
Evolving Multi-level Graph Partitioning Algorithms

Aaron S. Pope∗†, Daniel R. Tauritz∗ and Alexander D. Kent†
∗ Department of Computer Science,

Missouri University of Science and Technology,
Rolla, Missouri 65409

† Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Email: aaron.pope@mst.edu, dtauritz@acm.org and alex@lanl.gov

Abstract—Optimal graph partitioning is a foundational prob-
lem in computer science, and appears in many different
applications. Multi-level graph partitioning is a state-of-the-
art method of efficiently approximating high quality graph
partitions. In this work, genetic programming techniques are
used to evolve new multi-level graph partitioning heuristics
that are tailored to specific applications. Results are presented
using these evolved partitioners on traditional random graph
models as well as a real-world computer network data set.
These results demonstrate an improvement in the quality of
the partitions produced over current state-of-the-art methods.

1. Introduction

The problem of graph partitioning shows up in a wide
variety of application domains. Examples include organizing
parallel computation workload [1], VLSI layout design [2],
image processing [3], and critical infrastructure protec-
tion [4], among others. In general, optimal graph partitioning
is known to be NP-hard [5]. As a result, time sensitive
applications typically rely on heuristics which provide ap-
proximate partition solutions.

One of the most commonly used approaches to quickly
find high-quality graph partition approximations is multi-
level graph partitioning [6]. The general idea behind multi-
level partitioning involves producing a smaller graph which
is an approximation of the original input graph. A high-
quality partition is calculated for this reduced graph and
this partition is mapped back to the original graph. This is
typically done over several iterations and the quality of the
partition is improved at each iteration through a refinement
process. Several well-known graph partition software pack-
ages implement multi-level schemes, such as METIS [7],
JOSTLE [8], Scotch [9], and DiBaP [10].

Previous work has shown that partition quality can be
improved by selecting specialized heuristics for classes of
graphs with specific properties. For instance, superior par-
tition heuristics have been found for graphs with power-
law degree distributions [11]. If this process was repeated
for a wide variety of applications, it might be possible to

assemble a good set of tailored graph partition algorithms
instead of relying on a general purpose solution. Selection of
the appropriate algorithm for the problem at hand could even
be automated, a task for which machine learning approaches
have been shown to excel [12].

Unfortunately, this relies on the best solution for a
problem already being available. The very nature of these
custom heuristics means that the performance gains are
likely to be limited to the specific class of graphs for which
they were developed. To achieve the same improvements
for a new application, the process of manual algorithm
optimization must be repeated. Alternatively, this process of
developing algorithms tailored to a specific application can
be automated by searching the space of custom heuristics.

Genetic programming (GP) [13], a field of evolution-
ary computation, has been shown capable of automatically
generating [14] and optimizing heuristics for a variety of
applications [15]. Utilizing GP to optimize multi-level par-
titioning algorithms can provide two distinct advantages.
First, the evolutionary process will consider heuristics that
might have been overlooked during manual development
because they are not intuitive. Second, once the framework
for evolving custom heuristics for a specific application is
constructed, it can be quickly applied to any number of other
problems as the need arises. The work presented in this
paper investigates the potential of using GP to automate
the process of tailoring multi-level partitioning algorithms
for specific applications, improving their performance over
more generalized state-of-the-art partition methods.

2. Graph Partitioning

Given an integer k ≥ 2 and a graph G = (V,E,wv, we)
with the set of vertices V and the set of edges E, vertex
weight vector wv, and edge weight vector we, a k-way
graph partition divides the vertices of V into k subsets
V1, V2, . . . , Vk, such that Vi ∩ Vj = ∅ if i 6= j and
V1∪· · ·∪Vk = V . For unweighted graphs, let all the entries
in wv and we be one. The total weight for a set of vertices
X is given by:

Wv(X) =
∑
i∈X

wv[i].

Figure 1. Example graph partition with vertex sets v1 = {a, b, c, d} and
v2 = {e, f, g}. Edges between partitions are indicated by dashed lines.
The cut-cost of the partition is 4.

Similarly, the total weight of a set of edges Y is:

We(Y) =
∑
j∈Y

we[j].

For a given partition, let E′ be the subset of edges from
E that connect vertices in different partitions. We(E

′) is the
weight of this edge set, and is known as the cost or cut-cost
of the partition. Typical graph partition applications require
this cost be minimized. See Figure 1 for an example graph
partition.

Many applications also place restrictions on the relative
total weight of the partitioned vertex subsets. A balanced
partition requires that

maxi=1...kWv(Vi)∑
j=1...kWv(Vj)/k

≤ 1 + ε

for some constant imbalance factor ε. In other words, the
ratio of the weight of the heaviest partition to the weight of
the average partition cannot exceed 1 + ε.

2.1. Multi-level Graph Partitioning

Multi-level graph partitioning is one of the most widely
used graph partition approximation methods. The approach
generally consists of three distinct phases, typically referred
to as the coarsening, partition, and uncoarsening/refinement
stages. See Figure 2 for a visualization of the multi-level
graph partitioning approach.

2.1.1. Coarsening. During the coarsening phase, a smaller
approximation of the input graph is created. The coars-
ening process is repeated, creating a sequence of smaller
and coarser graphs, until the size of the coarsest graph is
sufficiently small.

The smaller approximation graphs are typically obtained
by performing edge or subgraph contractions on the input
graph. One common approach to selecting edges for
contraction is to find a maximal matching. A maximal
matching can be created in a variety of ways, but generally
some simple heuristic is used to keep the complexity of the
coarsening phase down. Some example heuristics that have

been investigated in previous research include:
Random matching: Unmatched vertices are visited in a
random order and an incident edge is randomly selected
from those that do not violate the matching.
Light edge matching: Similar to random matching, but the
lowest weight incident edge is selected instead of selecting
randomly.
Heavy edge matching: Identical to light edge matching,
except favoring heavy weight edges.

While coarsening using matching schemes has worked
well for some applications [7], it has been shown that
graphs with power-law degree distribution are difficult to
coarsen with matchings alone. In these instances, improved
performance can be achieved by contracting small, highly
connected subgraphs instead [11].

2.1.2. Partition. During the partition phase, a direct
partitioning approach is used to partition the coarsest graph.
Due to the small size of the coarsest graph, very little time
is required to get a partition of relatively decent quality.
For this reason, more computationally expensive partition
methods can be employed, such as spectral partitioning [16]
or Kernighan-Lin (KL) [17]. Karypis et al. demonstrated
that even simpler partition approaches can be used without
a loss of final partition quality [7]. Some examples of these
simple methods include:
Graph growing partition (GGP): A partition is grown
by visiting a random vertex, then adding vertices to
the partition in a breadth-first fashion until the partition
contains the necessary vertex weight.
Greedy graph growing partition (GGGP): Similar to
GGP, but neighboring vertices are added to the partition in
an order which maximizes the decrease in the cost of the
partition.

2.1.3. Uncoarsening and Refinement. During uncoarsen-
ing, the partition solution for the coarsest graph is mapped
back to the next coarsest graph. The partition for the coarsest
graph gives a good starting partition for the next coarsest,
but the quality of the partition is then improved through a
refinement step. This uncoarsening and refinement process
is repeated until a refined partition is found for the original
input graph. Multiple partition refinement strategies exist,
and some examples include:
KL refinement: The partition to be refined is used as a
starting point for the Kernighan-Lin partition algorithm, ex-
cept each pass of the algorithm terminates if a configurable
number of vertex swaps do not decrease the cost of the
partition.
Greedy refinement: The KL refinement algorithm, limited
to a single pass.

3. Evolutionary Computation

Evolutionary algorithms (EA) are a family of
biologically inspired generate-and-test black-box search

Figure 2. Multi-level graph partitioning strategy.

algorithms [18]. This process encourages solutions with
higher fitness values, which is a measure of the solution
quality, or how well it solves the problem at hand. The
stages of a typical EA consist of:
Initialization: A population of solutions is randomly
generated and evaluated.
Parent selection: Solutions are randomly selected from the
population (typically favoring higher fitness) to participate
in creating new offspring solutions.
Recombination: Offspring solutions are created using the
genetic information from multiple parent solutions.
Mutation: Offspring solutions are stochastically altered to
facilitate exploration of the search space.
Survival selection: The new generation of offspring is
evaluated and is either added to, or replaces the current
population. A subset of the population is selected to
“survive” and continue on in future generations. Again, this
selection process usually favors higher fitness.
Termination: The process of selecting parents, creating
offspring, and selecting survivors continues until some
termination criteria is met. Some example termination
criteria are reaching some threshold of quality, convergence
of the population, or some limit on total execution time.

3.1. Genetic Programming

Genetic programming (GP) is a field of evolutionary
computation where the solutions being evolved take the form
of programs or algorithms [13]. A set of primitive opera-
tions is usually constructed by observing the common and
essential elements of algorithms which have been designed
to solve the intended problem. This primitive operation set
is used as algorithmic building blocks by the GP to piece
together new candidate algorithm solutions.

Many forms of representing algorithm solutions have
been developed, but one of the oldest and most common

Figure 3. Simple genetic programming parse tree example composed of
operations described in Section 5.1.

approaches represents programs as parse trees. With this rep-
resentation, offspring are generated using subtree crossover,
where a random node is selected in the parse trees of both
parents, then the subtrees rooted at these nodes are swapped
to generate two offspring. Mutation is accomplished by
randomly choosing a node and replacing the subtree rooted
at that node with a new, randomly generated tree. See
Figure 3 for an example parse tree representing a simple
partitioning algorithm.

4. Related Work

This work was inspired by previous research that inves-
tigated the effect of the coarsening scheme used for multi-
level partitioning algorithms. Abou-Rjeili et al. developed
new heuristics for graph coarsening that improved the par-
tition quality for graphs with power-law degree distribu-
tions [11]. The superior performance achieved suggests that
there is potential in specializing these algorithms to specific
classes of graphs. The framework developed in this research
will have the added benefit of being able to quickly develop
partitioning algorithms which are tailored to new problem
areas simply by re-running the GP.

There are many examples of evolutionary computation
techniques being used to find approximate minimum graph
partitions [19]. The Karlsruhe Fast Flow Partitioner Evolu-
tionary (KaFFPaE) leverages the inherent parallelizability
of evolutionary algorithms to evolve graph partitions on
a distributed system [20]. Soper et al. introduced an evo-
lutionary search algorithm that makes use of a multilevel
heuristic for crossover to generate high quality graph par-
titions [21]. Benlic et al. developed a multilevel memetic
algorithm for the k-way graph partitioning problem [22].
While these approaches are capable of finding very low cost
partition solutions, they do so at the cost of execution time.
This trade off makes them suitable for applications which
must infrequently find extremely high quality partitions, but
inappropriate for more time-sensitive problems. This work
instead aims to invest a large amount of a priori evolution
time to produce algorithms that are capable of quickly
finding high quality partition solutions for a specific class
of graphs.

The strengths of GP have been leveraged in previous
work to evolve random graph generation algorithms [23],
[24]. While these works aim to solve a different problem,
they still evolve graph related algorithms. Because of this

similarity, there is potential overlap in the primitive opera-
tion sets used to construct candidate solution algorithms.

5. Methodology

Genetic programming is used to evolve a population of
mutli-level graph bisection algorithms that minimize the cost
of the partitions they produce. Note that this work is limited
to bisectioning, but could be extended to more general k-
way partitioning through the use of recursive bisectioning
applications.
Representation: Algorithm solutions are expressed as parse
trees. A strongly typed representation is employed to ac-
commodate the three distinct phases of the partition algo-
rithms [25]. Initial parse trees have a configurable maximum
height to begin the search with simple heuristics that can
grow during the course of evolution.
Initialization: The population was initialized using a
ramped half-and-half method, which produces full parse
trees of maximum height for half the population and variable
height trees (up to the maximum) for the remainder.
Evaluation: Each candidate solution is used to partition a
configurable number of graphs of the relevant type. The
solution’s fitness score is given by

Fitness =
1

|P |
∑
p∈P

 ∑
(u,v)| p[u]6=p[v]

we [(u, v)]

 ,
where P is the set of partitions produced by the evolved
solution and we is the vector of edge weights as described
in Section 2. If a solution algorithm takes an excessive
amount of time to compute a partition, or produces partitions
that violate the balance constraint described in Section 2, a
penalized fitness value is assigned, which is given by

Penalized F itness =
∑

(u,v)∈E

we [(u, v)] ,

where E is the complete set of edges in the input graph.
In other words, the penalized fitness is the cost of a
partition which removes every edge from the graph. Lower
fitness values are considered superior, which encourages
algorithms that quickly produce low cost partitions while
respecting balance.
Parent selection: Parents are selected using binary
tournaments, which randomly select two solutions from the
population, then return the highest fitness of the two. The
low tournament size lowers selection pressure to counteract
the elitism introduced by survival selection.
Recombination: 95% of the offspring are created using
subtree crossover from two donor parent solutions as
described in Section 3.1.
Mutation: The remaining 5% of the offspring are created
by performing subtree replacement mutation on a single
donor parent as described in Section 3.1. Because subtree
crossover and subtree replacement both have the potential
to dramatically alter a solution, only one method is applied
to each offspring.

TABLE 1. GP PARAMETER VALUES

Parameter Value
Population size and offspring per generation 60

Partitions per evaluation 10

Minimum parse tree depth 2

Maximum parse tree depth 5

Mutation probability 25%

Survival selection: Truncation selection is used for
survival, simply selecting the fittest individuals. This
approach is very elitist, and encourages exploitation of
currently known high fitness solutions.
Termination: Evolution is terminated when the best fitness
seen has not improved for thirty consecutive generations.

The values for the parameters of the GP can be seen
in Table 1. These parameters were tuned using a random
restart hill climbing search.

5.1. Primitive Operation Set

The individuals in the population of the GP are con-
structed from the following set of operations.

5.1.1. Root Node. All solutions use the same operation
for the root node of their parse tree. This node has three
child nodes, which correspond to the three phases of the
multi-level partition approach. The first child node takes a
graph as input and returns a coarsened graph. This process
is repeated, storing the sequence of coarsened graphs, until
the coarsest graph contains at most fifty vertices. The second
child node takes the coarsest graph as input and returns an
initial partition assignment of the vertices. Finally, the third
child takes two consecutive graphs from the sequence of
coarsened graphs, along with a partition assignment, and re-
turns a refined partition assignment for the less coarse graph.
The uncoarsening and refining step is repeated, working
from the coarsest graph back to the original graph, until the
partition assignment for the original input graph is obtained,
which is returned as the final result of the algorithm.

5.1.2. Graph Coarsen Nodes. The first set of coarsening
nodes are inspired by traditional multi-level partitioning
approaches.
Random matching coarsen: Coarsens the input graph by
contracting the edges of a random maximal matching.
Heavy edge matching coarsen: Contracts the edges
of a heavy edge maximal matching, as described in
Section 2.1.1.
Light edge matching coarsen: Contracts the edges of a
light edge maximal matching, as described in Section 2.1.1.

The remaining nodes are inspired by the coarsening
schemes developed by Abou-Rjeili et al. [11].
Globally greedy coarsen: This node takes input from four
child nodes. The first provides a formula which evaluates

an edge in the graph and returns a metric value. The second
returns a boolean that determines if the preceding metric
is to be maximized or minimized. The third returns the
maximum vertex weight ratio, which is the portion of the
entire graph’s total vertex weight that an individual con-
tracted vertex cannot exceed. The fourth returns the maxi-
mum contraction ratio, which determines the percentage of
the vertices that can be contracted during a single coarsening
phase. This operation sorts all of the edges in the graph
using the metric formula and attempts to contract them in
order, skipping any edge contraction that would violate the
maximum vertex weight restriction. The process terminates
when the maximum contraction ratio is reached, or all edges
are considered, whichever occurs first.
Locally greedy, globally random coarsen: Identical to the
globally greedy coarsening strategy, except for the procedure
used to generate the list of edges for contraction. Instead of
ranking the graph’s entire set of edges, the list of edges is
built by randomly visiting vertices in the graph and using
the metric to select one incident edge using the edge metric
input.

It is worth noting that Abou-Rjeili et al. fixed the values
of the maximum vertex weight ratio and the maximum
contraction ratio to 0.05 and 0.5, respectively. This work
instead chooses to allow evolution to attempt to optimize
the values for these parameters.

5.1.3. Edge Metric Nodes. The following metrics were
chosen because they can be calculated without increasing
the overall complexity of the multi-level partitioning
algorithm. Note that these values can be combined and
manipulated using the operations listed in Section 5.1.4.
Edge degree: Returns the sum of the degrees of the
vertices incident to the edge.
Edge weight: The weight of the edge.
Edge node weight: The sum of the weights of the vertices
incident to the edge.
Edge core number: The sum of the core numbers of the
vertices incident to the edge. For a description of node core
numbers, see [26].

5.1.4. Math Operators. Basic addition, subtraction, mul-
tiplication, division, modulus, exponentiation, additive and
multiplicative inverse. Some of these operators require spe-
cial attention due to the stochastic nature of the process.
For example, if division would produce a division by zero
exception, it instead divides by a value very close to zero.

5.1.5. Numerical Constants. These nodes return a constant
value that is randomly chosen once during initialization.
Ratio constant: Randomly selected value from
{0.1, 0.2, . . . , 1.0}.
Probability constant: Randomly selected value from
{0.001, 0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.25, 0.5, 1.0}.
The possible values for these nodes were chosen to allow
the GP to recreate and expand upon the functionality of
existing heuristics.

5.1.6. Boolean Nodes. True and false constant nodes, as
well as a node that randomly returns true according to an
input probability.

5.1.7. Partition Nodes. These nodes take a graph as input
and return an assignment of vertices into partitions.
Random bisection: Randomly assigns vertices into two
partitions. The order of the vertices is randomized and then
iterated through. Vertices are added to the first partition
until the partition exceeds half the total vertex weight. The
remaining vertices are assigned to the second partition.
GGP bisection: Graph is partitioned using graph growth
partitioning, as described in Section 2.1.2.
GGGP bisection: Graph is partitioned using greedy graph
growth partitioning, as described in Section 2.1.2.
Spectral bisection: Spectral partitioning is used to bisect
the graph (see [16]).
KL bisection: Graph is bisected using the Kernighan-Lin
algorithm (see [17]).

5.1.8. Uncoarsening Nodes. Two uncoarsening nodes are
used, which only differ in the refinement method they em-
ploy.
KL refinement: Kernighan-Lin refinement, as described in
Section 2.1.3.
Greedy refinement: Greedy partition refinement, as de-
scribed in Section 2.1.3.

6. Experiment

The GP approach is used to evolve multi-level partition
algorithms for three types of graphs. The first two applica-
tions are targeted at partitioning graphs from two specific
random graph models: Erdös-Rényi [27], and Barabási-
Albert [28]. These models, which are known to have dif-
ferent degree distributions, were selected to illustrate the
effectiveness of algorithm specialization. In order to demon-
strate real-world applicability, the third application targets
graphs created from actual network data released by Los
Alamos National Laboratory (LANL) [29]. One month of
the network data set was modeled as a bipartite graph with
9,924 user vertices, 14,822 computer vertices, and 106,693
authentication edges. Subgraphs were created by inducing
the set of vertices visited by a random walk of the total
graph.

During solution evaluation, a set of the application spe-
cific random graphs are generated, each with 100 vertices.
The size of the graphs are kept small because a large
number of these graphs will need to be generated during
the full course of evolution. The candidate solution being
evaluated is used to partition each graph in the set, and the
solution’s quality is determined by the average cost of the
partitions produced. By using multiple randomly generated
graphs for each evaluation, evolution encourages solutions
which are good at partitioning that class of graphs instead
of overspecializing on a small, fixed set of specific graphs.

A separate set of thirty verification graphs are generated
to evaluate the performance of partition algorithm solutions

(a) Erdös-Rényi (b) Barabási-Albert

Figure 4. Example evolved partition algorithms for both random graph model applications.

from the final population of each GP run. For comparison,
the verification graphs were also partitioned using standard
spectral partitioning as well as the k-way partitioning func-
tion of the METIS software library. To examine the extent to
which the evolved solutions are specialized for their target
graph type, they are also used to partition the other graph
types and their relative performance is compared. The cost
of the partitions produced by each method are compared
pairwise using Wilcoxon rank-sum tests at a 95% signifi-
cance. Finally, evolved solutions are used to partition graphs
of various sizes to demonstrate their scalability compared to
the general purpose partition solutions.

7. Results

The parse tree representation of two sample evolved
solutions can be seen in Figure 4, one for each of the
random graph model applications. The evolved solutions for
the LANL network application tend to be far more complex,
and as a result, are too large to be included.

See Table 2 for the relative performance comparison of
the evolved partitioning methods as well as METIS and
spectral partitioning (SP). EER, EBA, and ELANL, refer to
the solutions evolved to target the Erdös-Rényi, Barabási-
Albert, and LANL network graph sets, respectively. Each
row compares the average partition cost of the method
evolved for that application against each of the other parti-
tion algorithms. A negative value indicates that the evolved
solution produces a lower average partition cost than the
method indicated for that column. A shaded cell indicates
the difference is statistically significant at the α = 0.05
level.

It is encouraging to see that for each graph type, the
partitioner evolved for that type produces the lowest average
cost, even if these differences are not always statistically
significant. The evolved methods consistently outperform
the traditional spectral partition method. Compared to the
off-the-shelf METIS software, the evolved solutions for the
Barabási-Albert and LANL network graphs are also statis-
tically superior. A notable exception is the evolved partition
algorithm for the Erdös-Rényi application. The inability to

TABLE 2. RELATIVE AVERAGE PARTITION COST

Method EER EBA ELANL METIS SP

EER 0.0 −0.06 −0.38 −0.06 −4.55

EBA −0.53 0.0 −0.12 −0.72 −0.92

ELANL −0.48 −0.10 0.0 −2.97 −3.90
Each value is the average cost of partitions produced by the method

evolved for that application, minus the average cost of partitions
produced by the partitioner listed at the top of the column. A
negative value indicates that the evolved solution produces a lower
average partition cost, with shaded cells indicating the difference is
statistically significant at the α = 0.05 level.

statistically outperform METIS might be a result of the high
randomness inherent to the Erdös-Rényi model, which might
not consistently produce any graph characteristics that can
be exploited during evolution.

The comparisons between the evolved solutions do sug-
gest some amount of specialization has taken place, but the
performance difference is not always statistically significant.
EBA and ELANL do significantly outperform the EER

on their targeted graph types. However, EBA and ELANL

perform very similarly when interchanged. This could indi-
cate that the graphs created from the LANL network data
resemble graphs generated by the Barabási-Albert model;
both evolved solutions might be taking advantage of char-
acteristics common in both graphs.

Figure 5 shows the relative cost of partitioning graphs
using the evolved partition solutions as well as METIS and
spectral partitioning as the size of the graph grows. For each
plot, the “Evolved” label refers to the partitioner that was
evolved specifically for that graph type. Despite the fact that
the solutions are evolved to target graphs with 100 vertices,
the evolved partition algorithms still consistently outperform
METIS and spectral partitioning as the size of the graphs
increase.

8. Conclusion

Graph partitioning is a fundamental computer science
problem with applications in many domain areas. Multi-

(a) Erdös-Rényi

(b) Barabási-Albert

(c) LANL network

Figure 5. Cost of partitioning graphs of various sizes for each graph type.

level partitioning is a widely used state-of-the-art approach
to efficiently approximate optimal partitioning. Although
there are a variety of multi-level partitioning algorithms
available, most are intended to serve as general purpose
solutions. Some work has been done attempting to exploit
common graph characteristics through the manual develop-
ment of tailored solutions, but this tedious process must
be repeated for each application. Even if a good set of
specialized partition algorithms were available, it might
not contain an adequate solution to an entirely new graph
application.

This work addresses this limitation by employing genetic
programming to automatically generate novel multi-level
graph partitioning algorithms tailored to each application.
The potential of this approach is demonstrated by evolving
a set of algorithms, each tailored to perform well on graphs
from a different source: two traditional random graph mod-
els and real world computer network subsets. These special-
ized solutions outperform traditional partitioning methods
on their target graph types, and continue to do well as the
size of the graphs increases. The platform implemented in
this work can be quickly reapplied to any new application
domains as they arise instead of relying on general purpose,
off-the-shelf solutions.

9. Future Work

An obvious continuation of this work would be to
include the consideration of execution time. Instead of
focusing on reducing the cost of the partitions produced,
evolved partitioners could instead aim to reduce the time
needed to partition certain types of graphs for time-sensitive
applications. This could be accomplished by using a multi-
objective optimizer that presents the end user with a set of
solutions with various trade-off values in terms of partition
quality and execution time. Evaluating execution time as
an objective will require the implementation of automated
code generation of evolved algorithms, since currently the
solutions can only be applied within the GP. This limitation
adds significant computational overhead and makes a direct
efficiency comparison difficult.

The functionality of the current implementation is lim-
ited to evolving balanced bisection algorithms. Although
the imbalance threshold is configurable, new features would
have to be incorporated to allow for specifying additional
partition weight restrictions. While any number of partitions
can be achieved using repeated applications of a bisection
algorithm, partition heuristics evolved for a specific number
of partitions might improve upon the efficiency of this
process.

This work demonstrates the potential for employing GP
to improve graph algorithm performance. A similar process
could be used to evolve novel solutions to other problems in
the graph theory domain, such as community detection [30]
or efficient calculation of vertex centrality values in dynamic
graphs [31].

Previous work has demonstrated that increasing the gran-
ularity of the set of primitive operations can increase the

GP evolution time required to reach convergence, but also
improve the overall final solution quality [32]. The primitive
set granularity in this work could be increased by relaxing
the assumed structure of the multi-level partition algorithm.
This basic structure is currently implemented in the root and
coarsen nodes. These primitives could be disassembled into
a set of lower-level primitives, allowing for more diverse
and expressive algorithm representation.

References

[1] H. Meyerhenke, “Shape optimizing load balancing for MPI-parallel
adaptive numerical simulations,” Proceedings of the 10th DIMACS
Implementation Challenge on Graph Partitioning and Graph Clus-
tering, pp. 67–82, 2013.

[2] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical
Design: From Graph Partitioning to Timing Closure. Springer
Science & Business Media, 2011.

[3] B. Peng, L. Zhang, and D. Zhang, “A survey of graph theoretical
approaches to image segmentation,” Pattern Recognition, vol. 46,
no. 3, pp. 1020–1038, 2013.

[4] H. Li, G. W. Rosenwald, J. Jung, and C.-C. Liu, “Strategic Power
Infrastructure Defense,” Proceedings of the IEEE, vol. 93, no. 5, pp.
918–933, 2005.

[5] A. E. Feldmann, “Fast Balanced Partitioning is Hard Even on Grids
and Trees,” in Proceedings of the 37th International Conference
on Mathematical Foundations of Computer Science, ser. MFCS’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 372–382. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-32589-2 34

[6] I. Safro, P. Sanders, and C. Schulz, “Advanced Coarsening
Schemes for Graph Partitioning,” J. Exp. Algorithmics,
vol. 19, pp. 2.2:1–2.2:24, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2670338

[7] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs,” SIAM Journal on
Scientific Computing, vol. 20, no. 1, pp. 359–392, 1998. [Online].
Available: http://dx.doi.org/10.1137/S1064827595287997

[8] C. Walshaw and M. Cross, “JOSTLE: Parallel Multilevel Graph-
Partitioning Software–An Overview,” Mesh partitioning techniques
and domain decomposition techniques, pp. 27–58, 2007.

[9] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient
parallel graph ordering,” CoRR, vol. abs/0907.1375, 2009. [Online].
Available: http://arxiv.org/abs/0907.1375

[10] H. Meyerhenke, B. Monien, and T. Sauerwald, “A New Diffusion-
based Multilevel Algorithm for Computing Graph Partitions of Very
High Quality,” in Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on. IEEE, 2008, pp. 1–13.

[11] A. Abou-Rjeili and G. Karypis, “Multilevel Algorithms for Parti-
tioning Power-law Graphs,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International. IEEE, 2006,
pp. 10–pp.

[12] P. D. Hough and P. J. Williams, “Modern Machine Learning for
Automatic Optimization Algorithm Selection,” in Proceedings of the
INFORMS Artificial Intelligence and Data Mining Workshop, 2006,
pp. 1–6.

[13] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT press, 1992, vol. 1.

[14] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[15] H. H. Hoos, Automated Algorithm Configuration and Parameter
Tuning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 37–71. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
21434-9 3

[16] W. E. Donath and A. J. Hoffman, “Algorithms for Partitioning of
Graphs and Computer Logic Based on Eigenvectors of Connections
Matrices,” IBM Technical Disclosure Bulletin, vol. 15, 1972.

[17] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” Bell system technical journal, vol. 49, no. 2,
pp. 291–307, 1970.

[18] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Springer, 2003, vol. 53.

[19] J. Kim, I. Hwang, Y.-H. Kim, and B.-R. Moon, “Genetic Approaches
for Graph Partitioning: A Survey,” in Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation. ACM, 2011,
pp. 473–480.

[20] P. Sanders and C. Schulz, “High Quality Graph Partitioning,” Graph
Partitioning and Graph Clustering, vol. 588, no. 1, 2012.

[21] A. J. Soper, C. Walshaw, and M. Cross, “A Combined Evolutionary
Search and Multilevel Optimisation Approach to Graph-Partitioning,”
Journal of Global Optimization, vol. 29, no. 2, pp. 225–241, 2004.

[22] U. Benlic and J.-K. Hao, “A Multilevel Memetic Approach for
Improving Graph k-Partitions,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 5, pp. 624–642, Oct. 2011.

[23] A. Bailey, M. Ventresca, and B. Ombuki-Berman, “Genetic Program-
ming for the Automatic Inference of Graph Models for Complex Net-
works,” Evolutionary Computation, IEEE Transactions on, vol. 18,
no. 3, pp. 405–419, 2014.

[24] K. R. Harrison, “Network Similarity Measures and Automatic Con-
struction of Graph Models using Genetic Programming,” 2014.

[25] D. J. Montana, “Strongly Typed Genetic Programming,” Evol.
Comput., vol. 3, no. 2, pp. 199–230, Jun. 1995. [Online]. Available:
http://dx.doi.org/10.1162/evco.1995.3.2.199

[26] S. B. Seidman, “Network Structure and Minimum Degree,” Social
Networks, vol. 5, no. 3, pp. 269–287, 1983.

[27] P. Erdös and A. Rényi, “On Random Graphs, I,” Publicationes
Mathematicae, vol. 6, pp. 290–297, 1959.

[28] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[29] A. Hagberg, A. Kent, N. Lemons, and J. Neil, “Credential Hopping in
Authentication Graphs,” in 2014 International Conference on Signal-
Image Technology Internet-Based Systems (SITIS). IEEE Computer
Society, Nov. 2014.

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
“Community Structure in Large Networks: Natural Cluster Sizes
and the Absence of Large Well-Defined Clusters,” Internet
Mathematics, vol. 6, no. 1, pp. 29–123, 2009. [Online]. Available:
http://dx.doi.org/10.1080/15427951.2009.10129177

[31] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung, “QUBE:
A Quick Algorithm for Updating Betweenness Centrality,” in
Proceedings of the 21st International Conference on World Wide Web,
ser. WWW ’12. New York, NY, USA: ACM, 2012, pp. 351–360.
[Online]. Available: http://doi.acm.org/10.1145/2187836.2187884

[32] M. A. Martin and D. R. Tauritz, “Hyper-Heuristics: A Study On
Increasing Primitive-Space,” in Proceedings of the Companion Pub-
lication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO Companion ’15, 2015, pp. 1051–1058.

