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Abstract—While the current supernova (SN) photometric
classification system is based on high resolution spectroscopic
observations, the next generation of large scale surveys will be
based on photometric light curves of supernovae gathered at
an unprecedented rate. Developing an efficient method for SN
photometric classification is critical to cope with the rapid growth
of data volumes in current astronomical surveys. In this work, we
present an adaptive mechanism that generates a predictive model
to identify a particular class of SN known as Type Ia, when the
source set is made of spectroscopic data, while the target set is
made of photometric data. The method is applied to simulated
data sets derived from the Supernova Photometric Classification
Challenge, and preprocessed using Gaussian Process Regression
for all objects with at least 1 observational epoch before -3 and
after +24 days since the SN maximum brightness. The main
difficulty lies in the compatibility of models between spectroscopic
(source) data and photometric (target) data, since the underlying
distributions on both, source and target domains, are expected to
be significantly different. A solution is to adapt predictive models
across domains. Our methodology exploits machine learning
techniques by combining two concepts: 1) domain adaptation
is used to transfer properties from the source domain to the
target domain; and 2) active learning is used as a means to rely
on a set of confident labels on the target domain. We show how
a combination of both concepts leads to high generalization (i.e.,
predictive) performance.

I. INTRODUCTION

The ever-increasing importance of large scale-surveys is a
major trend in contemporary observational astronomy. The un-
expected broad scientific achievements of current sky surveys,
most notably the Sloan Digital Sky Survey1 (SDSS) [1], in-
spired a new generation of astronomical instruments. Projects
like the Dark Energy Survey2 (DES) [2], the Large Synoptic
Survey Telescope3 (LSST) [3] and the ESA EUCLID4 mis-
sion are expected to revolutionize our understanding of the
Universe.

1http://www.sdss.org/
2https://www.darkenergysurvey.org/
3https://www.lsst.org/
4http://sci.esa.int/euclid/

Beyond the technological challenges in dealing with such
large data sets (e.g., LSST is supposed to run for 10 years,
gathering every 5 nights the same volume of data SDSS
accumulated over 1.5 decades [4]), the necessity of high-
resolution (spectroscopic) observations is a crucial, and many
times overlooked, bottleneck.

Spectroscopy can be described as the high-resolution de-
composition of electromagnetic radiation as a function of
wavelength. It allows one to determine the presence of individ-
ual chemical elements (spectral lines) and to infer the distance
(redshift) to extragalactic sources, the two basic pieces of
information which enable parameter inference from astronom-
ical data. However, it is also an expensive and time-consuming
process. In the current data paradigm, it is unfeasible to obtain
spectroscopic measurements for all cataloged objects, and the
situation will not be easier in the light of new instruments.
Most of the observations are/will be obtained through its low-
resolution counterpart: photometry.

Photometric measurements summarize the intensity of elec-
tromagnetic radiation in a handful of broad wavelength win-
dows (filters). Therefore, although the brightness throughout
the electromagnetic spectrum is measured, information on
individual spectral lines is not accessible. If one wishes to
make use of the bulk of information contained in these large
datasets, the challenge is to infer spectroscopic properties from
purely photometric data.

One of the most urgent problems related to this subjects
is the classification of supernovae (SNe). Almost all new
surveys have the photometric observation of type Ia SNe for
cosmology among their key scientific goals. However, most of
them will deliver purely photometric data. In trying to solve
this problem, a number of photometric classifiers were sug-
gested [5], [6]. Unfortunately, up to this point, cosmological
results from purely photometric samples are not in complete
agreement with spectroscopic ones [7]. Consequently, the last
data release of the SDSS SN survey [8] contains ∼4600 SN
candidates, from which at least ∼20% are expected to be
type Ias, but the spectroscopically confirmed sample used



for cosmology holds ∼500 objects. In other words, there
are approximately twice as many SNe stored in the SDSS
database which are simply not used due to the lack of a reliable
photometric classification.

One strategy to deal with spectroscopic and photometric
datasets, both types exhibiting different distribution, is to
use adaptive learning techniques, also known in machine
learning as domain-adaptation techniques. Since its inception,
domain adaptation has seen numerous theoretical and real-
world applications [9]–[15]. The central idea is to exploit
information from a source domain for which class labels are
known with high confidence, on a target domain where class
labels are scarce and the underlying distribution between the
two domains is different. In our work, the source domain corre-
sponds to spectroscopic data where supernovae are confidently
classified (as type class Ia or different). The target domain
corresponds to the new generation of abundant photometric
light-curve datasets where class labels are scarce. Our goal is
to take advantage of the source domain to attain high predictive
performance on the target domain.

Our experimental work shows how the direct application
of domain adaptation techniques does improve generaliza-
tion performance, albeit to a small degree. To boost the
performance of the predictive model on the target dataset,
it is necessary to invoke active-learning techniques. Active
learning points to those few instances on the target set where
knowing the class label with confidence suffices to attain an
accurate model. We conclude by showing how the automated
classification of Supernovae Ia is best achieved when domain
adaptation and active learning are combined synergistically.

This paper is organized as follows. Section II explains
basic concepts in classification, domain adaptation, and active
learning. Section III explains our approach to combine domain
adaptation with active learning. Section IV shows our empiri-
cal results. Lastly, Section V gives a summary and conclusions.

II. PRELIMINARIES

A. Basic Notation

A classifier receives as input a set of training examples, T =
{(xi, yi)}pi=1, where x = (x1, x2, · · · , xn) is a vector in the
input space X , and y is a value in the (discrete) output space
Y . We assume the training set T consists of independently and
identically distributed (i.i.d.) examples obtained according to
a fixed but unknown joint probability distribution, P (x, y), in
the input-output space X ×Y . The outcome of the classifier is
a hypothesis or function fθ(x) (parameterized by θ) mapping
the input space to the output space, fθ : X → Y . Function fθ
is drawn from a space of functions or hypotheses H.

We commonly choose the hypothesis that minimizes the
expected value of a loss function L(y, f(x|θ)), also known as
the risk:

R(θ, P (x, y)) = E∼P [L(y, f(x|θ))] (1)

where we typically adopt the zero-one loss function
L(y, f(x|θ)) = 1{y 6=f(x|θ)}(x); 1(·) is an indicator function.

We consider the (domain adaptation) scenario where we
work with two domains: source and target, from which we
gather two samples Ts = {(xi, yi)}pi=1 and Tt = {xi}qi=1.
Our principal goal is to obtain an accurate predictive model
from the target sample, for which one is allowed to exploit
information from the source sample. While Ts is drawn from
a joint probability distribution, Ps(x, y), Tt is drawn from
the marginal distribution Pt(x) according to a different joint
distribution, Pt(x, y), such that Pt(x) =

∫
y
Pt(x, y)dy . Notice

that Tt lacks class labels, and hence poses a special challenge
during classification.

B. Domain Adaptation and Active Learning

Domain adaptation, a subfield of transfer learning [16], aims
at learning a task by leveraging experience gained on previous
tasks [9]. The field has recently gained much popularity
because many real-world problems are characterized by having
samples exhibiting different distributions [17], [18]. Many
approaches have been proposed in domain adaptation. Early
work, for example, focused on re-weighting the source dataset
by increasing the weight of examples that overlap with regions
of high density in the target domain (as estimated from the
target dataset). A piece of work along these lines is known as
covariate shift [19]–[23]. Other approaches include searching
for a subspace where source and target overlap [24]–[26];
theoretical work considering the distance between source and
target distributions [9], [10], [27]; and using regularization
terms to learn models that perform well on both source and
target domains [28].

Active learning provides a mechanism to query those unla-
beled examples deemed relevant to build an accurate classifier.
In the context of domain adaptation, active learning can be
invoked to query examples in the target dataset [13], [29]–
[33], to overcome the common difficulty of working with a
target dataset lacking in class labels.

III. METHODOLOGY

Our approach to build accurate classifiers from photometric
data (target) while exploiting information from spectroscopic
data (source) is as follows. We first reduce the dimensionality
of the data, followed by the application of domain adaptation
to transfer information from source to target. Finally, we
apply active learning to increase the classification accuracy and
purity of the target classifier. The following sections describe
our methodology in detail.

A. Dimensionality Reduction

Our first step aims at reducing the number of dimensions
of the source data and the target data using Kernel Principal
Component Analysis (Kernel PCA); the technique is a gen-
eralization of Principal Component Analysis (PCA) by using
non-linear components, as proposed by Schölkopf et al., 1997
[34]. Unlike PCA, Kernel PCA finds principal components in
the feature space F , rather than the original attribute (input)
space X . In Kernel PCA, the data is (implicitly) mapped to F
through a transformation Φ = Rn → F ∈ Rm, where m ≥ n.



Assuming the data is centered with zero mean, the covari-
ance matrix in F (using a sample of size p) is given by:

CF =
1

p

p∑
i=1

Φ(xi)Φ(xi)
T (2)

We denote by KF the Kernel Matrix, where

KF (xi,xj) = Φ(xi)
TΦ(xj) = k(xi,xj) (3)

The Kernel Matrix, also known as Gram Matrix, stores the
dot product of two vectors lying in feature space F without
actually mapping the data into a high dimensional space. This
is known as the kernel trick, and is achieved through kernel
function k(xi,xj). To find principal components, we diago-
nalize the covariance matrix, given in equation 2, by finding
eigenvalues and eigenvectors after solving the equation:

λv = CFv (4)

where λ stands as an eigenvalue, λ ≥ 0, and v stands for an
eigenvector. Now, there exist coefficients αi (i = 1, 2, . . . , p),
such that

v =

p∑
i=1

αiΦ(xi) (5)

Using Gram Matrix KF , we can rewrite equation 4 as

pλKFα = K2
Fα (6)

where α denotes the column vector with entries α1, . . . , αp.
We solve equation 6 to find the eigenvalues and the eigenvec-
tors of the Gram Matrix. In our notation, to every eigenvector
vl, will correspond an eigenvalue λl, and coefficient vector
αl = {αli}.

Now, for any data point x, from source or target dataset,
we can compute a projection using the l-th eigenvector, vl, as
follows:

(vl.Φ(x)) =

p∑
i=1

αlik(xi,x) (7)

All these equations are based on the assumption of centered
data with zero mean in feature space. However, projecting
the data over F by using the Kernel Matrix does not ensure
centered data. To guarantee this we use the following:

K
′

ij = (KF − 1pKF −KF 1p + 1pKF1p) (8)

where (1p)ij = 1/p for all i, j. We summarize the steps of
Kernel PCA in Algorithm 1.

B. Domain Adaptation Methods

In this section we describe two well-known methods in
domain adaptation: Kernel Mean Matching, and Subspace
Alignment. We experiment with these methods to show the
advantage of using domain adaptation when confronted with
datasets displaying unequal distributions.

Algorithm 1 Kernel Principal Component Analysis
1: Compute Gram Matrix KF from source data using eq. 3.
2: Center Kernel Matrix using eq. 8 to generate K ′.
3: Solve eq. 6 as an Eigen-decomposition problem and

compute eigenvalues and eigenvectors using K ′ instead
of KF .

4: Project source and target data using eigenvectors of Kernel
Matrix using eq. 7.

1) Kernel Mean Matching: A popular instance-based do-
main adaptation method is Kernel Mean Matching [35]. Like
any other instance-based domain adaptation method, it also
assumes that the difference in source Ps(x, y) and target
Pt(x, y) distributions is caused due to a covariate shift, i.e.,
Ps(x) 6= Pt(x), whereas, the conditional probabilities remain
the same Ps(y|x) = Pt(y|x). From the field of importance
sampling, we know that the risk on the target dataset can be
estimated as follows:

R(θ, Pt(x, y)) = E∼Pt [L(y, f(x|θ))] (9)

R(θ, Pt(x, y)) = E∼Ps
[
Pt(x, y)

Ps(x, y)
L(y, f(x|θ))] (10)

R(θ, Pt(x, y)) = E∼Ps
[β(x, y)L(y, f(x|θ))] (11)

where β(x, y) = Pt(x,y)
Ps(x,y)

, provided the support of Pt(x, y) is
contained in the support of Ps(x, y). Under the covariate shift
assumption, we can write the following equation

Pt(x, y)

Ps(x, y)
=
Pt(x)

Ps(x)

Pt(y|x)

Ps(y|x)
(12)

Pt(x, y)

Ps(x, y)
=
Pt(x)

Ps(x)
= β(x, y) (13)

We denote the value of β(xi, yi) as βi. Thus by obtaining the
βi value for the source instance (xi, yi) ∈ Ts = {(xi, yi)}pi=1,
we can minimize the risk, as shown in equation 11.

Kernel Mean Matching minimizes the maximum mean
discrepancy (MMD) between two distributions by projecting
them into a reproducing Hilbert kernel space (RKHS). MMD
is formulated as the difference of the means of source and
target when projected onto the new space:

MMD(Ts, Tt) =‖ 1

p

p∑
i=1

φ(xs
i )−

1

q

q∑
i=1

φ(xt
i ) ‖H (14)

where φ(xs
i ) and φ(xt

i ) are projections of the p source
instances Ts = {xi}pi=1 and q target instances Tt = {xi}qi=1

respectively. Thus the minimization problem is as follows:

arg min
β
‖ 1

p

p∑
i=1

β(xs
i )φ(xs

i )−
1

q

q∑
i−1

φ(xt
i ) ‖H (15)

subject to β(xs
i ) > 0 and Ex∼Ps(x)[β(x)] = 1, where β(xs

i ) =
β(xi, yi)



Thus, if β(xs
i ) ∈ [0, B] is a fixed function in x ∈ X having

finite mean and non-zero variance, the weights β(xs
i ) can be

estimated using the following equation:

arg min
β
‖ 1

p

p∑
i=1

β(xs
i )φ(xs

i )−
1

q

q∑
i−1

φ(xt
i ) ‖H (16)

such that

β(xs
i ) ∈ [0, B] and |1

p

p∑
i=1

β(xs
i )− 1| < ε

where ε is a small quantity. The condition β(xs
i ) ∈ [0, B]

minimizes the discrepancy between Ps(x, y) and Pt(x, y). The
condition | 1p

∑p
i=1 β(xs

i ) − 1| < ε ensures that the measure
β(x)Ps(x, y) is a probability distribution. A good choice of ε
is O(B/

√
p).

The β(xs
i ) values act as the weights β(xi, yi) [36] for

the source examples. The error of each source example is
multiplied by the corresponding β(xs

i ) value while calculating
the risk of the training model, thus giving appropriate weights
to the source examples.

2) Subspace Alignment: This is a common domain adapta-
tion method based on feature subset selection [37]. The idea is
to apply PCA on source Ts and target Tt datasets separately by
choosing a common space with d dimensions. It then attempts
to align the projected source dataset with the projected target
dataset in this common subspace using a subspace alignment
matrix. Once source and target are aligned, a classifier is built
on the transformed source dataset Tαs and subsequently applied
to the transformed target dataset Tαt . Algorithm 2 outlines
these ideas. In step 3, (T ∗s )

′
T ∗t corresponds to the subspace

alignment matrix; (T ∗s )
′

is the transpose of T ∗s . The output
is a model M that can be applied to the transformed target
dataset Tαt .

Algorithm 2 Subspace Alignment Algorithm
Input : Source Data Ts (labeled), Target Data Tt (unla-
beled), Dimensionality d
Output : Classifier Ms and transformed target data Tαt .

1: T ∗s ← PCA(Ts, d) (source defined through d eigenvectors)
2: T ∗t ← PCA(Tt, d) (target defined through d eigenvectors)
3: Z = T ∗s (T ∗s )

′
T ∗t (aligning source with target)

4: Tαs = TsZ (source data in aligned space)
5: Tαt = TtT

∗
t (target data in aligned space)

6: Build model Ms from Tαs .

C. Domain Adaptation with Active Learning

We now describe our approach to combine domain adapta-
tion with active learning. As mentioned before, active learning
selectively chooses (unlabeled) examples deemed relevant for
classification. In our study, we begin by randomly choosing
a set of instances from the target dataset and querying them
(each class label incurs a fixed cost). A model is then built

on this labeled target sample, followed by an iterative process
that queries the next most informative instance from the target
dataset, and builds a new model after the last queried instance
is added to the sample. The algorithm stops when it reaches
a maximum cost i.e., when it runs out of budget.

In this paper we use pool-based [38] active learning with
margin sampling [39] as the uncertainty-sampling technique
[40]. Here, the most informative instance to query, x∗, is
selected based on the concept of margin as a measure of
class-label uncertainty. While many interpretations exist for
the margin, here we define it as the difference between the
first P (y′|x) and second P (y′′|x) highest class posterior
probabilities conditioned on x. Instance x∗ is then selected
as follows:

x∗ = arg min
x

P (y′|x)− P (y′′|x) (17)

Our approach to combine domain adaptation with active
learning is described in Algorithm 3. We use the model Ms

created by the domain adaptation algorithm as the initial model
for active learning. This step obviates randomly querying
instances from the target dataset to create an initial labeled
sample, and can be seen as a form of transfer of knowledge
between source and target. The final goal is to build an
accurate model Mt from the target domain.

The algorithm begins be selecting k instances from Tt
with lowest margin (eq. 17) using model Ms, and queries
their class labels (cost increases k units). Invoking the source
model is important to avoid the known “cold start” problem
[41] in active learning, where the efficacy of the method
depends on an initial accurate model, but such model requires
a representative labeled sample to be constructed in the first
place. We circumvent the problem by relying on Ms at this
initial stage. After that an iterative process simply looks for
the next instance with lowest margin, queries the class label,
and adds to the target sample (cost increases one unit). The
cycle continues until cost reaches the maximum budget. The
output is a new model Mt trained on the target labeled sample.

IV. EXPERIMENTS

We show results after applying our approach to simulated
data stemming from the Supernova Photometric Classification
Challenge [5], traditionally called post-SNPCC. This is sim-
ulated data built to mimic the characteristics of Dark Energy
Survey (DES) data. It is composed of a spectroscopic (source)
and a photometric (target) sample, which resembles biases
present in real spec/photo datasets (specifically, spectroscopic
data are less numerous, brighter, closer, and less noisy than its
photometric counterparts) and consequently stands as an ideal
ground to test the combination of domain adaptation and active
learning techniques.

We follow the same data treatment described in [6] for the
construction of a sample: we select only objects having at least
3 observed epochs per filter, with at least 1 of them being
before -3 days and at least 1 after +24 days since maximum
brightness. In each filter, light curve fitting is performed using



Algorithm 3 Domain Adaptation with Active Learning
Input: Target Data Tt, Source Model Ms, Budget b, Initial
Sample Size k.
Output: Model Mt built on a labeled target sample.
Initialize: T lt={}, Cost=0

1: Use Ms to select k instances from Tt (margin sampling).
2: Query class labels and add instances to T lt .
3: Cost = Cost + k.
4: Build model Mt from T lt .
5: Tt = Tt - T lt .
6: while cost ≤ b do
7: Find x∗ from T lt with minimum margin.
8: Query x∗ and add instance to T lt .
9: Remove x∗ from Tt.

10: Build model Mt from T lt .
11: Cost = Cost + 1.
12: Return model Mt.

Gaussian process regression [42], and the resulting function is
sampled with a window of 1 day. No quality cuts are imposed
(SNR>0)5.

After the selection cuts, our surviving spectroscopic (source)
sample embeds 719 SNe, while the photometric (target) sam-
ple embeds 4791 SNe. Both matrices hold 108 columns (27
epochs × 4 filters).

A. Dimensionality Reduction on Source Dataset

We first apply Kernel Principal Component Analysis
(KPCA) as a form of dimensionality reduction, and compare
results with Principal Component Analysis (PCA). We es-
timate classification accuracy using 10-fold cross-validation,
repeating the whole experiment ten times for each learning
algorithm; results are shown in Table I (numbers within
parentheses refer to standard deviations).

The first column in Table I shows the learning algorithms.
We experiment with four basic algorithms using default val-
ues in WEKA [43]: Neural Networks with a single hidden
layer (comprising 11 hidden nodes and 30% training data
as validation set); Support Vector Machines (SVMs) with
Polynomial Kernel (degrees 1-3); The second column show
classification accuracy with all (108) features. The third and
fourth columns shows similar results but using PCA, and
KPCA. Besides accuracy, we also estimate precision as an
alternative performance metric6; results are shown in Table II.

From Table I we observe that classifiers built on the
dataset reduced by KPCA tend to yield similar classification
accuracy than PCA for most algorithms. The same can be said
in general between KPCA and no dimensionality reduction.
Table II shows similar results when precision is used as the
performance metric. These results simply justify the use of a

5We refer the reader to [6], section 4, for a detailed description of the data
preparation process.

6Precision is defined as the number of true positives divided by the number
of true positives and false positives. Precision is also known as ”purity” in
the astronomical jargon.

Table I
ACCURACY ON SOURCE DATASET. TESTING THE VALUE OF

DIMENSIONALITY REDUCTION.

Learning Accuracy on Supernova Dataset
Algorithm Original PCA KPCA

Neural 94.16 (2.80) 93.37 (2.77) 93.76 (2.66)
Networks
SVM 93.17 (2.94) 93.62 (2.54) 93.55 (2.53)
Polynomial 1
SVM 96.02 (2.10) 94.85 (2.66) 95.32 (2.43)
Polynomial 2
SVM 95.02 (2.17) 95.43 (2.49) 96.02 (2.37)
Polynomial 3

Table II
PRECISION ON SOURCE DATASET. TESTING THE VALUE OF

DIMENSIONALITY REDUCTION.

Learning Purity on Supernova Dataset
Algorithm Original PCA KPCA

Neural 0.94 (0.04) 0.94 (0.04) 0.94 (0.03)
Networks
SVM 0.93 (0.04) 0.93 (0.04) 0.93 (0.04)
Polynomial 1
SVM 0.96 (0.03) 0.94 (0.04) 0.95 (0.03)
Polynomial 2
SVM 0.95 (0.03) 0.95 (0.03) 0.96 (0.03)
Polynomial 3

dimensionality reduction technique for our analysis. Since we
observe a considerable decrease in the number of dimensions
when using KPCA, we adopt this technique to transform our
source and target datasets, Ts and Tt.

B. Domain Adaptation with No Active Learning

We apply two domain adaptation methods (Section III-B):
Kernel Mean Matching(KMM) and Subspace Alignment (SA)
to our transformed datasets. Results are obtained using 10-
fold cross validation and repeating the experiment ten times.
Table III displays our results (numbers within parentheses
refer to standard deviations). The first column refers to the
learning algorithms. The second column shows accuracy when
the classifiers are built on the source dataset and directly
applied to the target dataset without any domain adaptation.
The third and fourth columns show accuracy on the target
dataset when classifiers are built on the source dataset using
domain adaptation techniques: KMM with Gaussian Kernel
(0.3 variance), and SA.

Similar results are shown in Table IV with precision as the
performance metric. We plot results of Table III and Table IV
in Figure 1 and Figure 2, respectively.

From Tables III and IV, and Figures 1 and 2, we observe
that KMM yields better accuracy and precision than Subspace
Alignment; this is also true when KMM is compared to the
direct use of the source model on the target dataset (with the
sole exception of SVM degree 3). We take this as evidence
of the advantage of domain adaptation using KMM for our
specific application domain.



Table III
ACCURACY ON TARGET DATASET. TESTING THE VALUE OF DOMAIN

ADAPTATION METHODS.

Learning Accuracy on Supernova Dataset
Algorithm No DA or AL KMM SA

Neural 66.88 (0.29) 75.36 (3.18) 49.85 (1.00)
Networks
SVM 68.34 (0.30) 70.05 (0.29) 53.15 (0.84)
Polynomial 1
SVM 70.42 (0.47) 75.47 (2.09) 49.46 (0.47)
Polynomial 2
SVM 70.39 (0.43) 66.90 (0.57) 48.89 (0.43)
Polynomial 3

Table IV
PRECISION ON TARGET DATASET. TESTING THE VALUE OF DOMAIN

ADAPTATION METHODS.

Learning Purity on Supernova Dataset.
Algorithm No DA or AL KMM SA

Neural 0.37 (0.01) 0.47 (0.40) 0.23 (0.01)
Networks
SVM 0.38 (0.01) 0.41 (0.01) 0.28 (0.01)
Polynomial 1
SVM 0.41 (0.01) 0.48 (0.03) 0.23 (0.01)
Polynomial 2
SVM 0.42 (0.01) 0.38 (0.01) 0.22 (0.01)
Polynomial 3

The poor performance of Subspace Alignment can be ex-
plained as the result of a preliminary step to unify source
and target into the same attribute space, as is done by the
eigenvector decomposition described in Section III-A; it is
unlikely to see improvement using SA once both source and
target are transformed to a common space.

One more observation is that best performance in terms of
both accuracy and precision on the target dataset is reached
with Neural Networks. Hence, we use this classifier to build
the initial model during active learning.

C. Domain Adaptation With Active Learning

We now describe experiments that combine domain adap-
tation with active learning. To proceed, we divide the target
dataset randomly into two equal parts - pool set and test set.
Our algorithm queries target instances only from the pool set,
while performance (accuracy and precision) is measured on
the test set (not available during training). We form ten such
pairs of pool and test sets and apply domain adaptation with
active learning on each of these pairs (ten times). Results are
shown in Table V. Values are average accuracy and average
precision over 100 runs. Numbers within parentheses refer to
standard deviations.

In Table V, the first column corresponds to the learning
algorithms, while the second and third columns show results
for accuracy and precision. The second row refers to the case
where the source model is used directly on the target without
invoking any domain adaptation technique. The third and
fourth rows refer to the use of Subspace Alignment(SA) and
Kernel Mean Matching (KMM), respectively. The fifth-eighth
columns refer to the case where the model built using KMM

Figure 1. Accuracy on Supernova Target Data with and without Domain
Adaptation

Figure 2. Precision on Supernova Target Data with and without Domain
Adaptation

is used along with active learning with a budget of 50, 500,
1000 and 2000 labels respectively (the budget specifies the
maximum number of queried instances). We plot our results
in Figure 3.

Results show a significant advantage gained when domain
adaptation is combined with active learning. Even with a
modest budget size, the combination yields better performance
than the use of domain adaptation alone. Of course, growing
the budget size provides increased performance gain, but there
is a trade-off between performance and the cost of querying
class labels. As mentioned in Section I, the precise labeling
of a supernova is normally done through spectroscopy, which
is an expensive and time-consuming process. As a result,
the practical application of our proposed methodology needs
to consider how much we can stretch the budget (using
spectroscopy) to facilitate the construction of accurate models
(built mainly using photometry).



Table V
ACCURACY AND PRECISION ON TARGET DATASET. TESTING THE VALUE

OF DOMAIN ADAPTATION AND ACTIVE LEARNING.

Learning Algorithm Accuracy Precision
Without DL or AL 66.88 (0.29) 0.37 (0.01)
SA (DA) 49.85 (1.00) 0.23 (0.01)
KMM (DA) 75.36 (3.18) 0.47 (0.40)
KMM with AL 80.27 (4.47) 0.86 (0.04)
Budget: 50
KMM with AL 91.32 (1.94) 0.94 (0.01)
Budget: 500
KMM with AL 92.99 (0.52) 0.95 (0.01)
Budget: 1000
KMM with AL 93.46 (0.43) 0.96 (0.01)
Budget: 2000

Figure 3. Accuracy and Precision on Target Data using Domain Adaptation
and Active Learning.

V. SUMMARY AND CONCLUSIONS

In this paper we provide an efficient method to classify
supernovae Ia, a problem of high priority in the astronomical
community. The urgency in solving this problem comes from
the need to analyze massive amounts of data gathered from
recent (unlabeled) photometric observations, without ignoring
the already existing (labeled) data obtained through the use
of spectroscopy. Our methodology exploits both the available
(small) set of spectroscopic data (source domain), and the
(large) set of unlabeled photometric data (target domain).
The proposed adaptive learning technique combines domain
adaptation with active learning. Specifically, our proposed
methodology exploits information from the source dataset to
build an accurate model on the target dataset using Neural Net-
works as the learning algorithm, and Kernel Mean Matching
as the domain adaptation technique. Best results are obtained
when domain adaptation is combined with pool-based active
learning with margin sampling.

The following conclusions can be drawn from our experi-
mental results: 1) Kernel Principal Component Analysis is an

efficient technique to reduce the dimensionality of the data;
2) Domain adaptation techniques can be used to improve
performance beyond a model that is simply built on the source
domain and tested on the target domain; 3) A combination
of domain adaptation and active learning shows best results
in terms of accuracy and precision. In this last approach, a
large budget (i.e., large number of allowed queries) yields
excellent performance results, but the practical deployment of
such technique in a real scenario must take into account the
feasibility of having a large budget, due to the inherent cost
of class labeling (currently based on a costly spectroscopic
analysis).
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