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Abstract— Ant Colony System is a well-known metaheuristic 

used to solve combinatorial optimization problems that is not 

intrinsically prepared to deal with precedence constraints. The 

work reported here is the continuation of the results presented in 

a previous paper that proposed an Ant System algorithm devoted 

to Tasks to Workstations Assignment problem. A special 

technique was developed in order to increase the effectiveness of 

precedence constraints treatment. On the one hand the 

contribution of this paper consists in the amelioration of this 

technique. On the other hand, the Ant System algorithm is 

hybridized with a local descent deterministic algorithm that 

contributes greatly to the avoiding of solutions bias. The results 

of the hybridized Ant System algorithm have proved the 

effectiveness of the proposed way to treat the precedence 

constraints  

Keywords— Ant Colony System, metaheuristic, combinatorial 

optimization, Tasks to Workstations Assignment 

I. INTRODUCTION 

Many optimization problems have been solved using an 
Ant Colony System (ACS) that is a well-known nature-inspired 
metaheuristic proposed in ([1], [2]). The common part of ACS 
that solves optimization problems can be identified as Ant 
System (AS) algorithm. This one is an iterative process that 
constructs solutions using components whose nature depends 
on the treated problem. This construction is based on 
pheromone information that accumulates the experience of the 
algorithm and represents the communication "tool" between 
virtual ants. The problem of ACS is the fact that it isn't 
intrinsically prepared to deal with precedence constraints. That 
is why ACS was initially applied to task-scheduling problems 
without precedence constraints like single machine scheduling 
problem [3]. 

Papers like [4] and [5] have analyzed the impact of 
precedence constraints over the algorithm's performances. The 
paper [4] shows that the performances of Ant System algorithm 
are reduced for some combinations between problem model 
and AS algorithm. In these cases, some search bias can be 
reported related to the problem model used in solutions' 
construction. Some strategies to avoid or reduce the search bias 
are mentioned. 

The work presented here refers simultaneously to two 
aspects: a specific optimization problem and a specific tool to 
solve it, namely ACS. The optimization problem, called Tasks 

to Workstations Assignment (TWA) that is practically 
equivalent to Simple Assembly Line Balancing problem 
(SALBP) has been solved in the last decades using different 
techniques (see for example [11]), including Ant Colony 
Optimization (ACO). There are a lot of papers in the literature 
treating special cases of Assembly Line Balancing Problem 
(ALBP). Many of these papers have used ACO. For example, 
in paper [6], an ACO algorithm is proposed for solving simple 
and U-shaped ALBP. The paper is one of the first attempts to 
show how ACO can be used to solve U-shaped ALBP. Paper 
[7] has proposed few ACO algorithms to solve the single-
model U-type ALBP. A comprehensive experimental study is 
presented, in which the performance of the proposed 
algorithms is compared with the best algorithms reported in the 
literature. The mixed-model ALBP has been considered in [8]. 
In this case, the optimization problem consist in minimizing 
the balance delay and the smoothness index for a given cycle 
time (MALBP-I). A multi-objective ACO algorithm has been 
proposed to solve this problem. 

But a real assembly process has more specific technological 
constraints. Generally speaking, the tasks duration and the 
precedence constraints between tasks are not sufficient data to 
define a real ALBP. That is why; a real ALBP needs more data 
to describe the assembly process, like in paper [9]. This paper 
has proposed the Time and Space constrained Assembly Line 
Balancing Problem (TSALBP). One of its variants was 
considered and a basic model has been studied. Moreover, an 
ACO algorithm has been proposed including some ideas that 
have offered good results with simple balancing problems. 

Because, more often, a manufacturing line doesn't carry out 
only assembly tasks, including also machining tasks, the 
authors of this work prefer to refer to the problem defined 
bellow as TWA. In this way the problem can express more 
general situations. 

The work reported here is the continuation of the results 
presented in [10] that proposed an Ant System algorithm 
devoted to Tasks to Workstations Assignment problem. Taking 
into account the two aspects mentioned before, i.e. the 
optimization problem and the ACS, one can ask "what the 
emphasized aspect is". This paper deals with the amelioration 
of the ACS effectiveness in treating the precedence constraints, 
while the TWA problem offers only the opportunity to do this. 



A contribution of this paper consists in a specific technique 
to treat the precedence constraints within ACS. On the other 
hand, the main contribution is the hybridization of Ant System 
algorithm with a local descent deterministic algorithm that 
contributes greatly to the avoiding of solutions bias. 

Section II gives a brief statement of the well-known TWA 
problem that is interesting from two different points of view. 
First of all it is a problem having many applications in the field 
of production system, manufacturing and assembly system as 
well. It is one of the more simple statement of TWA, but is a 
very difficult problem because involves precedence constraints, 
the second point of interest. Because ACS optimization is 
described in many papers and all the implementations have 
many points in common, Section III describes the specific 
points of ACS used by TWA problem and precedence 
constraints treatment. Emphasize is placed on tasks treatment 
list (technique introduced in [10]), the definition of heuristic 
information and the techniques usually used to avoid the 
solutions bias. Section IV is devoted to the description of the 
local descent deterministic algorithm used to hybridize ACS. 
The computational results are presented in section V that is 
mainly a comparison between the two versions of ACS, the 
original one and the hybridized one. The two versions are used 
to solve a number of TWA problems of different dimensions. 
The Conclusion section underlines the effectiveness of the 
presented approach.  

II. TASKS TO WORKSTATIONS ASSIGNMENT 

The Tasks to Workstations Assignment (TWA) problem 
[11] consists in determining the workstation to which any task 
of an assembly process is affected. A general statement of this 
problem, already presented in a previous paper, uses the 
following elements: 

- The production line may be considered as being a 
sequence MiWi ,,1, K=  of operational workstations (machines) 

- For a given product, the assembly process is characterized 

by a set of n tasks: { }nθθθ K,, 21=Θ . For each task iθ , its 

execution time niti ,,1, K=  is known and it is considered 

independent of the workstation to which it is assigned. 

- The set of tasks assigned to the workstation Wi is denoted 
by Pi. A proper assignment means to establish the sequence 

MiPi ,,1, K=  that is equivalent to a partition of T that meets the 

precedence constraints given by an oriented graph G(Θ, U), 
with Θ×Θ⊂U .The partition and the precedence constraints 

are expressed by (1) and (2). 

 ;,1 ∅=∩∪=Θ ≠= ijii

M

i PPP         (1) 

    ( Uji ∈∀ ),( θθ , with ii P∈θ and jj P∈θ ) ji ≤⇒       (2) 

For known input data, (M, n, nttt ,,, 21 K , nθθθ ,,, 21 K ,U), 

there are many proper assignments. Usually, the assignment 
that minimizes an objective function is chosen. In this paper, as 
in many others, the optimum criterion is to minimize the 
production line's cycle time. We consider that the work content 

of a workstation is the sum of its execution times. The line's 
cycle time is the maximum work content of its workstations. 
Because it is a graph-partitioning problem [11] that satisfies an 
optimum criterion, TWA is an optimization problem that is 
obviously NP-hard. 

III. SOME ASPECTS OF ACS FOR SOLVING TWA 

The Ant System (AS) algorithm that is the practical 
expression of ACS was originally proposed to solve 
combinatorial optimization problem [1],[2], for which the 
solution can be represented as a path in a graph. The algorithm 
uses virtual ants that build up problem's solutions, at any 
iteration. At each step of solution construction, an ant selects a 
solution component and adds it to partial solution. The 
construction stops when a feasible solution is obtained. When 
selecting a component to add to partial solution, the ant uses 
two kinds of information [1][2]. The first one is specific to AS 
algorithm and is related to the "pheromone", the specific means 
of communication between ants. The second one is the 
heuristic information, which is specific to each problem. 

When solving TWA problem, a solution is a complete 
assignment of tasks to workstations. A possible strategy of AS 
algorithm is that who constructs the sequence of workstations. 
At each step, the ant #k has to select a task θ that will be 
assigned to the current workstation j. In order to build up a 
feasible solution, all the predecessors of task θ should have 
already been assigned to workstations i with i ≤ j. To select 
such a task θ can be an operation taking much time owing to 
the check of precedence constraints. The other possible 
strategy of AS algorithm is to examine all the tasks in a specific 
order and assign to each one a workstation. This specific order 
established before the assignment guarantees that the 
precedence constraints are met. The selected workstation index 
must be greater than or equal to those of its predecessors. In the 
paper [10], the authors have presented a way to engender and 
use such a specific order called tasks treatment list (TTL). This 
second strategy was used in the work presented by this paper. 
For the selection of the workstation j that will be affected to the 
task θ, the ant #k calculates and uses the probabilities pk(θ, j) 
given by (3): 
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The "pheromone" specific to ACS, denoted here by τ(θ, j), 
is an effectiveness measure of the decision to affect the 
workstation j to task θ. Another measure of the effectiveness in 
taking this decision is η(θ, j), that is the heuristic information. 
The set Jk(θ) is the set of candidate workstations that meet the 
precedence constraints, taking into consideration the tasks 
already treated. The relative balance between pheromone and 
heuristic information is tuned by two parameters of the 

algorithm α and β (α>0 and β>0). 

The heuristic information may aggregate some different 
aspects: the distance between the first workstation that meets 
the precedence constraints and the current workstation j, the 



current work content of workstation j, and other information 
concerning the partial constructed solution. 

A. Tasks Treatment List 

In accordance with the chosen strategy, in the solution 
construction process, the tasks are treated in a previously 
computed sequence such that the precedence constraints are 
met implicitly. This strategy of treating the tasks can save a lot 
of computational time. The paper [10] gives the details 
concerning the generation and the way to use generic TTL by 
AS algorithm. The notion of rank of a node in graph G is the 
key of TTL generation.  In Appendix 1, the details of the 
complete definition and generation of these lists are given 
(using some elements extracted from paper [10]). A specific 
TTL is randomly derived from the generic TTL. 

Such a list has a useful property for our algorithm that is 
any task has a place in the list after all its predecessors. For 
the graph depicted in Fig. 1, a TTL may be: 

[1, 17, 6, 18 | 3, 7, 2| 4| 5| 8| 10, 11, 9| 12| 13| 14| 15| 16]. 

Obviously, there are many TTL for a given graph G. In the 
same paper it is shown that the use of a unique TTL may 
induce a search bias, because current choice influences a later 
one in two ways. Firstly, when the current task θ is placed on 
workstation j than all its successors must be assigned to 
workstations with indices at least j. Secondly, the probability of 
placing other task, in a following step, on the same workstation 
j is depending on the heuristic information.  
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Fig. 1. a) Example of  optimal tasks allocation ; b) Rank of nodes  

In its turn, this one depends on the current workstation 
load, which includes the duration of the task j. Moreover, this 
type of influence involves also pairs of tasks that are indifferent 
from precedence constraints point of view. 

This bias can be partially eliminated, if every ant chooses 
its own TTL. In the proposed AS algorithm, we used a 
procedure that randomly engenders a TTL. The ant family 
works iteratively and engenders solution generations for TWA 
problem. At each generation, every ant establishes randomly 
its own TTL by calling this procedure. Hence, the bias is 
avoided even at the level of each ant. 

B. Search Biases generated by AS Algorithm 

Another type of bias that influences AS performance, in 
problem with constraints, is induced by the model of 
pheromone and the model of problem. The concept of 
competition-balanced system (CBS) was defined in [4]. In our 
case, the combination of AS with the model of TWA is not 
CBS. That is why the AS algorithm manifest the effect of 
second-order deception (sode) introduced in [10], [4]. This 
effect was proved on AS algorithm that doesn't use heuristic 
information. When the solution construction is guided by the 
usage of heuristic information, this kind of bias diminishes 
significantly. Another way to reduce sode is to introduce a 
local search procedure at the end of the solution construction. 
In this work, both ways to reduce sode were used. The heuristic 
information proposed in our implementation of AS is defined 
hereafter: 
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In equation (4), the value jmin is the minimum index of a 
workstation containing a predecessor of task θ. The values of c 
and τ0 are constant. The task θ can be placed on workstation j, 
if the work content of this one allows adding the value tj, 
without exceeding an established maximal value. The 
maximum work content is a very important parameter for the 
solutions' construction. 

The proposed algorithm to solve TWA is in fact a hybridized 
AS algorithm, because at the end of the current generation, a 
local search procedure is applied to each solution constructed 
by a virtual ant. The local search procedure is a deterministic 
one, trying to diminish the cycle time of a given solution. 

IV. LOCAL DESCENT DETERMINISTIC ALGORITHM 

The AS algorithm works iteratively and engenders, at each 
generation, - solutions (- being the number of virtual ants) for 
the given TWA problem. As it is well-known, the cyclic part of 
AS algorithm has the phases given below: 

1. Construction of the solutions; 
2. Evaluation and sorting of solutions; 
3. Pheromone updating; 
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Fig. 2. Hybridized Ant Colony System 

In the proposed implementation, a local descent 
deterministic algorithm (LDDA) is integrated between the first 
and the second phases. Fig. 2 shows the structure of the 
hybridized ACS (see also [12]). The LDDA has as input a 
solution constructed by an ant and tries to modify this solution 
in a deterministic way, in order to decrease its cycle time. 
These eventually modified solutions are the subject of the next 
phases of ACS. 

The main idea of LDDA is to decrease the cycle time of a 
given solution - that is a TWA - by moving a task from a 
workstation to a neighbor one, to left or to right. 

The general structure of LDDA is given by the Fig. 3. In 
this algorithm, a solution of TWA is equivalent to a partition of 
Θ. LDDA uses two shift operators, shift-left and shift-right, 
and generates only valid solutions for TWA problem (see 
[10]). The set of tasks that may be shifted to left, in relation to 
a workstation Wm, may be considered as a left frontier of Wm 
and is denoted by Ll. In the same way acts the shift-right 
operator. A task belonging to the left frontier has all its 
predecessors in the workstations W1,…, Wm-1. A task belonging 
to the right frontier, denoted by Lr, has all its successors in the 
workstations Wm+1,…, WM. 

In our implementation, a recursive version of LDDA was 
considered. If the new cycle time has decreased, we have a new 
TWA of the production line to whom it can be applied once 
again LDDA, and so on. The process stops when the cycle time 
can no more be decreased. 

 
Fig. 3. Description of LDDA 

V. COMPUTATIONAL RESULTS 

The ACO algorithm for TWA problem was implemented in 
two versions: without and with LDDA. 

We have chosen 17 instances of TWA problem with 
different sizes, part of them used also in [10]. These problem 
instances were solved by the two versions of ACO algorithm. 
The best Cycle Time (CT) value actually found at the end of 
the running (denoted by Gb, as Global best) has to be 
compared with the optimal solution of the problem, in order to 
evaluate the efficiency of the proposed algorithms. For large 
size test problems having tens of tasks, knowing the optimal 
solution is definitely a big matter. The 17 instances of the 
TWA problem that we used in our tests have been generated 
using a small size problem (no≤15) whom optimal solution is 
known. If the latter problem has the precedence graph G0, this 
is replicated several times and some connecting arrows are 
adequately added in order to obtain a precedence graph with n 

tasks (n is multiple of n0). Obviously, the sequence nttt ,,, 21 K  

is obtained by repeating the sequence 
onttt ,,, 21 K the same 

number of times. Finally, one can conclude that the two 
problems have the same optimal CT and the optimal 
assignment is completely determined. So, a generated instance 
of the test problem has obviously certain regularity, but this 
one is not anyhow exploited by the algorithms. The 
computational complexity remains the same. 

LDDA(solution of TWA) 
begin 
- Ascertain the index m of the maximum work 
content workstation described in solution of TWA. 

- Construct the list Ll of tasks belonging to Wm that 
can be shifted to Wm-1 and the destination list Dl 
with the same length as Ll having all elements 
equal to m-1. 

- Construct the list Lr of tasks belonging to Wm that 
can be shifted to Wm+1 and the destination list Dr 
with the same length as Lr having all elements 
equal to m+1. 

- Construct the lists: 
   L←[Ll  Lr]; D←[Dl  Dr]; 

  for all the tasks L(i) belonging to L 
       - Shift the task L(i) to the workstation D(i); 
       - Calculate the new cycle time; 
       - Memorize the effect of this shifting; 
  end 

- Choose the task L(i0) that involves the maximum 
decreasing of the cycle time. 

 if L(i0) exists 
      - Move the task L(i0) to the workstation D(i0). 
      - Replace solution by the new solution 
 end 
stop 



The problem name is coded by twaxxx-yy, where xxx = 

tasks number and yy = workstations number.  

The two algorithms have been implemented as MATLAB 
programs. The running of the algorithms is characterized by 
the following parameters: the number of ants 20; α=1; β=2; 
pheromone evaporation parameter (1-ρ) =0.9. The function (4) 
that calculate the heuristic information uses the constant values 

c=2 and 01.0=oτ . The values of all these parameters have 

been tuned experimentally, such that the two variants of ACS 
should produce good solutions in a reasonable execution time, 
for all the test problems. The first two ants of each generation 
plus the two Best so far are used to update the pheromone 
matrix. 

In the first experiment, the both algorithms have run a total 

number of 300 generations. This value is big enough, for the 

two versions of ACS algorithm, to ensure the convergence 

toward the optimal value of the Cycle Time (CT). The 

TABLE I shows, for each problem, the best result among 30 

runs. This table is the first comparison between the two 

algorithms. For each problem instance, this table indicates the 

following values: the minimum value of CT (denoted Q
*
), the 

Gb value, the generation number (Gen) at which Gb is reached 

and the number of fitness function evaluations (Nffe) when 

Gb is reached. The first analysis of TABLE I points out the 

following remarks: 

 

TABLE I.  COMPARISON BETWEEN THE BEST RESULTS OF THE TWO 

ALGORITHM VERSIONS 

Problem Q* 
ACO without  LDDA ACO+LDDA 

Gb Gen. !ffe Gb Gen. !ffe 

twa60-15a 75 80 26 520 80 25 980 

twa60-15b 100 115 57 1140 110 59 2360 

twa60-15c 275 285 32 640 285 19 760 

twa80-20a 200 220 1 20 220 1 40 

twa80-20b 130 140 1 20 140 1 40 

twa80-20c 220 250 52 1040 220 57 2280 

twa80-20d 200 210 20 400 210 19 760 

twa80-20e 200 210 19 380 205 6 240 

twa100-20a 150 170 50 1000 160 1 40 

twa100-20b 300 310 15 300 310 13 520 

twa100-20c 620 690 48 960 660 64 2560 

twa100-20d 150 160 33 660 155 25 980 

twa120-15a 150 160 13 260 155 13 520 

twa120-24a 150 170 50 1000 170 1 40 

twa120-24b 300 310 19 380 310 13 520 

twa120-24c 620 690 45 900 670 55 2200 

twa160-20 400 420 19 380 420 2 80 

 

• For all the optimization problems, the two ACS 
versions converge to a Gb solution within 150 
generations 

• ACS with LDDA is faster in terms of number of 
generations, but it uses a much bigger number of 
fitness function evaluations. On the other hand, the 
global best value is generally speaking nearer to the 
optimal value. 

In TABLE II, the columns "min", "max" and "avrg" give 
respectively the minimum, the maximum and the average of 
the Global best values over the 30 independent runs. From this 
table, it results that ACS with LDDA gives better Gb value for 
6 problems and the same Gb value for the other 11 problems. 
For the same algorithm, the max and avrg values are also 
closer to the optimal value of the problem. The avrg values for 
the 30 runs are smaller for 13 problems and the same for the 
other 4 problems. This is an empirical evidence that ACS with 
LDDA works better.  

In order to facilitate a statistical comparison between the 
two algorithms based on the average errors (see [16]), we need 
to introduce a score (numerical measure) for a given solution, 
such that the score should be greater for a better solution. The 
value of CT can't be used because it decreases for a better 
solution. For any solution returned by our algorithms, we 
propose the following quality score:  

 

TABLE II.  COMPARISON USING AVERAGED VALUES 

Problem Q* 
ACO without LDDA ACO+LDDA 

min max avrg min max avrg 

twa60-15a 75 80 85 84,5 80 85 81.00 

twa60-15b 100 115 115 115 110 115 111.0 

twa60-15c 275 285 345 323,5 285 320 290.16 

twa80-20a 200 220 240 223 220 230 223 

twa80-20b 130 140 140 140 140 140 140 

twa80-20c 220 250 250 250 220 250 240 

twa80-20d 200 210 210 210 210 210 210 

twa80-20e 200 210 215 212 205 215 211.6 

twa100-20a 150 170 180 175 160 180 169.67 

twa100-20b 300 310 320 311 310 310 310 

twa100-20c 620 690 720 694 660 690 681 

twa100-20d 150 160 170 167 160 170 164,3 

twa120-15a 150 155 155 155 155 155 155 

twa120-24a 150 170 180 175 170 180 174 

twa120-24b 300 310 320 312 310 320 311.3 

twa120-24c 620 690 700 695 670 670 670 

twa160-20 400 420 420 420 420 420 420 

 



 score
 valueCT 

*
Q

= . (5) 

where the CT value may be the min, max or avrg value of the 
CT. For the optimal value, the score is equal to 1 and, for the 
other values, the score is less than 1. For our problem, it 
holds *QGb ≥ . Hence, we have: 

0 < score ≤ 1 

Using the quality score defined by (5), the data from 
TABLE II is converted in TABLE III that allows us to 
calculate two statistic parameters. Obviously, the min and max 
columns of TABLE II generate respectively the Best and the 
Worst columns of TABLE III. 
To evaluate the performance of the algorithms, as in paper [16] 
the average errors of the best and mean score are computed as 
below:  
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where AEB is the Avg. error of Best score and AEM is the Avg. 
error of Mean score, L is the number of problems (17 in our 
case), besti and mi are respectively the best (the score of Gb)  
 

TABLE III.  COMPARISON USING QUALITY SCORES 

Problem 
ACO without LDDA ACO+LDDA 

Best Worst Mean Best Worst Mean 

twa60-15a 0.937 0.882 0.887 0.937 0.882 0.9259 

twa60-15b 0.869 0.869 0.869 0.909 0.869 0.9009 

twa60-15c 0.964 0.797 0.850 0.964 0.859 0.9478 

twa80-20a 0.909 0.833 0.896 0.909 0.869 0.8969 

twa80-20b 0.928 0.928 0.928 0.928 0.928 0.9286 

twa80-20c 0.880 0.880 0.880 1.000 0.880 0.9167 

twa80-20d 0.952 0.952 0.952 0.952 0.952 0.9524 

twa80-20e 0.952 0.930 0.943 0.975 0.930 0.9452 

twa100-20a 0.882 0.833 0.857 0.937 0.833 0.8841 

twa100-20b 0.967 0.937 0.964 0.967 0.967 0.9677 

twa100-20c 0.898 0.861 0.893 0.939 0.898 0.9104 

twa100-20d 0.937 0.882 0.898 0.937 0.882 0.9130 

twa120-15a 0.967 0.967 0.967 0.967 0.967 0.9677 

twa120-24a 0.882 0.833 0.857 0.882 0.833 0.8621 

twa120-24b 0.967 0.937 0.961 0.967 0.937 0.9637 

twa120-24c 0.898 0.885 0.892 0.925 0.925 0.9254 

twa160-20 0.952 0.952 0.952 0.952 0.952 0.9524 

Avg. error of Best quality 

                  7.35 % 5.55 % 

Avg. error of Mean quality 

                 9.10 % 7.29 % 

and the mean score for the problem #i. The values of the two 
statistic parameters, indicated in the last lines of TABLE III, 
show that ACS with LDDA yields better results with less 
average errors. 

VI. CONCLUSION 

In this paper, an ACS algorithm for solving the TWA problem 
was proposed. The precedence constraints have imposed 
special techniques usage, in order to avoid or reduce the search 
bias of the solutions. The first one was the implementation of a 
random TTL for each ant and each generation. This technique 
has a general character and can be used in other problems 
involving precedence constraints. The second one was the 
hybridization of the ACS algorithm with a proposed LDDA. 
The computational results prove that the hybridized ACS is 
more efficient than the original version. A statistical analysis 
shows that ACS with LDDA yields better results with less 
average errors. 
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APPENDIX 1 

TASKS TREATMENT LIST 

(extracted from paper [10]) 

The set of task Θ can be covered by a list of sets r, 

 [ ]mIIIr ,,, 10 K=   

having the properties of a partition: 

 ∅=∩=Θ ≠
=

iji

mi

i III ,
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and the sets Ik are the Equal Rank Sets of the precedence 
graph G. The set Ik, kϵ{0,1,…, m} contains all the tasks those 
associated nodes have the rank k in G. The rank of a node x 
of G is the maximum length of a path arriving in x. The 
maximum rank in G is denoted by m. Hence, the sets Ik, 
k=0,…, m are totally ordered in the list r . 

Let's note that the tasks belonging to Ik, are indifferent i.e. 
any task of Ik has no predecessor or successor in Ik. That is 
why they may be called indifference sets. 

The list r is called generic tasks treatment list (TTL). 

The figure below describes the algorithm GenTTL that 
generates the generic TTL. The function S(Y) engenders the 
set of all the successors of the elements belonging to Y. The 
function append(r, X) creates a new list as a result of adding 
the elements X to the end of list r. The message "error" 
means the oriented graph G is not a precedence graph 
because it has a cycle. 

The main property of the generic TTL is that 

All the predecessors of a task kIt ∈ , kϵ{1,…, m} belong to 

the set 10 ... −∪∪ kII . 

 This property is the key aspect of the proposed method to 
treat the precedence constraints. 

This list r of indifference sets gives the order the tasks are 
examined. When the algorithm is running, the generic TTL is 
exploited as follows: 

1. Begin with k=0 i.e. I0 is the current set. 

2. Select by a random procedure a task t belonging to Ik. 

3. Process the task t depending on the treated problem. 

4. Erase the task t from Ik. 

5. If Ik is empty, increment k. 

The generic TTL is equivalent with a predefined tasks 
sequence. In fact, there are groups of positions reserved to 

the indifference sets that are strictly sequenced. Inside a 
group the tasks are randomly placed.  

GenTTL 

start 
Y← Θ; //the set of tasks 

k←0; 

Ik←Y \ S(Y) 

r←append(nil, Ik) 

while Ik φ≠  

 k ← k+1; 

 Y=Y \ Ik 

 Ik←Y \ S(Y) 

 r←append(r, Ik) // r is a list of sets Ik  

end; 

If Y φ≠  then "error" 

end GenTTL 


