
Hybridized Ant Colony System for Tasks to

Workstations Assignment

Adrian SERBENCU, Viorel MINZU

Department of Automation and Electrical Engineering,

“Dunarea de Jos” University of Galati, Romania

viorel.minzu@ugal.ro, adrian.serbencu@ugal.ro

Abstract— Ant Colony System is a well-known metaheuristic

used to solve combinatorial optimization problems that is not

intrinsically prepared to deal with precedence constraints. The

work reported here is the continuation of the results presented in

a previous paper that proposed an Ant System algorithm devoted

to Tasks to Workstations Assignment problem. A special

technique was developed in order to increase the effectiveness of

precedence constraints treatment. On the one hand the

contribution of this paper consists in the amelioration of this

technique. On the other hand, the Ant System algorithm is

hybridized with a local descent deterministic algorithm that

contributes greatly to the avoiding of solutions bias. The results

of the hybridized Ant System algorithm have proved the

effectiveness of the proposed way to treat the precedence

constraints

Keywords— Ant Colony System, metaheuristic, combinatorial

optimization, Tasks to Workstations Assignment

I. INTRODUCTION

Many optimization problems have been solved using an
Ant Colony System (ACS) that is a well-known nature-inspired
metaheuristic proposed in ([1], [2]). The common part of ACS
that solves optimization problems can be identified as Ant
System (AS) algorithm. This one is an iterative process that
constructs solutions using components whose nature depends
on the treated problem. This construction is based on
pheromone information that accumulates the experience of the
algorithm and represents the communication "tool" between
virtual ants. The problem of ACS is the fact that it isn't
intrinsically prepared to deal with precedence constraints. That
is why ACS was initially applied to task-scheduling problems
without precedence constraints like single machine scheduling
problem [3].

Papers like [4] and [5] have analyzed the impact of
precedence constraints over the algorithm's performances. The
paper [4] shows that the performances of Ant System algorithm
are reduced for some combinations between problem model
and AS algorithm. In these cases, some search bias can be
reported related to the problem model used in solutions'
construction. Some strategies to avoid or reduce the search bias
are mentioned.

The work presented here refers simultaneously to two
aspects: a specific optimization problem and a specific tool to
solve it, namely ACS. The optimization problem, called Tasks

to Workstations Assignment (TWA) that is practically
equivalent to Simple Assembly Line Balancing problem
(SALBP) has been solved in the last decades using different
techniques (see for example [11]), including Ant Colony
Optimization (ACO). There are a lot of papers in the literature
treating special cases of Assembly Line Balancing Problem
(ALBP). Many of these papers have used ACO. For example,
in paper [6], an ACO algorithm is proposed for solving simple
and U-shaped ALBP. The paper is one of the first attempts to
show how ACO can be used to solve U-shaped ALBP. Paper
[7] has proposed few ACO algorithms to solve the single-
model U-type ALBP. A comprehensive experimental study is
presented, in which the performance of the proposed
algorithms is compared with the best algorithms reported in the
literature. The mixed-model ALBP has been considered in [8].
In this case, the optimization problem consist in minimizing
the balance delay and the smoothness index for a given cycle
time (MALBP-I). A multi-objective ACO algorithm has been
proposed to solve this problem.

But a real assembly process has more specific technological
constraints. Generally speaking, the tasks duration and the
precedence constraints between tasks are not sufficient data to
define a real ALBP. That is why; a real ALBP needs more data
to describe the assembly process, like in paper [9]. This paper
has proposed the Time and Space constrained Assembly Line
Balancing Problem (TSALBP). One of its variants was
considered and a basic model has been studied. Moreover, an
ACO algorithm has been proposed including some ideas that
have offered good results with simple balancing problems.

Because, more often, a manufacturing line doesn't carry out
only assembly tasks, including also machining tasks, the
authors of this work prefer to refer to the problem defined
bellow as TWA. In this way the problem can express more
general situations.

The work reported here is the continuation of the results
presented in [10] that proposed an Ant System algorithm
devoted to Tasks to Workstations Assignment problem. Taking
into account the two aspects mentioned before, i.e. the
optimization problem and the ACS, one can ask "what the
emphasized aspect is". This paper deals with the amelioration
of the ACS effectiveness in treating the precedence constraints,
while the TWA problem offers only the opportunity to do this.

A contribution of this paper consists in a specific technique
to treat the precedence constraints within ACS. On the other
hand, the main contribution is the hybridization of Ant System
algorithm with a local descent deterministic algorithm that
contributes greatly to the avoiding of solutions bias.

Section II gives a brief statement of the well-known TWA
problem that is interesting from two different points of view.
First of all it is a problem having many applications in the field
of production system, manufacturing and assembly system as
well. It is one of the more simple statement of TWA, but is a
very difficult problem because involves precedence constraints,
the second point of interest. Because ACS optimization is
described in many papers and all the implementations have
many points in common, Section III describes the specific
points of ACS used by TWA problem and precedence
constraints treatment. Emphasize is placed on tasks treatment
list (technique introduced in [10]), the definition of heuristic
information and the techniques usually used to avoid the
solutions bias. Section IV is devoted to the description of the
local descent deterministic algorithm used to hybridize ACS.
The computational results are presented in section V that is
mainly a comparison between the two versions of ACS, the
original one and the hybridized one. The two versions are used
to solve a number of TWA problems of different dimensions.
The Conclusion section underlines the effectiveness of the
presented approach.

II. TASKS TO WORKSTATIONS ASSIGNMENT

The Tasks to Workstations Assignment (TWA) problem
[11] consists in determining the workstation to which any task
of an assembly process is affected. A general statement of this
problem, already presented in a previous paper, uses the
following elements:

- The production line may be considered as being a
sequence MiWi ,,1, K= of operational workstations (machines)

- For a given product, the assembly process is characterized

by a set of n tasks: { }nθθθ K,, 21=Θ . For each task iθ , its

execution time niti ,,1, K= is known and it is considered

independent of the workstation to which it is assigned.

- The set of tasks assigned to the workstation Wi is denoted
by Pi. A proper assignment means to establish the sequence

MiPi ,,1, K= that is equivalent to a partition of T that meets the

precedence constraints given by an oriented graph G(Θ, U),
with Θ×Θ⊂U .The partition and the precedence constraints

are expressed by (1) and (2).

 ;,1 ∅=∩∪=Θ ≠= ijii

M

i PPP (1)

 (Uji ∈∀),(θθ , with ii P∈θ and jj P∈θ) ji ≤⇒ (2)

For known input data, (M, n, nttt ,,, 21 K , nθθθ ,,, 21 K ,U),

there are many proper assignments. Usually, the assignment
that minimizes an objective function is chosen. In this paper, as
in many others, the optimum criterion is to minimize the
production line's cycle time. We consider that the work content

of a workstation is the sum of its execution times. The line's
cycle time is the maximum work content of its workstations.
Because it is a graph-partitioning problem [11] that satisfies an
optimum criterion, TWA is an optimization problem that is
obviously NP-hard.

III. SOME ASPECTS OF ACS FOR SOLVING TWA

The Ant System (AS) algorithm that is the practical
expression of ACS was originally proposed to solve
combinatorial optimization problem [1],[2], for which the
solution can be represented as a path in a graph. The algorithm
uses virtual ants that build up problem's solutions, at any
iteration. At each step of solution construction, an ant selects a
solution component and adds it to partial solution. The
construction stops when a feasible solution is obtained. When
selecting a component to add to partial solution, the ant uses
two kinds of information [1][2]. The first one is specific to AS
algorithm and is related to the "pheromone", the specific means
of communication between ants. The second one is the
heuristic information, which is specific to each problem.

When solving TWA problem, a solution is a complete
assignment of tasks to workstations. A possible strategy of AS
algorithm is that who constructs the sequence of workstations.
At each step, the ant #k has to select a task θ that will be
assigned to the current workstation j. In order to build up a
feasible solution, all the predecessors of task θ should have
already been assigned to workstations i with i ≤ j. To select
such a task θ can be an operation taking much time owing to
the check of precedence constraints. The other possible
strategy of AS algorithm is to examine all the tasks in a specific
order and assign to each one a workstation. This specific order
established before the assignment guarantees that the
precedence constraints are met. The selected workstation index
must be greater than or equal to those of its predecessors. In the
paper [10], the authors have presented a way to engender and
use such a specific order called tasks treatment list (TTL). This
second strategy was used in the work presented by this paper.
For the selection of the workstation j that will be affected to the
task θ, the ant #k calculates and uses the probabilities pk(θ, j)
given by (3):

∑

∈

⋅

⋅
=

)(

)],([)],([

)],([)],([
),(

tJu

k

k

uu

jj
jp

βα

βα

θηθτ
θηθτ

θ (3)

The "pheromone" specific to ACS, denoted here by τ(θ, j),
is an effectiveness measure of the decision to affect the
workstation j to task θ. Another measure of the effectiveness in
taking this decision is η(θ, j), that is the heuristic information.
The set Jk(θ) is the set of candidate workstations that meet the
precedence constraints, taking into consideration the tasks
already treated. The relative balance between pheromone and
heuristic information is tuned by two parameters of the

algorithm α and β (α>0 and β>0).

The heuristic information may aggregate some different
aspects: the distance between the first workstation that meets
the precedence constraints and the current workstation j, the

current work content of workstation j, and other information
concerning the partial constructed solution.

A. Tasks Treatment List

In accordance with the chosen strategy, in the solution
construction process, the tasks are treated in a previously
computed sequence such that the precedence constraints are
met implicitly. This strategy of treating the tasks can save a lot
of computational time. The paper [10] gives the details
concerning the generation and the way to use generic TTL by
AS algorithm. The notion of rank of a node in graph G is the
key of TTL generation. In Appendix 1, the details of the
complete definition and generation of these lists are given
(using some elements extracted from paper [10]). A specific
TTL is randomly derived from the generic TTL.

Such a list has a useful property for our algorithm that is
any task has a place in the list after all its predecessors. For
the graph depicted in Fig. 1, a TTL may be:

[1, 17, 6, 18 | 3, 7, 2| 4| 5| 8| 10, 11, 9| 12| 13| 14| 15| 16].

Obviously, there are many TTL for a given graph G. In the
same paper it is shown that the use of a unique TTL may
induce a search bias, because current choice influences a later
one in two ways. Firstly, when the current task θ is placed on
workstation j than all its successors must be assigned to
workstations with indices at least j. Secondly, the probability of
placing other task, in a following step, on the same workstation
j is depending on the heuristic information.

10

3

12

9

1

2

5

11

6

4

14

16

8

7

15

w2

w1

w3

w4

13

18

17

10

3

12

9

1

2

5

11

6

4

14

16

8

7

15

13

1817

Rank #

Rank 1

Rank 2

Rank 3

Rank 4

Rank 9

Rank 10

Rank 5

Rank 6

Rank 11

Rank 7

Rank 8

a) b)

Fig. 1. a) Example of optimal tasks allocation ; b) Rank of nodes

In its turn, this one depends on the current workstation
load, which includes the duration of the task j. Moreover, this
type of influence involves also pairs of tasks that are indifferent
from precedence constraints point of view.

This bias can be partially eliminated, if every ant chooses
its own TTL. In the proposed AS algorithm, we used a
procedure that randomly engenders a TTL. The ant family
works iteratively and engenders solution generations for TWA
problem. At each generation, every ant establishes randomly
its own TTL by calling this procedure. Hence, the bias is
avoided even at the level of each ant.

B. Search Biases generated by AS Algorithm

Another type of bias that influences AS performance, in
problem with constraints, is induced by the model of
pheromone and the model of problem. The concept of
competition-balanced system (CBS) was defined in [4]. In our
case, the combination of AS with the model of TWA is not
CBS. That is why the AS algorithm manifest the effect of
second-order deception (sode) introduced in [10], [4]. This
effect was proved on AS algorithm that doesn't use heuristic
information. When the solution construction is guided by the
usage of heuristic information, this kind of bias diminishes
significantly. Another way to reduce sode is to introduce a
local search procedure at the end of the solution construction.
In this work, both ways to reduce sode were used. The heuristic
information proposed in our implementation of AS is defined
hereafter:



 −+

=
0

min on placed be can if ,)1/(
),(

τ
θ

θη jWjjc
j , (4)

In equation (4), the value jmin is the minimum index of a
workstation containing a predecessor of task θ. The values of c
and τ0 are constant. The task θ can be placed on workstation j,
if the work content of this one allows adding the value tj,
without exceeding an established maximal value. The
maximum work content is a very important parameter for the
solutions' construction.

The proposed algorithm to solve TWA is in fact a hybridized
AS algorithm, because at the end of the current generation, a
local search procedure is applied to each solution constructed
by a virtual ant. The local search procedure is a deterministic
one, trying to diminish the cycle time of a given solution.

IV. LOCAL DESCENT DETERMINISTIC ALGORITHM

The AS algorithm works iteratively and engenders, at each
generation, - solutions (- being the number of virtual ants) for
the given TWA problem. As it is well-known, the cyclic part of
AS algorithm has the phases given below:

1. Construction of the solutions;
2. Evaluation and sorting of solutions;
3. Pheromone updating;

Stop Condition ?

Ant1 Ant2 AntN
….

Stop

No

YES

Solution1 Solution2 SolutionN
….

LDDA LDDA LDDA
….

Solution1' Solution2' SolutionN'
….

S
o

lu
ti

o
n

 C
o

n
st

ru
ct

io
n

Lo
c

a
l

 D
e

sc
e

n
d

D
e

te
rm

in
is

ti
c

 A
lg

o
ri

th
m

Solutions Sort

Pheromone Update

Fig. 2. Hybridized Ant Colony System

In the proposed implementation, a local descent
deterministic algorithm (LDDA) is integrated between the first
and the second phases. Fig. 2 shows the structure of the
hybridized ACS (see also [12]). The LDDA has as input a
solution constructed by an ant and tries to modify this solution
in a deterministic way, in order to decrease its cycle time.
These eventually modified solutions are the subject of the next
phases of ACS.

The main idea of LDDA is to decrease the cycle time of a
given solution - that is a TWA - by moving a task from a
workstation to a neighbor one, to left or to right.

The general structure of LDDA is given by the Fig. 3. In
this algorithm, a solution of TWA is equivalent to a partition of
Θ. LDDA uses two shift operators, shift-left and shift-right,
and generates only valid solutions for TWA problem (see
[10]). The set of tasks that may be shifted to left, in relation to
a workstation Wm, may be considered as a left frontier of Wm
and is denoted by Ll. In the same way acts the shift-right
operator. A task belonging to the left frontier has all its
predecessors in the workstations W1,…, Wm-1. A task belonging
to the right frontier, denoted by Lr, has all its successors in the
workstations Wm+1,…, WM.

In our implementation, a recursive version of LDDA was
considered. If the new cycle time has decreased, we have a new
TWA of the production line to whom it can be applied once
again LDDA, and so on. The process stops when the cycle time
can no more be decreased.

Fig. 3. Description of LDDA

V. COMPUTATIONAL RESULTS

The ACO algorithm for TWA problem was implemented in
two versions: without and with LDDA.

We have chosen 17 instances of TWA problem with
different sizes, part of them used also in [10]. These problem
instances were solved by the two versions of ACO algorithm.
The best Cycle Time (CT) value actually found at the end of
the running (denoted by Gb, as Global best) has to be
compared with the optimal solution of the problem, in order to
evaluate the efficiency of the proposed algorithms. For large
size test problems having tens of tasks, knowing the optimal
solution is definitely a big matter. The 17 instances of the
TWA problem that we used in our tests have been generated
using a small size problem (no≤15) whom optimal solution is
known. If the latter problem has the precedence graph G0, this
is replicated several times and some connecting arrows are
adequately added in order to obtain a precedence graph with n

tasks (n is multiple of n0). Obviously, the sequence nttt ,,, 21 K

is obtained by repeating the sequence
onttt ,,, 21 K the same

number of times. Finally, one can conclude that the two
problems have the same optimal CT and the optimal
assignment is completely determined. So, a generated instance
of the test problem has obviously certain regularity, but this
one is not anyhow exploited by the algorithms. The
computational complexity remains the same.

LDDA(solution of TWA)
begin
- Ascertain the index m of the maximum work
content workstation described in solution of TWA.

- Construct the list Ll of tasks belonging to Wm that
can be shifted to Wm-1 and the destination list Dl
with the same length as Ll having all elements
equal to m-1.

- Construct the list Lr of tasks belonging to Wm that
can be shifted to Wm+1 and the destination list Dr
with the same length as Lr having all elements
equal to m+1.

- Construct the lists:
 L←[Ll Lr]; D←[Dl Dr];

 for all the tasks L(i) belonging to L
 - Shift the task L(i) to the workstation D(i);
 - Calculate the new cycle time;
 - Memorize the effect of this shifting;
 end

- Choose the task L(i0) that involves the maximum
decreasing of the cycle time.

 if L(i0) exists
 - Move the task L(i0) to the workstation D(i0).
 - Replace solution by the new solution
 end
stop

The problem name is coded by twaxxx-yy, where xxx =

tasks number and yy = workstations number.

The two algorithms have been implemented as MATLAB
programs. The running of the algorithms is characterized by
the following parameters: the number of ants 20; α=1; β=2;
pheromone evaporation parameter (1-ρ) =0.9. The function (4)
that calculate the heuristic information uses the constant values

c=2 and 01.0=oτ . The values of all these parameters have

been tuned experimentally, such that the two variants of ACS
should produce good solutions in a reasonable execution time,
for all the test problems. The first two ants of each generation
plus the two Best so far are used to update the pheromone
matrix.

In the first experiment, the both algorithms have run a total

number of 300 generations. This value is big enough, for the

two versions of ACS algorithm, to ensure the convergence

toward the optimal value of the Cycle Time (CT). The

TABLE I shows, for each problem, the best result among 30

runs. This table is the first comparison between the two

algorithms. For each problem instance, this table indicates the

following values: the minimum value of CT (denoted Q
*
), the

Gb value, the generation number (Gen) at which Gb is reached

and the number of fitness function evaluations (Nffe) when

Gb is reached. The first analysis of TABLE I points out the

following remarks:

TABLE I. COMPARISON BETWEEN THE BEST RESULTS OF THE TWO

ALGORITHM VERSIONS

Problem Q*
ACO without LDDA ACO+LDDA

Gb Gen. !ffe Gb Gen. !ffe

twa60-15a 75 80 26 520 80 25 980

twa60-15b 100 115 57 1140 110 59 2360

twa60-15c 275 285 32 640 285 19 760

twa80-20a 200 220 1 20 220 1 40

twa80-20b 130 140 1 20 140 1 40

twa80-20c 220 250 52 1040 220 57 2280

twa80-20d 200 210 20 400 210 19 760

twa80-20e 200 210 19 380 205 6 240

twa100-20a 150 170 50 1000 160 1 40

twa100-20b 300 310 15 300 310 13 520

twa100-20c 620 690 48 960 660 64 2560

twa100-20d 150 160 33 660 155 25 980

twa120-15a 150 160 13 260 155 13 520

twa120-24a 150 170 50 1000 170 1 40

twa120-24b 300 310 19 380 310 13 520

twa120-24c 620 690 45 900 670 55 2200

twa160-20 400 420 19 380 420 2 80

• For all the optimization problems, the two ACS
versions converge to a Gb solution within 150
generations

• ACS with LDDA is faster in terms of number of
generations, but it uses a much bigger number of
fitness function evaluations. On the other hand, the
global best value is generally speaking nearer to the
optimal value.

In TABLE II, the columns "min", "max" and "avrg" give
respectively the minimum, the maximum and the average of
the Global best values over the 30 independent runs. From this
table, it results that ACS with LDDA gives better Gb value for
6 problems and the same Gb value for the other 11 problems.
For the same algorithm, the max and avrg values are also
closer to the optimal value of the problem. The avrg values for
the 30 runs are smaller for 13 problems and the same for the
other 4 problems. This is an empirical evidence that ACS with
LDDA works better.

In order to facilitate a statistical comparison between the
two algorithms based on the average errors (see [16]), we need
to introduce a score (numerical measure) for a given solution,
such that the score should be greater for a better solution. The
value of CT can't be used because it decreases for a better
solution. For any solution returned by our algorithms, we
propose the following quality score:

TABLE II. COMPARISON USING AVERAGED VALUES

Problem Q*
ACO without LDDA ACO+LDDA

min max avrg min max avrg

twa60-15a 75 80 85 84,5 80 85 81.00

twa60-15b 100 115 115 115 110 115 111.0

twa60-15c 275 285 345 323,5 285 320 290.16

twa80-20a 200 220 240 223 220 230 223

twa80-20b 130 140 140 140 140 140 140

twa80-20c 220 250 250 250 220 250 240

twa80-20d 200 210 210 210 210 210 210

twa80-20e 200 210 215 212 205 215 211.6

twa100-20a 150 170 180 175 160 180 169.67

twa100-20b 300 310 320 311 310 310 310

twa100-20c 620 690 720 694 660 690 681

twa100-20d 150 160 170 167 160 170 164,3

twa120-15a 150 155 155 155 155 155 155

twa120-24a 150 170 180 175 170 180 174

twa120-24b 300 310 320 312 310 320 311.3

twa120-24c 620 690 700 695 670 670 670

twa160-20 400 420 420 420 420 420 420

 score
 valueCT

*
Q

= . (5)

where the CT value may be the min, max or avrg value of the
CT. For the optimal value, the score is equal to 1 and, for the
other values, the score is less than 1. For our problem, it
holds *QGb ≥ . Hence, we have:

0 < score ≤ 1

Using the quality score defined by (5), the data from
TABLE II is converted in TABLE III that allows us to
calculate two statistic parameters. Obviously, the min and max
columns of TABLE II generate respectively the Best and the
Worst columns of TABLE III.
To evaluate the performance of the algorithms, as in paper [16]
the average errors of the best and mean score are computed as
below:

()∑
=

×−=
L

i
ibest

L
AEB

1

;1001
1

 ()∑
=

×−=
L

i
im

L
AEM

1

1001
1

,

where AEB is the Avg. error of Best score and AEM is the Avg.
error of Mean score, L is the number of problems (17 in our
case), besti and mi are respectively the best (the score of Gb)

TABLE III. COMPARISON USING QUALITY SCORES

Problem
ACO without LDDA ACO+LDDA

Best Worst Mean Best Worst Mean

twa60-15a 0.937 0.882 0.887 0.937 0.882 0.9259

twa60-15b 0.869 0.869 0.869 0.909 0.869 0.9009

twa60-15c 0.964 0.797 0.850 0.964 0.859 0.9478

twa80-20a 0.909 0.833 0.896 0.909 0.869 0.8969

twa80-20b 0.928 0.928 0.928 0.928 0.928 0.9286

twa80-20c 0.880 0.880 0.880 1.000 0.880 0.9167

twa80-20d 0.952 0.952 0.952 0.952 0.952 0.9524

twa80-20e 0.952 0.930 0.943 0.975 0.930 0.9452

twa100-20a 0.882 0.833 0.857 0.937 0.833 0.8841

twa100-20b 0.967 0.937 0.964 0.967 0.967 0.9677

twa100-20c 0.898 0.861 0.893 0.939 0.898 0.9104

twa100-20d 0.937 0.882 0.898 0.937 0.882 0.9130

twa120-15a 0.967 0.967 0.967 0.967 0.967 0.9677

twa120-24a 0.882 0.833 0.857 0.882 0.833 0.8621

twa120-24b 0.967 0.937 0.961 0.967 0.937 0.9637

twa120-24c 0.898 0.885 0.892 0.925 0.925 0.9254

twa160-20 0.952 0.952 0.952 0.952 0.952 0.9524

Avg. error of Best quality

 7.35 % 5.55 %

Avg. error of Mean quality

 9.10 % 7.29 %

and the mean score for the problem #i. The values of the two
statistic parameters, indicated in the last lines of TABLE III,
show that ACS with LDDA yields better results with less
average errors.

VI. CONCLUSION

In this paper, an ACS algorithm for solving the TWA problem
was proposed. The precedence constraints have imposed
special techniques usage, in order to avoid or reduce the search
bias of the solutions. The first one was the implementation of a
random TTL for each ant and each generation. This technique
has a general character and can be used in other problems
involving precedence constraints. The second one was the
hybridization of the ACS algorithm with a proposed LDDA.
The computational results prove that the hybridized ACS is
more efficient than the original version. A statistical analysis
shows that ACS with LDDA yields better results with less
average errors.

REFERENCES

[1] Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a

colony of cooperating agents. IEEE Trans Syst Man Cybernet Part B
1996;26(1), pp. 29–41.

[2] Dorigo M, Gambardella LM. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Trans Evolutionary
Comput 1997;1(1), pp. 53–66.

[3] Serbencu, A., Minzu, V., and Serbencu, A., An ant colony system based
metaheuristic for solving single machine scheduling problem, The
Annals of Dunarea De Jos University of Galati, 3, pp. 19–24, 2007

[4] Blum C, Dorigo M. Search bias in ant colony optimization: On the role
of competition-balanced systems. IEEE Trans Evolutionary Comput
2005;9(2), pp. 159–74.

[5] Blum C. and Sampels M., “Ant colony optimization for FOP shop
scheduling: A case study on different pheromone representations,” in
Proc. Congr. Evol. Comput. (CEC), vol. 2, Los Alamitos, CA, 2002, pp.
1558–1563.

[6] Baykasoğlu Adil and Dereli Türkay, “Simple and U-type Assembly Line
Balancing by Using an Ant Colony Based Algorithm”, Math. Comput.
Appl. 14(1), 2009, pp. 1-12.

[7] Sabuncuoglu Ihsan, Erdal Erelb, Arda Alpc , “Ant Colony Optimization
for the single model U-type assembly line balancing problem”, IJPE,
Volume 120, Issue 2, August 2009, pp. 287–300

[8] Betul Yagmahan, “Mixed-model assembly line balancing using a multi-
objective ant colony optimization approach”, Expert Systems with
Applications, Vol. 38, Issue 10, September 2011, pp. 12453–12461

[9] Joaquín Bautista, Jordi Pereira, “Ant algorithms for a time and space
constrained assembly line balancing problem, European Journal of
Operational Research, Vol. 177, Issue 3, 2007, pp. 2016–2032

[10] Serbencu, A., Minzu, V., and Serbencu, A., "Precedence constraints
treatment in ant colony optimization"; 18th International
Conference System Theory, Control and Computing (ICSTCC), 2014,
Sinaia, Romania, pp. 87 - 92; ISBN 978-1-4799-4602-0

[11] Minzu V; Henrioud J.M; Stochastic algorithm for the tasks assignment
in single or mixed- model assembly lines- European Journal on
automation Vol. 32 No 7-8 October 1998 pp 831-851.

[12] V. Mînzu; L. Beldiman, "Some Aspects Concerning the Implementation
of a Parallel Hybrid Metaheuristic, Engineering Applications of
Artificial Intelligence", Engineering Applications of Artificial
Intelligence, Volume 20 , Issue 7 (October 2007), Pages 993-999,
Elsevier ISSN:0952-1976;

[13] Guangru Hua; Xiaoliang Fan, "An Approach of Obtaining Global and
Near-global Optimal Process Plans Based on GA Considering
Operations Precedence Constraints," Genetic and Evolutionary

Computing (ICGEC), 2010 Fourth International Conference on ,,
pp.308,311, 13-15 Dec. 2010

[14] Glover, F., Laguna, M., Marti, R., 2004. Scatter search and path
relinking foundations and advanced designs. In: Onwubolu, G., Babu,
B.V. (Eds.), New Optimization Techniques in Engineering. Springer, pp.
87–100.

[15] Blum C. and Dorigo M., “Deception in ant colony optimization,” in
Lecture -otes in Computer Science, Ed. M. Dorigo et.all, Eds. Berlin,
Germany, 2004, vol. 3172, Proc. 4th Int.Workshop Ant Colony Opt.
Swarm Intell. (ANTS), pp. 119–130.

[16] Z. Beheshti, S. M. Shamsuddin, S. Hasan, "Memetic binary particle
swarm optimization for discrete optimization problems", ELSEVIER,
Information Sciences 299 (2015), pp. 58-84.

APPENDIX 1

TASKS TREATMENT LIST

(extracted from paper [10])

The set of task Θ can be covered by a list of sets r,

 []mIIIr ,,, 10 K=

having the properties of a partition:

 ∅=∩=Θ ≠
=

iji

mi

i III ,

,0

U .

and the sets Ik are the Equal Rank Sets of the precedence
graph G. The set Ik, kϵ{0,1,…, m} contains all the tasks those
associated nodes have the rank k in G. The rank of a node x
of G is the maximum length of a path arriving in x. The
maximum rank in G is denoted by m. Hence, the sets Ik,
k=0,…, m are totally ordered in the list r .

Let's note that the tasks belonging to Ik, are indifferent i.e.
any task of Ik has no predecessor or successor in Ik. That is
why they may be called indifference sets.

The list r is called generic tasks treatment list (TTL).

The figure below describes the algorithm GenTTL that
generates the generic TTL. The function S(Y) engenders the
set of all the successors of the elements belonging to Y. The
function append(r, X) creates a new list as a result of adding
the elements X to the end of list r. The message "error"
means the oriented graph G is not a precedence graph
because it has a cycle.

The main property of the generic TTL is that

All the predecessors of a task kIt ∈ , kϵ{1,…, m} belong to

the set 10 ... −∪∪ kII .

 This property is the key aspect of the proposed method to
treat the precedence constraints.

This list r of indifference sets gives the order the tasks are
examined. When the algorithm is running, the generic TTL is
exploited as follows:

1. Begin with k=0 i.e. I0 is the current set.

2. Select by a random procedure a task t belonging to Ik.

3. Process the task t depending on the treated problem.

4. Erase the task t from Ik.

5. If Ik is empty, increment k.

The generic TTL is equivalent with a predefined tasks
sequence. In fact, there are groups of positions reserved to

the indifference sets that are strictly sequenced. Inside a
group the tasks are randomly placed.

GenTTL

start
Y← Θ; //the set of tasks

k←0;

Ik←Y \ S(Y)

r←append(nil, Ik)

while Ik φ≠

 k ← k+1;

 Y=Y \ Ik

 Ik←Y \ S(Y)

 r←append(r, Ik) // r is a list of sets Ik

end;

If Y φ≠ then "error"

end GenTTL

