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Abstract—Predicting association between the malaria risk and
its climatic predictors provides individuals and public health
officials with prior knowledge for effective prevention and control
measures. This paper presents an integrated analysis of a total
of 2,148 confirmed cases of malaria incidence for Aboh Mbaise
General Hospital, together with the satellite meteorological data
downloaded from National Centre for Environmental Prediction
(NCEP). By pre-whitening the climatic data sets and analysing
their cross-correlation with the malaria incidence, we find that
temperature and precipitation have negligible lagged effects on
the malaria occurrence in the study area. A further analysis
reveals that relative humidity shows significant association (P -
value < 0.05) with the malaria incidence. However, regression
model with autoregressive error structure AR(1) is then used
to establish the relationship between the malaria incidence and
relative humidity time series. The findings look to confirm the
significant contribution of relative humidity to the malaria inci-
dence in the study area due to its high humidity characteristics
(about 74% average relative humidity) occurring mostly during
the wet season.

I. INTRODUCTION

Malaria is one of the most devastating infectious dis-
eases that affect larger proportion of the World population,
whereby its gravity of prevalence clustered around tropical
and subtropical regions. Despite the continuing effort by the
World Health Organisation (WHO) and other Health donor
agencies in combating malaria transmission, the impact of
annual morbidity remains significant with gradual mortality
decrease [1]. About 20% of pregnant women live in rural
areas experiencing parasite infection [2], [3] and children of
age less than five are among the most vulnerable cohort of
the population as reported in [4]. The devastation impact
of malaria accounts for huge burden in the economy with
resultant economic lost, school absenteeism and poor output
in agricultural productivity especially where farming becomes
a primary source of livelihood.

Inspite of technological advancement in modern diagnos-
tics facilities, drugs for treatment and treated bed-net for a
preventive measure, malaria remains a public health problem
in developing countries including Nigeria. The peak period of
malaria transmission in Nigeria occurs mostly during the rainy
season and often coincides with the cultivation months [5],
[6], which naturally imposes an adverse effect on agricultural
production.

Previous works [1], [8]–[11] revealed that malaria transmis-
sion has a link to climatic factors such as rainfall, temperature
and humidity. The rainfall and temperature influence to the
life cycle of the Anopheles mosquito and the Plasmodium
spp [1], and there exists a lagged correlation between the
malaria incidence and precipitation [12], [13]. Malaria inci-
dence mostly occurs during the rainy season [12] because of
the increase in the number of mosquito breeding sites.

Despite an apparent link between the aforementioned cli-
matic factors and malaria transmission, their exact contribu-
tions to the actual malaria incidence have not been fully un-
derstood. Previous works [5], [17] used a time series analysis
to determine the trends in the reported malaria cases and
deaths considering the incidence data in Ethiopia and Gabon.
References [3], [15], [16] used meteorological and malaria
incidence data, and predicted the future cause of the incidence.
In this work, we incorporates climate variables in predicting
malaria incidence using a technique called regression analysis
with time series structure of stochastic term. But the work
presented in [5], [17] uses univariate trend analysis of malaria
incidence data and predicts the future cause of malaria, while
[3] used support vector regression and random forests and
compare their predicting capability from malaria incidence
and climate data. However, the work presented in [15], [16]
studied the physical influence of malaria incidence and its cli-
matic predictors, and predicts the future incidence. Forecasting
malaria incidence requires not only the use of incidence data
and recorded climate information, but also investigation and
understanding of the transmission at the micro-scale level. This
can better achieved using the Disease Model Cradle (DMC)
[1], [32], which uses daily times series of temperature and
precipitation and explicitly simulates the gonotrophic cycle,
sporogonic cycle and the interaction between mosquito and
human.

In this study, we develop a model that incorporates climate
predictors of malaria, with intention of investigating which of
the predictors significantly contribute to high malaria incidence
in a given geographical area. In this study, we apply the
proposed model on the data concerning the monthly malaria
incidence cases and climatic data from Aboh Mbaise region
of Imo State–Nigeria with tropical and rain forest climate
characteristics. The statistical significance of three climatic



factors, namely temperature, precipitation and relative humid-
ity is examined by pre-whitening the climatic explanatory data
and performing cross-correlation analysis with the malaria
incidence data. Among these three factors, we find that relative
humidity has the most statistically significant association (at
probability, p-value < 0.05) with the malaria incidence data
whereas temperature and precipitation have negligible lagged
correlation with the incidence. Linear regression with autore-
gressive error structure AR(1) is then developed to precisely
specify the relationship between the incidence and relative
humidity time series. This finding is in contrast to some pre-
vious results [1], [12], [13] that highlight lagged contributions
of temperature and precipitation and suggests variability in
the strength of climatic factors in affecting malaria incidence
in different geographical areas. This finding together with
references [18], [19] can further motivate improvement of
existing physical models of malaria-risk prediction like DMC
[1] by incorporating comprehensive climatic variables.
The remaining parts of this paper are outlined as follows. In
Section II, we present the methodology which comprises of
study area, data collection and its presentation using the appro-
priate statistics. Section III discusses the regression analysis
and diagnostic tests technique that are applied to the malaria
incidence data and its climatic predictors. Section IV provides
the discussion of our results that highlight the significance
contribution of relative humidity to the high level of malaria
incidence in Aboh Mbaise. Finally, we summarize our main
findings in Section V.

II. METHODOLOGY

This study is focused on the analysis of confirmed cases
of malaria incidence, together with satellite meteorological
data on temperature, precipitation and relative humidity in
Aboh Mbaise local government area of Imo State, Nigeria.
The following present the materials and methods employed in
this study.

A. Study area
The map of the Aboh Mbaise local government area

(extracted from [24]) is shown in Fig. 1. The study area lies
within Latitudes 50 10| N and 50 51| N also with Longitudes
60 15| E and 70 28| E, occupying land area of 184 km2 [14].
The Aboh Mbaise, is one of the 27 local government areas of
Imo State Nigeria. Aboh Mbaise community lives within a 15
km radius from the local government headquarters, with rain
forest climate characteristics with average annual temperature
above 20oC (68o F) and an annual relative humidity of 75%
[28]. The rainy season begins in April and last until October
with annual rainfall varying from 1,500 mm to 2,200 mm
(60 to 80 inch). The dry season experiences two months
of Harmattan from late December to late February and the
hottest months are between Juanuary and March [32].

B. Data collection
The data used in this study, was extracted from the data

presented in the literature of [20], and originally collected

Fig. 1. The box indicated in the map, shows the location of the study area
(Aboh Mbaise local government area, Imo State Nigeria).

from the Aboh Mbaise General Hospital. A total of 2,148
confirmed diagnosed cases of malaria incidence for the period
of eighteen years, starting from January, 1996 to December,
2013 were collected. In order to have an insight on the
possible climatic cause of high malaria incidence in the study
area, we used the meteorological data. These data are not
readily available at the time needed, within the reference
weather station of Aboh Mbaise. Alternatively, we used satel-
lite meteorological database through the following database:
http://globalweather.tamu.edu/. The boundary metrics used in
generating the data are Latitude 5.65560 N to 5.34940 S and
Longitude 5.62910 W to 6.37760 E. Within the demarcation of
the study area, one weather station was found. We generated
daily minimum temperature, maximum temperature, precipi-
tation and relative humidity for the period under study. The
daily climate variables time series dimension is very large
(6575) compare to monthly malaria incidence data which have
less dimension (216). To ease the analysis, we converted the
dimension of daily recorded climate data to monthly time
series using ts() function in R, so as to pair the dimension
with monthly malaria incidence data.

C. Data presentation

The data on confirmed diagnosed cases of malaria incidence
is presented in Fig. 2 below, while climate variables data are
presented in Fig. 5 in Appendix A.

The methods of data analysis employed in this study in-
clude: descriptive statistics, cross-correlation, pre-whitening
and regression time series analysis, respectively . To determine
lagged effect of the meteorological predictor variables on
malaria incidence, we used cross-correlation analysis together
with pre-whitening scheme to investigate the most significant
predictor of malaria incidence. The autocorrelation function
(ACF) and partial autocorrelation function (PACF) were used
for identification of lags order of the time series models.

1) Summary statistics: Summary statistics of malaria in-
cidence data and climate variables used in this study is
presented in Table I. This summary would enable us to have



Fig. 2. The plot shows the pattern of monthly malaria distribution for the
study area (Aboh Mbaise, Imo State Nigeria).

a structural understanding of the data components such as the
variability, mean, minimum and maximum values. In addition,
the summary statistics provides quick idea in the nature of data
used.

TABLE I
SUMMARY STATISTICS FOR MONTHLY MALARIA CASES AND CLIMATE

DATA

Variables Mean Std. Min Max
Malaria Data 9.94 4.80 4.00 28.00
Temperature 31.29 3.73 23.66 39.98

Relative humidity 7.92 9.53 0.00 73.31
Precipitation 3.00 1.00 2.00 4.00

2) Disease Model Cradle (DMC) [32]: is an epidemiolog-
ical software designed for investigating and validating results
with respect to field measurements, such as malaria inci-
dence and the number of infected mosquitoes using Liverpool
Malaria Model (LMM) together with meteorological datasets.
The DMC interface provides space only for temperature and
precipitation, and explicitly simulates the pattern of malaria
incidence including micro-scale modelling [1].

As a benchmark in this study, we used meteorological
datasets, temperature and precipitation for the Aboh Mbaise
as an input into DMC software and simulated the outputs
of malaria incidence, malaria prevalence, sporogonic cycle,
gonotrophic cycle.

A key element of the DMC is the temperature-dependent
mosquito survival options. The potential candidate for malaria
transmission, that is adult mosquito, has three survival options
within which its survive under the influence of temperature
regime. The first survival option is called Martens scheme [12],
[21] in which the daily survival probability (P ) is linked to
the temperature (T ) as captured by the following second-order
polynomial equation:

P (T ) = −0.0016T 2 + 0.054T + 0.45. (1)

Fig. 3. The plots show the cross-correlation function between temperature and
malaria incidence, precipitation and malaria incidence and relative humidity
and malaria incidence, respectively.

The second survival option is called Lindsay and Birlay
scheme [22], which uses a fixed probability per gonotrophic



cycle as:

P = exp

(
Plb

Tg

)
(2)

where: Plb is the survival per cycle, and Tg is the length of
gonotrophic cycle. The third survival option is called Craig
scheme [23], which links the survival probability (P ) with an
exponential function of the temperature (T ) as [21]

P = exp

(
−1

−4.4 + 1.31T − 0.03T 2

)
. (3)

III. REGRESSION ANALYSIS

Previous studies [1], [12], [13] have shown that climate
variables like temperature and precipitation have lagged effects
on the occurrence of malaria transmission, while the relative
humidity does not have that effects. Another study [27] showed
that relative humidity may have an impact to the malaria
transmission as it supports the vector (mosquito) by providing
a suitable atmosphere to survived longer. These different
observations suggest that the strength of each climatic factor
may vary from one geographical area to another. In the context
of our study area, we determine the significant (lagged and
non-lagged) contributing factors by invoking cross-correlation
function (CCF) as follows.

A. Cross-Correlation Function (CCF)

CCF can be considered to be a useful tool for determining
the most influential climatic variable to predict the occurrence
of malaria and mathematically expressed by [28]

cuy(k) =
1

N

N−k∑
t=1

(ut − u)(yt+k − y) (4)

for k = 0, 1, ...(N − 1)

cuy(k) =
1

N

N−k∑
t=1−k

(ut − u)(yt+k − y) (5)

for k = −1,−2, ...,−(N −k) as the product-moment correla-
tion of time-offset or a function of lag between two time series
{ut}t and {yt}t. Herein N is the series length, u and y are
the sample means, and k is the CCF lag. Hence the cross-
correlation function is also auto covariance function when
scaled by the variances of the two series as:

ruy(k) =
cuy(k)√

cuu(0)cyy(0)
(6)

where cuu(0) and cyy(0) are the sample variances of ut and
yt, respectively.

CCF between climatic variables and malaria incidence data
is depicted in Fig. 3, which aims to aid in identifying the lags
of the climatic predictors that might be a useful predictor of
malaria incidence. However, the three plots show a pattern
that is difficult to identify any lagged effects of the climate
predictor of malaria. This difficulty happens due to the fact that
CCF values are sometimes affected by the time series structure
of the independent variable against dependent variable series
over time.

B. CCF with Pre-Whitened Climatic Data

In order to alleviate the difficulty of identifying the sig-
nificant lags of the climatic predictors in Fig. 3, we invoke
a pre-whitening technique in order to stationarize the climatic
input variables. When the input series behaves like white noise,

Fig. 4. The plots indicates pre-whitened lagged correlations between temper-
ature with malaria incidence and precipitation with malaria incidence.

and the pattern of the CCF between climate variables and
malaria incidence is a linear combination of lags of the input
variables. Incorporation of pre-whitening for the time series of
interest involves the following steps. Firstly, we determine the
time series model for the malaria predictor variables and store
the residuals from the model. Secondly, we filter the malaria
incidence variable using the model of the predictors. Thirdly,
we examine the CCF between the residuals of the predictors
and the filtered values. Hence, the resultant CCF can be used
to identify the possible pattern for lagged effects that would
be used in regression model.

Using autocorrelation function (ACF) and partial ACF
(PACF) of climatic-predictors after differencing operation,
we obtain estimated time series models for temperature and
precipitation data as tabulated in Table II. The resulting time-
series model of temperature is estimated to be ARIMA (1,1,0),
which is autoregressive moving average model for order 1,
with differencing order of 1. The estimated coefficient param-



TABLE II
PRE-WHITENED MODELS FOR TEMPERATURE AND PRECIPITATION TIME

SERIES

Pre-whitened model Estimates Standard Error
ARIMA(1,1,0) -0.343 0.064
Log-likelihood -473.65

AIC 951.3

ARIMA(2,1,0) -0.3291 0.0654
-0.2755 0.0652

Log-likelihood -784.08
AIC 1574.14

eter for this ARIMA (1,1,0) model is given by θ̂ = −0.343,
which leads to the estimated model:

ΦT (B)yt = εt (7)

where
ΦT (B) = (1− 0.657B − 0.343B2). (8)

Similarly, aided by the plots of ACF and PACF after differ-
encing operation, the precipitation time series is approximated
to be ARIMA (2,1,0) model, which can be represented by

ΦP (B)zt = εt (9)

where

ΦP (B) = (1− 0.6709B − 0.0536B2 − 0.2755B3). (10)

The time series defined by the polynomial ΦT (B) and ΦP (B)
have been found stationary by inspection, which confirm that
temperature and precipitation time series achieve stationarity
after taking the first differences.

Once the time series models for temperature and precipi-
tation are determined, the next stage is the filtering process,
which involves filtering the malaria incidence data using the
aforementioned time series models. We continue by examining
the CCF between the residuals from the time series models for
the climatic input variables and the filtered malaria incidence
to identify the significant lagged terms of the regression model.
From the pre-whitened CCF plots in Fig. 4 of temperature time
series with malaria incidence and precipitation time series with
malaria incidence, we observe that, the most significant spike
in both plots appeared on the positive lags segments of the
cross-correlation function indicating an overlapping effects.
Therefore, this shows an evidence that there is no significant
lagged effects of temperature and precipitation effectively
predicts the occurrence of malaria in the study area.

C. Regression Model

By taking into account the three climatic predictors (tem-
perature, precipitation and relative humidity), we propose a
regression model that predicts the pattern of malaria incidence
occurring in Aboh Mbaise:

MIt =βo + β1f(TMt−1TMt−2) + β2g(PR(t−1))

+ β3RH + εt (11)

where MI denotes the Malaria incidence as the output of the
model, and TM , PR and RH denote temperature, precipi-
tation and relative humidity, respectively as the inputs of the
model. Herein β1, β2 and β3 are coefficients of the regressed
variables, βo is intercept, εt is error term.

From the results of pre-whitening analysis of the predictor
variables presented in Table II, we found that temperature
and precipitation have insignificant lagged effects on malaria
incidence. Based on that, we can drop their effects on the
model to avoid redundancy. Hence, the regression model can
be compactly expressed as:

MIt = βo + β3RHt + εt (12)

Using the least squares method, we obtained the estimate of
the model as:

MIt = 31.212− 25.467RHt (13)

In modelling regression using time series variables, it is very
natural for the residuals to have a time series structure. How-
ever, using the conventional approach (least squares method),
such an assumption of independent error is violated. Hence,
the consequence is the wrong estimates of coefficients and
their standard errors if the time series structure of the errors
is ignored. Therefore, we need to adjust the regression coeffi-
cients and standard errors in order to have a well-fit regression
model, including the component of AR error structure.

Suppose, let us consider the following equation to illustrate
the adjustment of regression coefficients and standard errors
for a simple case and use its to advance in our analysis

yt = βo + β1xt + εt (14)

where the autoregressive structure of error is captured by

εt = ϑ1εt−1 + ϑ2εt−2 + . . .+ ωt (15)

where ωt ∼ i.i.d. N (0, σ2). Then, let

ϕ(L) = 1− ϑ1L− ϑ2B2 − . . . , (16)

denotes the AR model for the errors which reduces to
ϕ(L)εt = ωt. If we assume the inverse of ϕ(L) exists, we
have εt = ϕ−1(L)ωt, where ωt ∼ i.i.d. N (0, σ2). Therefore,
we can write (14) as:

yt = βo + β1xt + ϕ−1(L)ωt (17)

such that ϕ(L) gives the AR polynomial for the errors.
If we multiply (17) by ϕ(L), we obtain

ϕ(L)yt = ϕ(L)βo + β1ϕ(L)xt + ωt. (18)

Let

y∗t = ϕ(L)yt = yt − ϑ1yt−1 − ...− ϑpyt−p (19)
x∗t = ϕ(L)xt = xt − ϑ1xt−1 − ...− ϑpxt−p (20)
β∗o = ϕ(L)βo = (1− ϑ1 − ...− ϑp)βo. (21)

We can then write the model as:

y∗t = β∗o + β1x
∗
t + ωt (22)



where ωt ∼ i.i.d. N (0, σ2). Note that the unknown constant
βo in (17) does not depend on the time and is also independent
of shifting operation. We can approximate this βo by

β̂o =
β̂∗o

1− ϑ̂1 − ...− ϑ̂p
. (23)

Similarly, the standard error for β̂o is given as

s.e(β̂o) =
s.e(β̂∗o )

1− ϑ̂1 − ...− ϑ̂p
(24)

Reference [31] developed this procedure, and the process is
repeated until the estimates converges. Following the method-
ology of [31], and the adjustment of the regression model for
predicting malaria incidence can be presented as:

y∗t = −0.0896− 0.8902y∗t−1 (25)

x∗t = −0.0896− 0.8902x∗t−1 (26)

Thus, the estimated relationship between malaria incidence
and relative humidity in the study area is given by

MIt = 30.095− 25.387RHt + εt, (27)

where the error term can be expressed as

εt = 0.9236εt−1 + ωt, (28)

where ωt ∼ i.i.d. N (0, 3.773). We present the model accuracy
in Table III, for both the model without AR structure errors
and the adjusted model with AR structure errors.

TABLE III
MODEL ACCURACY

Model RMSE MAE MAPE MASE
Without AR errors 4.2100 2.9664 32.5958 0.8158

With AR errors 3.7556 2.6482 32.2130 0.8176

IV. DISCUSSION OF RESULTS

In this section, we discuss the results of the analysis using
the Rstudio version 0.99.902 and DMC.

From the results of CCF between malaria incidence and
pre-whiten climate variables in the study area, we find that
temperature and precipitation have negligible lagged effects
with the occurrence of malaria. Temperature supports parasites
development speed within mosquito and also its morphological
stage. While precipitation creates breeding sites for mosquitoes
to lay their eggs and supports its survival in the water body.
The study area experiences the rainy season, beginning in
April and last until October with annual rainfall varying from
1,500 mm – 2,000 mm (60 to 80 inch). The annual temperature
is above 20oC (68oF) and an annual relative humidity is about
75%. The temperature and precipitation data in the study area
have exceeded the threshold to become predictor of malaria
incidence, but in contrary they have negligible influence. We
therefore attribute this to a huge amount of rain that washes
out the ground and kills the eggs [25] and [26]. It is understood

that sustained rainfall provides breeding sites for mosquitoes,
and thereby increases its population. We run analysis of
variance on the regression model established between malaria
incidence and climate variables, and find that at probability (p-
value < 0.05), indicating a statistically significance level that
relative humidity seems to be a dominant climate predictor
of malaria in the study area. The relative humidity may be
determined by precipitation. From the available information,
that relative humidity in the study area reaches 90% during
rainy season than dry season. Relative humidity is a climatic
variable that does not support the mosquitoes sporogonic
cycle or gonotrophic cycle but it only strengthens the vector
longevity and also provides a good atmosphere for bitting [27]
especially in the night hours. The study area has a rain forest
vegetation belt, which shows an indication of a high level of
relative humidity.

Simulation analysis was conducted using DMC for each of
the three survival schemes. The DMC model was initialized
with default parameter values, and we generates the effects of
malaria transmission based on temperature and precipitation
for individual years. The simulation results show no lagged
response of malaria incidence with temperature and precipita-
tion in the study area.

V. CONCLUSION

We have analysed the data on confirmed diagnosed case
of malaria and together with climate variables (temperature,
precipitation and relative humidity) in order to gain insights
on which of the climate variables contribute significantly to
the high malaria incidence in Aboh Mbaise local government
area of Imo State, Nigeria. We have used a pre-whitening
scheme and cross-correlation analysis for identification of
lagged effects of the climate variables that predict the malaria
incidence in the study area. From the analysis of CCF, we
have found that temperature and precipitation have no lagged
effect on the occurrence of malaria, and were dropped out
from the model to avoid redundancy. Furthermore, this no
lagged effect has been further confirmed by simulation analysis
using DMC. The results from the regression analysis show that
relative humidity is highly significant at probability (p-value <
0.05). Considering the distribution of monthly average relative
humidity in the study gives an insight that relative humidity
seems to be a dominant predictor of malaria incidence. A
regression model has been established between the malaria
incidence and relative humidity to predict the occurrence of
malaria incidence in the study area.

Climate variables are out human control in controlling the
transmission of malaria in the study area, but can be used
as a prior information as an early warning signal to alert the
vulnerable. In this study, we found relative humidity is the
most influential climate predictor of malaria in the study area.
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APPENDIX A
PLOT OF CLIMATIC DATA FROM 1996–2013

Fig. 5. Time series plots showing the pattern of monthly distribution of
climate variables in the study area.
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