h = 8 from the best candidate solution.
The PE array size was set to 8 × 4. These parameters were
determined after optimization for the highest table-load factor.

One of the advantages of implementing a PE array in FPGA
is that each PE column can represent a pipeline stage using
registers at the PE outputs. This means that the candidate
solution can be evaluated rapidly because the PE array works
at high operational frequency and produces an output in each
clock cycle with initial latency equal to the number of PE
columns. This advantage cannot be exploited for the given
case study because the hash output must be sent into the PE
array for the new seed together with the next input. In other



words, the next input can be sent into the PE array only after
the hash of the previous input is already available. This means
that the high operational frequency must be sacrificed or the
latency will delay the computation of each input. In either way
the hash computation will be slower than expected.

C. Proposed unconventional approach based on NLFSR

We propose to use the adaptive development of hash func-
tions using EA for IP address filtering in FPGA-based routers.

The hash function is developed in a reconfigurable NLFSR
as shown in Figure 3. The 32-bit IP address is processed by the
NLFSR bit-after-bit and sent-in through input. 12−1 additional
zeroes are sent-in after the IP address in order to propagate the
last bit through all the state bits. The hash of the IP address is
stored in the register (x0, . . . , x11) after finishing these steps.

The training data for the EA is the IP address list. The
number of records insertable into the table without collision is
used as the fitness value measuring the quality of the candidate
solution.

VI. EXPERIMENTAL RESULTS

The proposed development of hash functions for IP address
filtering was implemented in an XC7Z020 Zynq AP SoC
device. The IP addresses were obtained from a firewall in the
national research and education network. 32-bit IPv4 addresses
and a hash table with 8 k records requiring two 12-bit hashes
for Cuckoo hashing were used.

The hardware simulator for the solution based on CGP
was implemented in the C programming language. C/C++
implementations of conventional hash functions were adopted
from [16]. The software-based experiments were run on an
Intel Xeon E5-2630 processor using only one thread.

All the measurements were repeated several times and
statistically evaluated based on 30 independent runs.

A. Parameter optimization for high table-load factor

The fitness for a candidate solution is the number of IP
addresses which can be stored in the table without collisions.
The candidate solutions are optimized for high fitness and
therefore high table-load factor.

The EA evolves solutions in the proposed NLFSR architec-
ture. A simple (1 + λ) EA was employed which means that
the population always consists of the best candidate solution
from the previous generation and λ offspring solutions created
by mutations of the best candidate solution.

Various values of λ were considered in the experiments and
the achieved results are shown in Figure 5 where the median,
lower and upper quartile fitness values are shown considering
the 80 000 candidate solutions were generated and evaluated
in each experiment. It can be observed that the median value
is the highest for λ = 1 and 8. The second largest value
was achieved for λ = 4, but for considerable lower variance,
therefore this value was selected as the most useful setting for
λ.

The subsequent experiments were aimed at investigating the
impact of the mutation-rate on the fitness value. The achieved
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results for various number of mutations are shown in Figure 6.
The fitness value improves while the number of mutations is
increased from 1 until 8. Further increase of the mutation-rate
indicates the degradation of the fitness value as well as the
increase of the variance between the results from independent
runs. Therefore, h = 8 mutations were selected which is the
most useful setting for h.

B. Comparison with state-of-the-art solutions

The evolved hash functions based on NLFSR were com-
pared with conventional and unconventional solutions. The
conventional solutions include 32-bit human-created non-
cryptographic hash functions which support seeding. Hash
functions without seed, creating only 64-bit or larger hashes
and cryptographic hash functions were not considered. Hash
functions evolved by CGP were evaluated as the state-of-
the-art unconventional solution for FPGA-based evolvable
hardware. Table I contains the achieved results where “med”
indicates the median solution, 25% the lower quartile and 75%
the upper quartile solution. The median solution is considered
in a fair comparison where the solution from only one run is
used. Best solution can be used where there is enough time for



Table I
COMPARISON WITH COMMON FUNCTIONS USED FOR HASHING

Set 1 (training) Set 2 Set 3 Set 4
Function Inserted Util. [%] Inserted Util. [%] Inserted Util. [%] Inserted Util. [%]

evolved NLFSR (med.) 4850 59.2 3567 43.54 4322 52.76 3806 46.46
evolved NLFSR (25%) 4831 58.97 3057 37.32 3508 42.82 4495 54.87
evolved NLFSR (75%) 4862 59.35 4596 56.1 4231 51.65 3443 42.03
CGP (med.) 4723 57.65 3293 40.20 3388 41.36 3882 47.39
CGP (25%) 4682 57.15 3934 48.02 3207 39.15 3725 45.47
CGP (75%) 4758 58.08 4233 51.67 3965 48.4 2780 33.94
CRC32 (crop) 3674 44.85 3425 41.81 3401 41.52 4176 50.98
MurmurHash3 (crop) 4199 51.26 3827 46.72 4179 51.01 3384 41.31
MurmurHash3 (fold) 3365 41.08 4364 53.27 3839 46.86 3074 37.52
SpookyHashV2 (crop) 3528 43.07 3449 42.1 4121 50.31 2176 26.56
SpookyHashV2 (fold) 3759 45.89 4260 52 4062 49.58 2128 25.98
lookup3 (crop) 4516 55.13 4047 49.4 3996 48.78 3951 48.23
lookup3 (fold) 4140 50.54 3656 44.63 3702 45.19 2914 35.57
fnv-1a (crop) 3787 46.23 2926 35.72 1995 24.35 2583 31.53
fnv-1a (fold) 3223 39.34 3557 43.42 2326 28.39 3949 48.21

performing several runs and selecting the best solution among
all the runs. The required 12-bit hashes from the 32-bits of
the conventional solutions are created either by using only the
12 least significant bits, or combining the 32 bits into 12 bits
using XOR folding [6]. These variations are marked as crop
and fold in the table.

The table contains the achieved fitness (inserted records) and
table utilization for various IP address sets. Set 1 was used for
training the proposed method based on NLFSR and CGP as
well. It can be observed that the proposed evolved solutions
achieve higher table utilization (table-load factor) than CGP
and all of the human-created hash functions. The median
evolved solution is able to achieve 59.2% table utilization
while the median CGP 57.65% and lookup3, the best human-
created solution, only 55.13%. Lookup3 was created by Bob
Jenkins, “Oracle’s resident expert on hash functions” whose
hash functions are used by “Infoseek, Dreamworks (Shrek),
Perl, Ruby, Linux, and Google” [17].

The fitness development of the median solutions of the
proposed NLFSR and CGP are compared with lookup3 in
Figure 7. It can be observed that the CGP solution overper-
forms lookup3 very rapidly after just a few generations. The
proposed NLFSR-based architecture achieves using the trivial
random search better results than both of them. NLFSR tuned
by EA further improves the results.

The proposed method improves the table utilization by sev-
eral hundred IP addresses which can be considered significant
because the hash table can be used longer without rehashing
the whole table which would mean putting the IP filter offline
for considerable time.

The results for sets 2, 3, 4 in Table I demonstrate how well
each hash function performs with other IP addresses unseen
during the evolution. It should be noted, that the evolved
solutions were trained with set 1 and re-evaluated with the
other sets without repeating the evolution. This is not the
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Figure 7. Comparison of inserted records in table

intended use of the proposed method but it demonstrates that
the results are acceptable for other sets as well. The developed
solutions are able to insert successfully 3567, 3057 and 4596
records into the hash table using IP set 2. However, these
results improve to 4731, 4690 and 4763 if the solutions are
re-evolved for the given new IP set. The upper quartile evolved
solution without re-evolution achieves the best result for set
2. The median solution dominates set 3 and the lower quartile
evolved solution set 4.

A different hash function achieves the best results among the
conventional solutions for each four examined sets. Therefore
it is not possible to select one which would always be the
most successful. One should implement several of them and
evaluate all of them during collision resolution and rehashing.
The success however cannot be guaranteed. The proposed
solution offers the advantage that the hash can be fine-tuned
for the given IP set and achieve better table-load factor with



Table II
TRANSFORMATION OF THE EVOLVED SOLUTION INTO PARALLEL

ARCHITECTURE

x11 x10 . . . x2 x1 x0 I

0 0 . . . 0 0 0 i0

0 0 . . . 0 0 i0 i1

0 0 . . . 0 i0 i0 ⊕ i1 i2

0 0 . . . i0 i0 ⊕ i1 i0 ⊕ i1 ⊕ i2 i3
...

...
...

...
...

...
...

F11 F10 . . . F2 F1 F0

reasonable probability in comparison with conventional hash
functions.

C. Time required for evolving solutions

The main advantage of conventional hash functions is that
they do not have to be tuned and therefore are available almost
immediately when one does not consider the implementation
time.

However, several minutes of delay required for evolution
can be considered acceptable in the scenario where the IP
addresses are inserted manually into the filter. The evolution
consisting of the generation and evaluation of 20 000 gener-
ations of 4 candidate solutions took 87 seconds (in average)
in the PL of the Zynq AP SoC. For comparison, the evolution
of the CGP-based solution took 168 seconds in the hardware
simulator.

The fitness improves very rapidly as it can be seen in
Figure 7. Therefore it is possible to stop the evolution earlier
and reduce the time of evolution. Considering just 2 000
generations reduces the evolution time to less than 9 seconds
and the evolved solution will be still better than the CGP-based
solution after 20 000 generations.

D. Example evolved solution

The best evolved solution achieves fitness 4972. The feed-
back function for the first hash is

f1 = I ⊕ (x4 ∧ x7)⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x11
using initial seed 0 and for the second one is

f2 = I ⊕ (x4 ∧x6)⊕x0⊕x2⊕x3⊕x4⊕x6⊕x8⊕x9⊕x11
using initial seed 1 where x0, . . . , x11 are state registers shown
in Figure 3 and I is the one-bit input.

Sequential hash functions are evolved because they can be
encoded by shorter chromosomes and their evolution is faster.
Furthermore, the used evolutionary framework cannot fully
benefit from a parallel structure because there is sequential
dependence between the IP addresses as they push-out each
other from the hash table. However, it is possible to trans-
form the evolved hash functions into a parallel architecture
for applications which can benefit from it. The process is
demonstrated in Table II and is performed as follows. For
each state register a constant Boolean function is created based
on the seed value. Consequently, the input bits i0, . . . , i31 are

shifted-in. The Boolean function for the feedback is computed
based on the current one-bit input and the given state of the
register. This Boolean function is shifted into x0 and all the
state bits are shifted by one position from x0 to the direction
of x11. The Boolean functions F0, . . . , F11 are finished after
all the input bits were processed. The implementation of these
functions represents the parallel implementation of the hash
function because in just one step it is able to compute the
hash based on the input bits and the seed value.

E. Comparison of FPGA-implementations

The reconfigurable elements required for implementing the
hash solutions are shown in Table III. Column “evolved”
contains the elements required for the proposed evolvable and
reconfigurable NLFSR architecture. One can reimplement the
evolved solution without the possibility of further reconfigu-
ration. These results are shown in column non-reconf. It can
be concluded that the reconfigurable features require about
50% area overhead. The table contains the implementation
of lookup3 which produced the highest table load-factor
among the conventional solutions for IP set 1 in Table I. The
implementation uses pipelining in order to work at the same
operational frequency and computes the IP address byte-after-
byte. The results indicate that lookup3 requires by 42% more
clock cycles than the NLFSR for computing the hash for the
IP address. The 50 cycles of NLFSR consist of 32 cycles
for processing the 32-bit IP address, 11 cycles of shifting-in
zeros for propagating the last input through all state bits and
the remaining 7 clock cycles are the communication latency
with the environment.

The evolved solutions produce not just higher table-load
factor but also provide faster hash computation which is
very important in high-speed network routers. Moreover, the
implementation of lookup3 requires 15 times more recon-
figurable elements because it uses 32-bit operations and the
hash computation requires the application of XOR operations,
rotations and subtractions, all of these 7 times, and 2 additions.

The system column contains the implementation results for
the whole system which includes even the bus communication
and synchronization between clock domains; and the core
column the implementation of the evolutionary framework
only. The implementation of lookup3 requires two times
more chip area than the whole evolutionary framework for
developing adaptable hash functions.

The block random-access memory (BRAM) tiles indicated
in the table are used for implementing the hash tables.

VII. CONCLUSIONS

Adaptive development of hash functions in FPGA-based
network routers is proposed in this paper. The developed hash
functions are based on NLFSR which ensures fast hash com-
putation and requires few hardware resources in comparison
with conventional hash functions. The proposed NLFSR is
fine-tuned by EA. The table-load factor is optimized and such
hash functions are developed which work well together for



Table III
COMPARISON OF IMPLEMENTATIONS IN ZYNQ AP SOC

evolved non-reconf. lookup3 system core
diff. [%] diff. [%]

clock cycles 50 50 0 71 42
slice LUTs 40 19 −53 638 1495 897 240
slice registers 60 31 −48 1034 1623 1329 419
multiplexers 4 0 −100 0 −100 8 8
BRAM tiles 0 0 0 0 0 17 17

Cuckoo hashing in FPGAs. The hash functions are fine-tuned
also for the given type of table content.

The proposed method was evaluated on the problem of
IP address hashing. The experiments demonstrated that it
is possible to evolve hash functions which are better than
human-created solutions in terms of hash computation speed,
memory utilization through higher table-load factor and chip
area requirements.

The evolved hash functions work sequentially and are still
faster than the parallel implementation of lookup3, the human-
created solution which achieved the highest table-load factor
among the conventional solutions (but lower than the evolved
solution). The framework for developing hash functions re-
quire some additional chip area but the evolved hash functions
have significantly lower chip area requirements than lookup3.

The evolution of sequential hash functions is faster and
might create better solutions because the used chromosome
is shorter. The hashing framework in the surveyed case study
cannot fully benefit from a parallel hash function as it is
suggested by the results achieved with the parallel implemen-
tation of lookup3. However, it is possible to transform the
sequential solution into a parallel one. The pipelined parallel
implementation would be able to produce a hash in each clock
cycle with some initial latency. This will be explored in our
future work.

The main contribution of the work presented in this paper
is the development of hash functions which is adapted to the
given type of table content. Alternatively, one could implement
several conventional hash functions and switch between them
when the current hash function gives inadequate results. The
proposed adaptive development can produce better results that
it would be possible with pre-generated conventional solutions.
The proposed hash functions are able to store couple of
hundred more records in the table in comparison with the best
human-created hash functions. This means that the given hash
function can be used longer without rehashing which would
require putting offline the filtering capabilities of the router.

The proposed method was developed primarily for FPGA-
based network routers but can be used in application specific
integrated circuits as well because the hash functions are
configured by writing into user-made configuration registers
and the native reconfiguration of FPGAs is not used.

This work was supported by the Czech science founda-
tion under the project GP16-08565S and by the Ministry

of the Interior of the Czech Republic under the project
VI20152019001.
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