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Abstract—This study investigates the possibility of improving
K-means algorithm for non-vector data. It calls attention to
the changes a similarity measure enforce compared to vectorial
K-means, and aims to understand and take advantage of the
opportunities offered by sparse prototyping for K-means. We
propose here a new algorithm of clustering for relational data,
i.e. data described by their relations to each other (usually their
similarities). This algorithm computes a set of sparse prototypes
to represent the data structure. The results are promising :
the clustering quality of the sparse variation is similar to the
traditional K-means, and the processing cost for high dimensions
is lower than other relational algorithms.

Index Terms—K-means, Dissimilarity, Relational, Prototype,
Sparse.

I. INTRODUCTION

K -MEANS is one of the most widely used clustering
algorithm [1], because it has been used for a long time,

is very well understood and achieve acceptable results within
reasonable time. However, input data is not always available in
vectorial form. For example pictures, texts, networks, trajecto-
ries or navigation patterns on a web site [2] cannot be reduced
to vector without losing information. A common solution is
then to define an adapted similarity measure to compare these
objects. The data are thus defined from their relations to each
other and are called ”relational data”. However, in that case,
we don’t have points in a vectorial space any more, nor can
we convert them to fit into one, and most clustering algorithms
are inappropriate.

Relational clustering algorithms form a family of method
adapted to relational data. Few work have been done yet in
this domain, but some authors have worked on using K-means
with relational data, such as R.J. Hathaway’s [3] relational
duals. The idea studied by Hathaway was to consider the K
prototypes as a linear combination of the input data. But as
far as processing power and memory usage are concerned, this
implementation is very expensive (O(N2) for N samples),
making it unusable for large sets of data. F. Rossi [4] proposed
to enforce sparser prototyping by considering the prototypes
as linear combinations of support points, a subset from the
data set, succeeding in improving the complexity. However,
the support points selected by Rossi are specific to the cluster
represented by the prototype, and we believe it is possible de
decrease complexity and memory cost even more. The main
idea is to use one set of fixed prototype representatives, that we
will call support points, instead of a multiple cluster-dependent
sets. This can help us decrease the quantity of calculations

made and also the need of keeping the full distance matrix in
memory.

In this work, we will make our study based on the basis
laid by F. Rossi in [4], to achieve an alternative method to
select the support points to train a relational K-means : The
objective is to use one unique set of representatives through
the whole learning process, independently from the clusters,
in a way that all the prototypes are represented by the same
subset of observations, improving the cost of computing new
support points and more importantly, the cost of computing
the new prototypes. On the memory side, working with fixed
support points, make saving the full dataset distance matrix
unnecessary. That means instead of keeping a memory a full
N× matrix, we only keep a N × (D+1) matrix, where D is
the dimension of the space containing the objects.

We will start this paper by introducing, in Section II, the
K-Means algorithm and the naive implementation of the rela-
tional version. Then we will examine in Section III the sparse
variation that lay ground for the support points version of
the algorithm, followed by the fixed representatives alternative
(Rossi’s version). Next, we study in Section IV the usage
of fixed support points and we propose a new algorithm.
Section V presents and discuss the results of experimental
implementations of the methods. We conclude in section VI.

II. K-MEANS AND ITS RELATIONAL VARIANT

We recall below the K-means algorithm and we define
dissimilarity data. Additionally, we will present the relational
K-means algorithm used as a frame for the sparse variation
presented later. In the following, N is the number of observa-
tions x(1), ..., x(N) from a D−dimensional pseudo-Euclidean
input space E∗.

A. K-means

K-means is a prototype based algorithm [5], which aims to
minimize the within-cluster sum of squares. The data in each
cluster are represented by a prototype (i.e. a centroid).

Given the set of observations, K-means clustering compute
a partition S of the N observations into K (≤ N) sets, so as
to find :

argmin
S

K∑
k=1

∑
x∈Sk

∥x− µk∥2 (1)

where µk is the prototype of cluster k.



The most used method for this minimization is Lloyd’s
algorithm [5], and it uses an iterative refinement technique.
After an initialization of K-means, we assign each point to
the closest prototype (Assignment step), then we compute the
prototypes taking into account the new clusters (Update step).
We iterate this two steps until the assignments stop changing.

An alternative version of K-means uses points from data as
prototypes, using medoids instead of centroids. Partitioning
Around Medoids (PAM) [6] is more robust to noise and
outliers than regular K-means, mainly because it works
directly with pairwise dissimilarities. On the other side, PAM
update step can cause a cluster overlapping, that cannot be
untangled in the following iterations, because of the limited
number of potentials centers compared with K-means.

B. K-means++ initialization variation :

K-means algorithm is sensitive to the initial set-up of
centroids, so instead of random starting centers, Arthur’s and
Vassilvitskii’s K-means++ [7] propose a variant for choosing
the initial values. Let D(x(i), µj) denote the distance from a
data point x(i) to the center µj (the prototypes). Then, the
algorithm is defined as follow :

1) Choose one center µ1 uniformly at random from among
the data points.

2) Choose the farthest data point from µ1 (highest
D(x(i), µ1)) as a new center µ2.

3) For each data point x(i), store the distance separating it
from the closest centroid (minj D(x(i), µj)) for all j).

4) Choose the point with the highest stored distance as the
new center µj

5) Repeat Steps 3 and 4 until K centers have been chosen.
It means that at each iteration, the next centroid is the furthest
point, selected from the set of the closest points from the
previous centroids.

C. Lloyd Algorithm implementation:

The standard formulation of K-means is presented in Algo-
rithm 1, where µk represent cluster centroids for i in (1, ..,K),
and c(i) represent labels for each sample.

Algorithm 1 K-means Algorithm

1: Initialize cluster centroids µ1, ..., µK from E∗
2: while Not Convergence do
3: for i← 1, N do
4: ci ← argminj∥x(i) − µj∥2

5: for j ← 1,K do

6: µj ←
∑N

n=1 1{c(i) = j}x(i)∑N
n=1 1{c(i) = j}

To initialize the cluster centroids (first step), we could
choose K training examples randomly, and set the cluster
centroids to be equal to the values of these examples. Another
method would be using the K-means++ initialization described
previously. The inner-loop of the algorithm repeatedly com-
prises out two steps:

• Assignment : The sample i is affected to the closest
cluster centroid µj

• Update : The cluster centroid µj is moved to the mean
of the corresponding points.

D. Dissimilarity data

Not all data is or can be described by a set of variables
with known values. Another way of representing data is
by the relations within and between samples of a dataset.
They can be quantified with dissimilarity measures amongst
every two observations, conventionally resulting in a positive
real number, for which higher is the value, more different
the observations are, and respectively small values represent
very similar data. The minimal constraints on a dissimilarity
measure d : (x, y) −→ d(x, y) are [8] :

• Non negativity : d(x, y) ≥ 0 for all x and y
• Symmetry : d(x, y) = d(y, x) for all x and y
• Reflexivity : d(x, x) = 0 for all x
Thus, the input dataset for such data, in our case, is a

dissimilarity matrix, for which each cell represent the disparity
between two samples. Consequently, the dissimilarity matrix
D for an N elements dataset, is :

• Square : N ×N matrix
• Hollow : d(i, i) = 0 for all i
• Symetric : d(i, j) = d(j, i) for all i and j
• Non-negative : d(i, j) ≥ 0 for all i and j

E. Relational K-means formulation

Relational K-means cover the case of relational datasets,
where non-vector points are represented as a similarity (or
dissimilarity) matrix D. The difference lies in the definition of
the prototypes, which are now defined as a linear combination
of data instead of a vector in the data space. Considering a
normalized linear combination of the observations, namely,
y =

∑N
i=1 αi · x(i) with α = (α1..αN ) ∈ RN , x(i) ∈ RN and∑N

i=1 αi = 1, we can deduce the dissimilarity [8] [9] :

d(α, x(i)) = (D · α)(i) − 1

2
αT ·D · α (2)

The idea behind this formula, is that we can compute
the distance of a point x(i), from a point represented by
the coefficients α d(α, x(i)), without having to compute the
vectorial form (which may exist or not) of each point of the
space. All we need in this case is the coefficients α and the
distance matrix D.

The relational K-means follows the same concept of the
vector variant, i.e., alternating assignment and update, while
minimizing the within class variance. A solution to the under-
lying minimization problem in K-means would be [4] :

α(k) =
1

|Ck|
(δk,1, ........, δk,N ) (3)

where |Ck| is te number of points in the cluster k, and δk,1
correspond to the Kronecker delta (δi,j = 1 for i = j and
δi,j = 0 otherwise)

A standard formulation would give us the Algorithm 2.



Algorithm 2 Naive relational K-means algorithm

1: Initialize cluster centroids
2: Compute the α(K) using (3)
3: while Not Convergence do
4: for i← 1, N do
5: for k ← 1,K do
6: Compute d(α(k), x(i)) using (2)
7: Assign x(i) to Ck for minimal d(α(k), x(i))

8: Update α(K) using (3)

III. SPARSE PROTOTYPES REPRESENTATION FOR K-MEANS

F. Rossi proved that the sparse variation of relational K-
means is more efficient than an instinctive adaptation of K-
means for dissimilarity data [4]. As such, we will build our
version of the algorithm over foundations laid by Rossi, to
enforce sparser prototypes for K-means, using a center of mass
approximation. This grounding is presented in the following
section.

A. Sparse prototypes representation

For a sparse representation, the prototypes are represented
only by a limited number of samples, which means that
prototypes are a linear combination of a relatively small
portion Jk = (jk,1, ..., jk,P ) of the corresponding cluster,
where x(jk,p) ∈ Ck for all p, P being the number of support
points chosen.
We are looking for a representation of µk, the center of mass
of Ck, as a normalized linear combination of the support points
x(jk,p). That can be translated into :

For any centroid µk, there is β(k) ∈ RP

such as µk =
P∑
i=1

β
(k)
i · x(ji) and

n∑
i=1

βi = 1 (4)

B. Centroid representation

Considering that the general principle of K-means is the
same for this sparse variation, the minimization problem for
each cluster can be written as :

(Pk) min
β∈Rn

∑
x(i)∈Ck

d(β, x(i))

where
n∑

i=1

βi = 1; ∀j /∈ Jk βj = 0 (5)

By considering sk,j =
∑

i∈Ck
dij , DJ = (duv)u∈J,v∈J and

sk,J = (sk,jk,1
, ....., sk,jk,P

)T , then applying the method of
Lagrange multipliers to find the local minima for (5), the
problem is reduced to the equation [4] :

∇Lk = sk,J − |Ck|DJ · β + λ1⃗ = 0 (6)

where 1⃗ = (1, ..., 1)T ∈ RP and
∑n

i=1 βi = 1. The
problem for which we are looking for a local minimum can
be represented by the linear system below [4] :[

|Ck|DJ −⃗1
1⃗T 0

] [
β
λ

]
=

[
sk,J
1

]
(7)

C. Algorithm

Using the sparse representation presented above, we obtain
the Algorithm 3.

Algorithm 3 Sparse relational K-means - with cluster specific
support points

1: Initialize clusters by affecting a cluster to observations
2: while Not converged do
3: Select P support points
4: for k ← 1,K do
5: Compute sk,J =

∑
i∈Ck

dij
6: Solve equation (7) to get β
7: Compute (Dβ(k)) for all k and i
8: Compute −1

2β
(k)TD β(k) for all k

9: for k ← 1,K do
10: for i← 1, N do Compute d(β(k), x(i))
11: Assign x(i) to it’s closest prototype

IV. SPARSE RELATIONAL K-MEANS

This section present the new improved sparse relational K-
means using a single set of support points for all the clusters.

A. Support points selection

In an Euclidean space with a dimension D, we need D+1
non-aligned samples to determine the position of any point
in the space using only distances. In our case, we want a
good representation of the clusters prototypes based on their
distances to the support points. Of course, choosing d + 1
support point requires the ability to compute the intrinsic
dimension of the data from a similarity matrix (see for example
[10]). It is also possible to choose a fixed number of support
points, depending on the available memory and processing
time.

While selecting random support points can give good results
in practice, we need to minimize the probability of getting
aligned points within the chosen observations. Here, we pro-
pose to use the same principle as K-means++ initialization.
We select the first support point randomly, the second repre-
sentative being the furthest one from the first. We continue
by pinning down, at each iteration, the closest points from
the previous support points, then we select the furthest point
selected from this set. Preliminary tests have shown that this
initialization increase the quality of the clustering for relational
algorithms. We use this initialization for all of the algorithms
tested here requiring support points.

B. Centroid representation

Taking into account the reasoning presented in the previous
section, the equation (6) is a simplified form of the minimiza-
tion problem.

1

|Ck|
sk,j −DJ · β +

1

|Ck|
λ1⃗ = 0 (8)

where 1⃗ = (1, ..., 1)T ∈ RP .



By keeping in mind that the support points are not cluster
dependent in this situation, the problem can be simplified to
the linear system below :

[
DJ −⃗1
1⃗T 0

] β
1

|Ck|
λ

 =

 1

|Ck|
sk,J

1

 (9)

C. Algorithm

Using the sparse representation presented above, we obtain
the following algorithm :

Algorithm 4 Sparse relational K-means - with fixed support
points

1: Initialize clusters by affecting a cluster to observations
2: Select P support points
3: while Not converged do
4: for k ← 1,K do
5: Compute sk,J =

∑
i∈Ck

dij
6: Solve equation (9) to get β
7: Compute (Dβ(k)) for all k and i
8: Compute − 1

2β
(k)TD β(k) for all k

9: for k ← 1,K do
10: for i← 1, N do Compute d(β(k), x(i))
11: Assign x(i) to it’s closest prototype

A variation of the algorithm would consist into separating
the system solving step, into inversion of the first term, which
can be extracted from the loop considering it is k-independent,
and a product of the resulted inverse with the right side term,
which will be kept inside the loop.

In other terms, it means that DJ is now independent from
k, and the system (9) will become : β

1

|Ck|
λ

 =

[
DJ −⃗1
1⃗T 0

]−1
 1

|Ck|
sk,J

1

 (10)

And the resulting algorithm would be as follow :

Algorithm 5 Optimized sparse relational K-means - with fixed
support points

1: Initialize clusters by affecting a cluster to observations
2: Select P support points
3: while Not converged do
4: Compute the inverse used in (10)
5: for k ← 1,K do
6: Compute sk,J =

∑
i∈Ck

dij
7: Compute the product (10) to get β
8: Compute (Dβ(k)) for all k and i
9: Compute − 1

2β
(k)TD β(k) for all k

10: for k ← 1,K do
11: for i← 1, N do Compute d(β(k), x(i))
12: Assign x(i) to it’s closest prototype

V. EXPERIMENTATION AND DISCUSSIONS

A. General setting
For the experiments, we used some representative vector

datasets, to allow us a comparison with vector K-means.
The samples are injected into the relational algorithms after
the calculation of corresponding similarity matrices using
Euclidean distance. Considering the conclusion of Rossi [4]
that sparse algorithms are generally more effective than their
naive counterpart, we will analyze the differences between
the proposed methods and the previously presented sparse
implementations, in addition to the regular vectorial K-means.
Thus, we compare the overall performance of Algorithms 4
and 5 (the sparse relational K-means with fixed support point
studied in section IV) with the following methods :

• Regular K-means for vector data (Algorithm 1)
• Sparse K-means without support points [4]
• Sparse K-means with cluster-specific support points (Al-

gorithm 3)

All the algorithms are implemented using python 2.7.11.
Mathematical computation are performed using the python
library numpy 1.10.4, in addition to the module linalg from
scipy package for matrix inversion and solving.

We evaluate the clustering results using two external quality
index, Adjusted Rand Index (ARI) and Normalized Mutual
Information (NMI), and the internal Silhouette Coefficient.
The results reported for processing time, and index values
are the means of twenty iteration of the algorithms, with a
new initialization for each run. It is worth noting, that for
each specific iteration, the initialization is common for all the
algorithms tested.

The datasets used, while not sufficiently massive to simulate
real life problems, should provide enough insights in order to
examine an evolution for real problems.

Artificial convex dataset :
A set of 8750 observation artificially generated using sklearn
and mdp python libraries. The data is two dimensional and
the 5 clusters making the set are convex and well separated.

Artificial non-convex dataset :
A set of 10000 observation artificially generated using sklearn
and mdp python libraries. The data is two dimensional and the
5 clusters making the set are non-convex but well separated.

Iris dataset :
The data set contains 3 classes of 50 instances each, where
each class refers to a type of iris plant. One class is linearly
separable from the other 2; the latter are not linearly separable
from each other. The predicted attribute is the class of iris
plants [11].

Digits dataset :
Each datapoint of the set is a rectangular 8x8 box in a gray
scale of 16 values representing of a handwritten digit. There is
1797 observations, with 64 features, separated into 10 clusters
[11].

Glass dataset :
The data set contains 6 classes for a total of 214 observations,
where each custer correspond to a type of glass. A sample is
described by 10 attributes [11].



Wine dataset :
These data are the results of a chemical analysis of 178 wines
(samples) grown in the same region in Italy but derived from
3 different cultivars (clusters). The analysis determined the
quantities of 13 constituents found in each of the three types
of wines [11].

For the results reported next, we use the abbreviations
defined in table I for each dataset, and the names in table
II for algorithms names.

TABLE I: Datasets
abbreviations

Artificial convex dataset Convex
Iris dataset Iris
Digits dataset Digit
Glass dataset Glass
Wine dataset Wine

TABLE II: Algorithms nomination

Vectorial K-means K-means
Relational K-means using sparsity propriety
without support points Rel KM w/ Sparsity
Sparse relational K-means with cluster
specific support points Sparse KM w/ C-SP
Sparse relational K-means with fixed
support points Sparse KM 1
Optimized sparse relational K-means with
fixed support points Sparse KM 2

B. Complexity summary :

K-means problem was shown to be NP-hard in Euclidian
space [12] and for the plane [13]. It’s computational complex-
ity for a dataset of N input is [14]: O(NDK+1 · logN).
Lloyd algorithm [5], which is the standard approach for K-
means clustering, is often described as of linear complexity,
and is given as O(N ·K ·D) per iterations.
The naive relational K-means, whose formulation was pre-
sented in the algorithm 2, has a complexity O(K ·N2), which
can be expensive for big datasets.
But, considering (3), the matrix α is sparse. That means, we
can reduce complexity to O(N2) by computing only nonzero
terms in (2) [4]. Because for each cluster k, α(k) contains only
|Ck| non-zero terms, and

∑K
k=1|Ck| = N .

For the sparse relational K-means with cluster-dependent
support points in algorithm 3, the most expensive operation
is the computation of β in O(N ·K ·P +K ·P 3). Calculation
of each (D · β(k)) and each − 1

2β
(k)T · D · β(k) cost O(P ).

Finally, the complexity of the assignment step is O(N ·K).
For our variation of Rossi’s sparse K-means, the sparse K-
means with fixed support points, solving the system (9) cost
O(P 3) for each cluster k. Therefore, algorithm 4 complexity
is O(K · P 3). Finally, when we use the equation 10, we
replace the k solve operation (costing O(K · P 3)), with one
inverse and k matrix multiplications (asymptotically costing
O(K · P 2.4) for large matrices [15], [16], [17]). In addition,
the number P of support points is lower in our method
(where P = D + 1) than in regular sparse algorithm (where
P = K×D [4]). The complexity has therefore been improved

to O(N ·K ·P+K ·P 2.4), which is beneficial when the number
of clusters K get higher.

Table III shows the complexity of the different algorithms.
Relational method are usually more complex than vectorial
method, but among them KM2 is the less complex. In addition,
in KM1 and KM2, P is around K time smaller than in the
other relational algorithms.

TABLE III: Computational complexity

Algorithm Complexity
K-means O(NKD)
Rel KM w/ Sparsity O(N2)
Sparse KM w/ C-SP O(NKP +KP 3)
Sparse KM 1 O(NKP +KP 3)
Sparse KM 2 O(NKP +KP 2.4)

C. Theoretical Memory usage :

For vectorial K-means, we notice that we need to commit to
memory the training dataset (N timesD) and the prototypes
vectors (K×D). And unless the number of object in the set is
inferior to the number of features (N < D), vectorial K-means
is the less memory hungry of all the derived algorithms. For
the naive implementation of relational K-means, we need to
store the distance matrix in order to compute the prototype-
samples distances, plus coefficients of the K prototypes (N ×
K). The full dataset is also needed for sparse K-means with
cluster specific support points, but to compute the prototypes
coefficients, we need a representatives-samples distance matrix
for each cluster (N × P × K), and finally we need to store
the K support points.

As for the sparse variants with fixed support points, we do
not need the whole distance matrix to select support points,
since they are fixed at the start, and the only condition is
they must not be aligned to be able to represent all the points
in the space. Considering that we only need a set of D + 1
representatives instead of a set for each cluster, the gain can
become substantial for high dimensional datasets with many
clusters.

The stored matrices are reported in the table IV.

TABLE IV: Memory usage

Algorithm Stored Matrices Dimensions
K-means N ×D +K ×D
Rel KM w/ Sparsity N ×N +N ×K
Sparse KM w/ C-SP N ×N +N ×K2 ×D +K2 ×D
Sparse KM 1 N ×K +K ×D
Sparse KM 2 N ×K +K ×D

D. Experimental Results

We computed the processing time, memory consumption
and clustering quality for each method and each dataset.

1) Processing time (Table V) : Each algorithm was imple-
mented in a different function, but the prototypes initialization
is common for all the functions, and is not included in the
duration computed. The time needed for each method/function
to complete the learning was calculated using the package



timeit : we start a timer exactly before running an algorithm
script, and we stop it after saving the return results into a
variable.
The computations are tested on a Windows 7(x64) machine,
with a dual-core CPU clocked at 2.50Ghz (i5-2450M). The
program is not multi-threaded.

TABLE V: Processing durations results per iteration (ms)

Convex Iris Digit Glass Wine
K-means 475.20 3.98 39.52 4.62 3.78
Rel KM w/ Sparsity 119321.45 59.50 3971.75 53.80 38.25
Sparse KM w/ C-SP 353.93 5.43 392.40 13.26 10.95
Sparse KM 1 409.25 3.80 340.16 9.03 8.98
Sparse KM 2 238.80 3.58 351.54 8.41 8.40

2) Memory usage (Table VI): For memory monitoring, we
used python package memory profiler. It provides us with
a line-by-line analysis of memory usage fors the designated
function. Considering that python memory management is OS
dependent, and cannot always be predicted as it does not
always release freed memory, we decided to launch each script
independently from the other, which mean that unlike the other
measures reported, memory usage numbers are based on a
different initialization, and are the mean of 5 executions.

TABLE VI: Memory usage results (Gb)

Convex Iris Digit Glass Wine
K-means 0.4950 0.0080 0.0940 0.0136 0.0088
Rel KM w/ Sparsity 2.1234 0.0160 0.1680 0.0238 0.0176
Sparse KM w/ C-SP 4.1706 0.4220 1.9148 0.5164 0.6898
Sparse KM 1 2.8736 0.3360 0.8386 0.4626 0.4432
Sparse KM 2 3.1558 0.3224 0.9472 0.4642 0.4760

3) Adjusted rand index (Table VII): ARI [18] is an external
measure of the similarity between two data clusterings, by
considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and
true clusterings. The adjusted Rand index have a value close to
0.0 for random labeling and exactly 1.0 when the clusterings
are identical.

TABLE VII: Adjusted rand index results
Mean±Standard Deviation

Convex Iris Digit Glass Wine
K-means .99 ± .00 .72 ± .00 .57 ± .03 .46 ± .02 .35 ± .00
Rel KM w/ Sparsity .99 ± .00 .70 ± .02 .39 ± .03 .45 ± .03 .32 ± .01
Sparse KM w/ C-SP .99 ± .03 .74 ± .01 .57 ± .04 .45 ± .02 .34 ± .01
Sparse KM 1 .99 ± .02 .73 ± .01 .57 ± .04 .47 ± .03 .34 ± .03
Sparse KM 2 .99 ± .00 .73 ± .04 .56 ± .03 .46 ± .04 .35 ± .04

4) Normalized Mutual Information (Table VIII): NMI [19]
is an external clustering quality index, that quantify the mutual
information between two clustering, which is a measure of the
similarity between two labels of the same data. The results
are then normalized to scale the results between 0 (no mutual
information) and 1 (perfect correlation).

5) Silhouette (Table IX): Silhouette [20] is an internal
method of interpretation and validation of consistency within
clusters of data. Silhouette coefficients are measures of how
similar a sample is to its own cluster (cohesion) compared to
other clusters (separation). The mean coefficient of all samples

TABLE VIII: Normalized Mutual Information Results
Mean±Standard Deviation

Convex Iris Digit Glass Wine
K-means .99 ± .00 .75 ± .00 .70 ± .01 .69 ± .02 .42 ± .00
Rel KM w/ Sparsity .99 ± .00 .76 ± .02 .56 ± .01 .67 ± .02 .40 ± .01
Sparse KM w/ C-SP .99 ± .03 .77 ± .02 .70 ± .01 .68 ± .01 .42 ± .01
Sparse KM 1 .99 ± .02 .76 ± .01 .70 ± .01 .70 ± .02 .41 ± .02
Sparse KM 2 .99 ± .00 .76 ± .02 .70 ± .01 .69 ± .03 .42 ± .02

is then computed. The silhouette ranges from -1 to 1, where
a high value indicates that the observation is well matched to
its own cluster and poorly matched to neighboring clusters.

TABLE IX: Silhouette Index Results
Mean±Standard Deviation

Convex Iris Digit Glass Wine
K-means .79 ± .00 .55 ± .00 .17 ± .00 .51 ± .00 .56 ± .00
Rel KM w/ Sparsity .79 ± .00 .54 ± .00 .12 ± .01 .50 ± .00 .56 ± .01
Sparse KM w/ C-SP .79 ± .02 .54 ± .00 .17 ± .00 .51 ± .00 .57 ± .01
Sparse KM 1 .79 ± .02 .54 ± .00 .17 ± .00 .51 ± .00 .55 ± .02
Sparse KM 2 .79 ± .00 .54 ± .01 .17 ± .01 .51 ± .00 .55 ± .03

E. Discussion

In our experiments, the external quality indexes ARI (table
VII) and NMI (table VIII) are on the same levels for the
different versions of K-means tested. More specifically, that
means our sparse K-means implementation yields as good
results as vectorial K-means and the other relational method.
In the same manner, the internal quality index Silhouette (table
IX) shows that, aside from Digit dataset, the clusters created
are reasonably structured, and again the results are comparable
with vector K-means, and Rossi’s sparsing algorithm.

Concerning processing cost, as predicted with the complex-
ity values already mentioned, the relational variations of K-
means can be more expensive time-wise than the vectorial ver-
sion, although it is not always the case. Our methods (sparse
KM1 and especially sparse KM2) achieve good performances
in comparisons to the other relational algorithms. Rel KM
w/ Sparcity, in particular, can be very slow, especially when
the size of the dataset increase. One can note that the cost
polynomially increases with the dimension of the dataset. That
can be explained by the decision to select dimension + 1
support points to represent the prototypes.

As far as memory usage is concerned, we notice at first sight
that the vectorial version is less demanding than the relational
ones, which can be explained by the storage of pairwise
distances matrix. For the relational methods, the less memory
consuming is the Rel KM w/ Sparcity, but at the expense
of time processing, as shown earlier. Among the remaining
methods, Rel KM1 and even more Rel KM2 are clearly less
memory consuming: we observe a noticeable memory gain
when using common support points over cluster-dedicated
representatives.

To summarize, regular sparsity implementation in relational
K-means consume a minimal amount of memory, but the pro-
cessing durations are extremely high, which render this option
unusable. The sparse algorithm with distinct support points
is time-effective, but the results showed that the computation
time can be improved with the usage of fixed support points



Fig. 1: Representation of clustering results for Iris Dataset
(using MDS)

Fig. 2: Representation of clustering results for the artificial
convex Dataset

as we propose here. In addition, the former is more expensive
on the memory side by a difference ranging from 4% (Iris
dataset), to 33% (Glass dataset), comparing with the latter.
The clustering quality is similar for both of them and with the
vectorial K-means (see figures 1 and 2 for an example).

We conclude then that the sparse relational K-means with
fixed representatives is a good candidate to optimize memory
usage and processing time for relational data.

F. Impact of support points number

Our experience with real datasets show that with random
dimension + 1 representatives initialization, the sparse K-
means with shared support points converge in an average of
6,25 iterations. Meanwhile, an initial setting inspired from K-
means++ of representatives converge in 5,05 iterations (mean
over 20 runs).

When changing the number of support points, we notice
a small improvement in clustering quality before a decrease
when the number is too high (figure 4).
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(d) Digits Datasets

Fig. 3: Effect of support points number on processing time
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Fig. 4: Effect of support points number on Adjusted Rand
Index values

There is also an increase in the time needed for convergence
(figure 3). We notice that a good compromise between quality
and time complexity is when the number of representatives
is equal to dimension + 1 of each dataset (represented by a
square in 4 and in 3).

VI. CONCLUSION

We have reviewed in this paper the main variants of K-
means, for vector and relational data. We have shown that the



variants differ more in terms of complexity than in terms of
logic behind the algorithms.

Following F. Rossi [4], we have shown that different rela-
tional and sparse versions of K-means are identical in their
clustering quality. Taking into account computational aspects
and known experimental results, the proposed sparse relational
K-means with common support points for all the clusters
is a compelling compromise to optimize memory usage and
processing duration, while resulting in a clustering quality on
the same magnitude as the other K-means versions.

As for future work, we would like to optimize the construc-
tion of distance matrix of support points, such as to reduce the
complexity even further.

However, the practical usefulness of fixed support points
is increased when we take into account the application to
dynamic data, changing asynchronously as new information
become available. In that case, with predetermined support
points, changing clusters would not be a deterrent to adapt
prototype-based learning algorithms. This open the way to
incremental and dynamic clustering of relational data streams.
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