
PAFS – An Efficient Method for Classifier-Specific
Feature Selection

Pham Quang Huy
Department of Mathematics and Computer Science

University of Dalat, Dalat, Vietnam.
School of Computer Science, University of Windsor

Windsor, N9B 3P4, Ontario, Canada.

Alioune Ngom, Luis Rueda
School of Computer Science

University of Windsor
Windsor, N9B 3P4, Ontario, Canada.

Abstract— An optimal classification model for classifying on a

given problem should comprise of a classifier, a proper feature
subset and a parameter set such that the classifier can attain high
prediction performance as possible. Many recent feature
selection methods are either too exhaustive or too greedy.
Besides, many classification approaches conduct parameter
search after feature selection stage, resulting in the classification
results that are not as optimal as they should. In this study, we
propose a new greedy selection method, called Parallel Apriori-
like Feature Selection (PAFS), which searches for an optimal
classification model in the combined space of features and
parameters. Moreover, its greedy search behavior is controllable
by running options so that it is flexible for different problems.
We also devised a Tree-based Classifier Model (TCM) algorithm
which wraps PAFS in solving multi-class problems. Our methods
achieved excellent results when applied on two multi-class
datasets. In particular, on a breast cancer dataset consisting of 5
classes and 13582 features, our methods selected feature subsets
of no more than 10 features and each with the prediction
accuracy of at least 94%.

Keywords— Feature selection, grid search, Parallel Apriori-like
Feature Selection, PAFS, Tree-based Model for Multi-class
Problem, optimal classification model search.

I. INTRODUCTION

In reality, many machine learning tasks involve high
dimensional data which contain thousands of features and
millions of samples. For example, a breast cancer dataset in [1]
has up to 13582 features, where each feature is a gene
expression; some text classification problems involve
thousands of m-grams. The curse of dimensionality might keep
many powerful learning techniques such as Support Vector
Machine (SVM) [2, 3, 4], Bayesian Network [5], K-Nearest
Neighbors (K-NN) [2], Decision Tree [6] from being
applicable in those cases. In such data, there are usually a lot of
redundant and irrelevant features that can be removed. Thus,
feature selection is one of the best remedies. This pre-
processing technique is to find the most informative subset of
features which can still generalize the original data. As a
consequence, the training time on the projected data can be
significantly reduced, the result can be explained easier, and
the prediction accuracy can be improved. Feature selection is
especially useful in domains where there are much more
features than samples. Such domains include written text

analysis, bioinformatics classification/prediction, where there
are many thousands of features but only a few tens to hundreds
of samples. It is shown in [1, 7, 8, 9,] that, in many situations,
only a small number among thousands of features strongly
correlate with the target feature. However, extracting useful
features from a universal set of hundreds or thousands of
features is really challenging as the search space is exponential
to the number of features. Exhaustive search is almost
impossible; level-wise search must base on reasonable some
stop conditions for a good quality; greedy search like Greedy
Forward Selection might find only a local optimum. Therefore,
in some cases, it requires a more suitable strategy to guide the
search.

Besides, to obtain a further improvement for some learners,
such as SVM, K-NN, there must be an optimal parameter set.
While the parameter space still can be continuous, trying to
find the global optimum is almost impossible. Grid search is a
common and straightforward way to find an optimal parameter
setting by sparsely sweeping through the parameter space.
Moreover, the classification performance is different from one
combination of parameters and feature subset to another. Thus,
searching for optimal parameter after feature selection step
probably miss the solution that should be chosen (i.e., when
combining a feature subset that was skipped in feature
selection stage with a suitable parameter setting, we may have
better classification performance). Hence, it seems a good idea
to optimize both the subset of features and the parameters by
searching in their combination space.

Finally, a classifier can be suitable for one problem
(dataset) but might not for another. Thus, given a dataset, the
optimal classification model must comprise of a classifier, the
most informative feature subset and the optimal parameters for
that classifier.

Our contribution. These observations motivate us to
propose a new method, called Parallel Apriori-like Feature
Selection (PAFS), that finds the optimal classification model
for a given classifier by exploring the features space and the
parameter space at the same time. The ideas of combining the
spaces may not be new, the way PAFS search for the feature
subset is. Its search behavior is oriented to the optimal results
and is controllable by running options to avoid being too
exhaustive or too greedy. This algorithm is mainly to cope with
binary classification problems. To handle multi-class problems,

we extend the tree-based model in [1] to another algorithm
called Tree-based Classification Model for Multi-class
Problem (TCM) which wraps PAFS and integrates the space of
classifiers as well. It outputs a single-path tree where each node
is a binary classification model learned by PAFS. Both PAFS
and TCM can be implemented in parallel. When classifying,
each binary model is applied, according to its order priority, to
identify whether a new instance belongs to the class of that
node or not.

When applied for classifying on a breast cancer of five
subtypes, our model returned accuracy of about 99%; about 5%
more than that reported in [1] and required fewer genes. On an
erythemato-squamous disease dataset, we obtained the
similarly high accuracy.

The application of our approach is not limited to
classification problems, but it can be extended to regression
problems as well.

Paper organization. The rest of the paper is organized as
follows. In section II, we briefly summary the feature selection
approaches, and some related works on feature selection and
on classifying breast cancer subtypes. Details of our proposed
algorithms are presented in section III, and the behavior and
complexity of PAFS are analyzed as well. Information about
datasets, implementation notes, the experiment results, and
discussion are described in section IV. Finally, in section V, we
summary our contribution and point out what should be
investigated further.

II. RELATED WORKS

In this section, we first summary the feature selection
approaches, and then highlight some recent works on feature
selection and on breast cancer subtype classification that
related the most to this study.

Generally, feature selection methods are categorized into
the following approaches.

Filter approaches. Filter approaches can be considered as
selecting the top features providing the most information about
the classes, based on a particular statistic criterion. Some of the
popular criteria are Information Gain, Gain Ratio [6], Chi-
Square [1], mRMR [7, 8]. Since the features are often
evaluated independently from each other, these approaches are
clearly fast. They are effective to shrink the features space,
especially when the number of features in the dataset is large.
However, they might not perfectly eliminate redundancy
because the presence of one feature may reduce the impact of
some others on the class feature. And, as they are not tailored
to any specific classifier, in many cases, the selected features
are used as input for another processing steps rather than as the
final feature subset for classification [9, 10].

Wrapper approaches. Wrapper methods, on the other
hand, consider a subset of features at a time and search for the
optimal feature subset with regard to a specific classifier. Thus,
they somehow take the between-feature dependencies into
account. For each subset, the target classifier is trained and
tested on the projected data to score the fitness. Various
strategies can be applied to traverse the space of feature

subsets, including exhaustive search and greedy searching
methods such as Greedy Forward Selection, Greedy Backward
Elimination, Floating With Forward Selection, Floating With
Backward Selection are likely preferred. In greedy methods,
starting from a subset of features, new candidates are gradually
generated by adding/deleting a feature and then evaluated.
Only one or two best ones are maintained to generate
candidates for the next step and so on. The process stops when
some conditions are met, e.g., the size of subset reaches a
certain threshold or the decline of quality excesses a threshold.
Basically, none of them guarantees to find the global optimum.

Wrapper methods usually produce better performance than
filter ones, but they require expensive computations,
especially, when classifiers of high computational cost such as
SVM or Bayesian Network are chosen.

Hybrid approaches. They are the combinations of filter
and wrapper methods. Candidate features are first selected by a
filter criterion to prune the feature search space before a
wrapper method is applied to find the final subset. One can see
that they can take advantages and reduce the drawbacks of the
two previous approaches.

Embedded approaches. In these approaches, the search
for an optimal feature subset is integrated with the process of
constructing the classifier. Decision tree learning can be
considered an instance of this method.

Based on one-against-all strategy, the authors of [11]
applied an ensemble learning approach to deal with the multi-
class problem. The classification problem of c classes is first
transformed into c binary classification problems. In each
subproblem, the ith class is considered as the positive class
while the others are combined as the negative one. Then, they
apply traditional feature selection for each subproblem. In
classification, all classifiers of the subproblems vote for the
class label of the new instance. To cope with the imbalanced
data, the class of the minority can be oversampled. They tested
their approach with Naïve Bayes, K-NN, C4.5 on 15 datasets,
whose number of features range from 4 to 64. Three of the
datasets have more the 3000 samples. On average, their
approach was better than the traditional approaches from 2% to
3% of accuracy.

In [1], also based one-against-all strategy, the authors
introduced a tree-based model for classification. Its main idea
is to transform the multi-class problems into binary problems,
but the easiest one is chosen to build the current node. Then,
after removing the samples of the chosen class, the remaining
data are recursively used to build the subtree. It results in a
single-path tree model (tree model for short) where each node
is a binary classification model (binary model for short). When
classifying, each binary model is used to verify whether the
new instance belongs to the class of that node or not. If not so,
that instance is passed down to its child node and the process
keep going on until the class label of the instance is decided.
They applied Chi-Square as filter criterion and SVM-RBF
(support vector machine with radial basis kernel [2, 3]) as
target classifier. When applied for classifying five subtypes of
breast cancer, their approach produces about 95% accuracy.
About five features are required for each node, and totally, 18
features for the whole tree.

The authors in [9] propose the following hybrid approach.
Two subsets of features are first filtered by F-Score and
Information Gain, respectively. Then, the intersection set (say
S1) and the exclusive-OR set (say S2, resulted from XOR
operator) are computed from those two feature sets. At wrapper
stage, Greedy Backward Elimination is conducted on S1 while
Greedy Forward Selection is executed on S2 to find the most
potential candidates. This heuristic might come from the fact
that the features in S1 can contain more information about the
class than those in S2 and the subsets of the bigger size in S1
can be more promising than the smaller ones. In an experiment
on a disorder protein data, they selected 355 out of 420
features, but no improvement in accuracy. On a lung cancer,
they obtained a subset of 70 out of 7129 features which
returned 100% accuracy.

In [10], the authors applied a hybrid feature selection
approach, named Improved F-score and Sequential Forward
Floating Search, for classification on six types of erythemato-
squamous diseases. A modification of F-score was first used to
filter the feature space. Then, Sequential Forward Floating
Search and SVM were combined during the wrapper stage.
Grid search was conducted as well to find the optimal
parameters for SVM. The erythemato-squamous disease
dataset, from UCI machine learning database, contains 358
samples with 34 features. Depend on the size of testing set
partitioned from the data, the accuracies range from 93% to
100%.

Recently, there are new algorithms for feature selection
basing on particle swarm optimization approach, such as [12,
13]. However, the comparison between these methods and
PAFS are out of the scope of this study.

Study on machine learning techniques has stimulated the
development of the public software for machine learning and
statistic community. Among which, Weka is one of the most
well-known (http://www.cs.waikato.ac.nz/ml/weka/). It has
many tools for grid searching, filter and wrapper feature
selection, and classification. Thus, many real life classification
tasks can be solved easily via its graphical user interface.
However, to the best of our knowledge, no built-in tool in
Weka can combine the feature space and classifier parameter
space as one. (At the moment of this study, the newest Weka
version for developer is 3.9) Thus, sometimes, it hard for this
software to help us find the optimal classification as expected.

III. MATERIALS AND METHODS

In this section, we introduce the TCM algorithm to deal
with multi-class classification problem. It extends the tree-
based scheme introduced in [1] to allow using different
classifier for different binary models (node) in the same tree
model. Each binary model consists of a class label, a classifier,
an optimal subset of features and an optimal parameter set on
which the given classifier can produce the optimal
performance. PAFS, our proposed algorithm is to find such
optimal binary model for a given binary problem and a
classifier. The ability to find highly optimal model relies on
exploring the combination space of features and parameters,
instead of searching within each individual space
consecutively. However, the main difference with the other

mentioned works is the way PAFS traverses the search space.
For datasets of low/high dimensionality, users can adjust the
running parameters so that its work more exhaustive/greedy,
while the search still orients to the likely targets. The idea of
PAFS is adopted from Apriori algorithm [14] which is used for
frequent itemset mining.

Let us define some notations before describing our
proposed algorithms.

 Definition 1. Given a feature set F and a set of class labels
L, a relation or dataset D on F x L, a class label i in L, and A,
a subset of F. Let

- D*i denote the new dataset obtained from D by replacing
the class label of all samples to a new label, except those
of class i;

- D-i denote the sub-dataset obtained by removing all
samples of class i from D;

- D|A denote the new dataset resulting from D by projecting
all samples on the feature set A.

Thus, D*i is the binary problem derived from D. It is similar to
a subproblem of the approach in [10], where the sample of
class i are the positive ones and the others are the negative
ones.

 Definition 2. Given a two-class problem D*i, a set of
parameters P and a real number Q. Let M = <i, C, A, P, Q>
denote a binary model such that when using classifier C to
train and test with parameters P on i

AD*
| the average

performance will be Q.

Here, Q refers to a static measure such as accuracy, recall,
area under roc curve.

 Definition 3. A s-candidate is a set of s features.

A. Tree-based Classification Model for Multi-class Problem
Actually, PAFS can deal with multi-class problems directly,
provided that the classifier used can handle multi-class
problems, such as K-NN, Decision Tree, Naïve Bayes.
However, for its application generality, PAFS should better be
applied to two-class problems, as some classifier is originally
designed to solve binary problems only, like SVM. Moreover,
transforming a multi-class problem into many binary
problems, and then finding the tree model to solve them seems
to produce a better result than solving the original problem
directly. The reason is that we can apply different feature
subsets and parameters for different binary problems; instead
of using the same setting to classifying all classes. Therefore,
we extend the scheme for finding a tree-base model for
classifying on multi-class problems in [1], and name this
algorithm TCM (Fig. 1). One can see that the main step of
TCM can be solved in parallel.
At step 2, for each class label i in L, we find an optimal model
to discriminate instances of class i against the others. Then,
the optimal model yielding the highest quality will be chosen
as the binary model of the current node (step 3). After that,
dataset D is shrunk by removing all samples of the

correspondingly chosen class (step 4). The class label i is
removed from L as well (step 5). Then, the process continues
to build the model for the subtree until only one class is left. If
the original data consists of |L| classes then the tree model will
have |L| nodes. The last node contains only the remaining
class label since no more classification is needed. This is a
best-first search heuristic to avoid considering too many
models; otherwise, trying all permutations of the binary
models would be very time-consuming.

Fig. 1. TCM algorithm for constructing the optimal tree-based model for
multi-class classification problem. Steps 2 can be implemented in
parallel/distributed by assigning a binary problem to a
thread/processor/computer to solve.

B. Parallel Apriori-like Feature Selection algorithm
In the one-versus-all scheme in TCM, the main task is to

find the optimal binary model <i, C, Ai, Pi, Qi> to predict
where a new instance belongs to class i or not. Indeed, it is to
find the optimal subset of features Ai, and the optimal
parameters Pi for classifying on the binary classification
problem D*i by the given classifier C. It can be done by PAFS
algorithm which is described in Fig. 2.

The idea of PAFS is to gradually generate the candidates
feature subsets in a level-wise manner and select only the high-
quality candidates to generate candidates for the next step.
Each candidate is evaluated by the given classifier, with the
corresponding optimal parameters produced by a grid search
step. The process keeps continuing until the candidates’ size
excesses a threshold S or there is no more candidate to try.
Additional stop condition can be integrated as well, e.g., the
quality keeps decreasing over certain iterations.

At the initializing step, the original features are filtered by
criterion, such as Mutual Information, Gain Ratio to reduce the
search space significantly. Each selected feature forms a 1-
candidates, which is a highly promising one. If this filter stage
is skipped, then the 1-candidates will be selected by the
classifier C.

At each following iteration, all of the candidates are of the
same size (say s), and they will be tested to remove the low-
quality ones. In more details, for each such s-candidate A and
each parameter setting, the classifier C is trained and tested on
the projected data AD | , under 10-fold cross-validation scheme.
To accelerate the process, PAFS can be implemented in
parallel, where each candidate can be processed by a thread
(steps 2.a.i); but a thread can handle many candidates. The
optimal parameter P and its corresponding quality Q is
returned (steps 2.a.ii). After processing A, the to-be-return
optimal binary model is updated (step 2.a.iii). After trying all s-
candidates, we compute a new minimum quality threshold,
MinQ, (step 2.b) which is used as a threshold to remove the
low-quality candidates. Here, we would like the remaining
subsets to have at least 80% of the optimal one (step 2.c). By
this way, the new candidates generated for the next iteration
can be more promising than the current ones, hopefully. If the
number of tested remaining subsets is still high, we keep only
the top-N (step 2.d).

Fig. 2. PAFS algorithm for searching the optimal classification model for
two-class classification problem.

 A new (s+1)-candidate is generated for the next step by
joining a pair of s-candidates if they share s–1 common

Input:
- D: a dataset of two classes.
- C: a classifier.
- N: the maximum number of candidates to maintain

after each iteration.
- S: the maximum size allowed for a feature subset.
- G: the grid of parameters to try.
- X: the number of features to filter.

Output:
M: an optimal model for classification on D.

Method:
1. Step 1. Apply a filter criterion to select top X features

from the set of all features. They are the 1-candidates.
2. Step s (initially, s =1). Execute the following steps

until s > S or there is no more candidate to try.
a. For each subset A among the current s-candidates

i. Use a thread/processor/computer to run 10-
fold cross validation for classifier C on the
projected data D|A, for each parameter
setting in G.

ii. Obtain the optimal parameter P and the best
quality Q .

iii. If Q > QM, the quality of M, then M = <i, A,
C, P, Q>.

b. MinQ = 0.8*QM.
c. Remove every s-candidate having quality smaller

than MinQ.
d. Keep only the top N s-candidates according to

their quality.
e. Generate new (s+1)-candidates from a pair of s–

candidates if they share s–1 common features.

Input:

- F, L, D: as in Definition 1.
- CS: a set of classifiers to try.

Output:

- TM: the optimal tree model for classification on D.
Method:
1. Initialized TM as an empty tree.
2. For each class value i in L, and for each classifier C in

CS, find the optimal binary model <i, C, Ai, Pi, Qi> with
respect to F, L, and D*i.

3. Choose the model with the maximal value of Qi to
construct the root node of TM.

4. Update dataset D = D-i.
5. Update the class label L = L\{i}.
6. While |L| > 1, go back to step 2 to build the subtree of

the current node.

features. (Some new candidates can be replicated and should
be removed) This heuristic not only prunes the search space
but also help find the optimal subset quicker. Intuitively, if we
consider the members of a s-candidate maintained after step
2.d as “well cooperating” in classification, then the members of
the new (s+1)-candidate will likely “cooperate well”. Because
the new feature coming from one s-candidate already
“cooperates well” with s-1 common members, it likely
“cooperates well” with the left feature. As a consequence, the
quality of the new candidate will tend to increase than
decrease. (If we adjust MinQ to just well under the value of
QM, e.g., 95% of QM, then the candidates of the next generation
tend to produce better quality or not much worse quality than
the current optimal value.) Thus, each currently remaining
candidate acts as a direction to the tops of its local hills. The
more candidates are kept the more local hills can be reached,
so the higher chance we can find the global optimum; but, of
course, there will be more computational cost.

 Note that, both N and MinQ are to adjust the
greedy/exhaustive behavior of PAFS, but with different effects.
For example, we can increase N and decrease MinQ (e.g.,
MinQ = 40% of the current optimal quality) to obligate PAFS
to generate and test more candidates. That is the case when
running time is not a big concern (the dataset is small or
simple) and the classification performance is of priority. Note
that, if we set MinQ to a very small value (e.i., MinQ = 0),
then N top s-candidates will be selected. However, in such
case, the selected candidates might be of too low quality. Then,
they might not generate the promising candidates for the next
step, and we might waste time considering them. In the reverse
case (when the dataset is large, and we use the classifier of
high complexity like SVM), we can decrease N and increase
MinQ so that, PAFS will generate and test fewer candidates to
save time.

The complexity of PAFS. One can see that step 1 (filter
stage) is executed only once, and it is very quick as compared
to the whole process of PAFS. For each other step (step s),
only at most 2/)1(−× NN candidates are generated; each
candidate is tested with every parameter setting in the grid G.
As step s is repeated S time, the number of candidates to try
can be 2/)1(−×× NNS in the worst case. Thus, the
complexity of PAFS can be estimated to |)|(2 GSNO ×× ,
where |G| is the dimension of grid G.

Thus, N, S, and G are the primary factors to control the
complexity of PAFS. Increasing their sizes, PAFS will become
close to an exhaustive search; while decreasing them, PAFS
will behave like a greedy one.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental datasets
We tested our approach on a gene expression data of breast

cancer of five subtypes (Dataset1), which is not a public one,
and on an erythemato-squamous disease dataset (Dataset2),
downloaded from UCI machine learning database. They were
used [1] and [10], respectively.

Dataset1 has 13582 features and 158 samples. Each sample
corresponds to a patient profile, where each feature records the
expression of a gene and the class indicates the subtype of
cancer that the patient has. In summary, it contains 39 Basal
samples, 22 Her2 samples, 53 LumA samples, 31 LumB , and
13 normal samples. Fig. 3 presents the tree-based model
learned on this data by the approach in [1]. According to this
model, Basal is the easiest to identify with 99.36% accuracy,
followed by Normal and Her2. The classification between
LumA and LumB is said to be the hardest one, with 88.1%
accuracy.

Fig. 3. Tree-based classification model resulted from [1] for breast cancer
dataset of five subtypes.

Dataset2 is a dermatology disease data. It has 34 features
and 366 samples. There are 12 clinical and 24
histopathological attributes. 32 out of them take integer the
values 0, 1, 2, 3 indicating the degree; one is binary and
another is linear. The diseases are psoriasis (1, 112), seboreic
dermatitis (2, 61), lichen planus (3, 72), pityriasis rosea (4, 49),
cronic dermatitis (5, 52), and pityriasis rubra pilaris (6, 20).
The numbers in parentheses are class code and number of
instances, respectively.

In [10], their average classification accuracy on five
different partitions of Dataset2 is about 97% and their model
uses about 12 attributes. The best one, which can be considered
as 10-fold cross-validation, is 100% accuracy with 14
attributes.

One can realize that when transforming these datasets into
binary problems in one-against-all manners, we have to deal
with many unbalanced datasets.

B. Experimental notes
We have used Weka’s libraries and LibSVM packages [15]

to develop our own Java program, with multi-thread
programming. Gain Ratio and Information Gain is used as the
filter criterion options; K-NN and SVM-RBF (SVM for short)
as classifiers. We refer readers to references [2, 3, 4, 5, 6] for
more details about these criteria and classifiers.

In grid search, for K-NN, it is recommended to find the
optimal value of K in the range 1 to),15min(N , where N
is the number of samples. Meanwhile, for SVM, the gamma
and the cost parameters are taken from the predefined arrays,
such as {0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5} and {1, 8, 16, 64,
128}, respectively. Since trying all setting of parameters would
be time-consuming, we have running options to traverse only a
few first values of those arrays. For example, we can run PAFS
with only the first value of the parameter predefined ranges
(i.e., K = 1 for K-NN and cost = 0, gamma = 1 for SVM). In
this case, we run PAFS without grid search, and it corresponds
to running those classifiers with default parameters in Weka.

The running option setting for TCM is provided in form of
<classifiers used, criterion for filtering stage, number of
features to filter, maximum size of a feature subset (i.e.,
parameter S in PAFS), maximum number of subsets to
maintain after testing (i.e., parameter N in PAFS), with grid
search or not> as in the captions of Table I - Table V. We
evaluate the model quality in term of Matthews correlation
coefficient (MCC), one of the best scores to deal with
imbalanced data [16]. MCC is in the range [-1, 1], and the
higher the value of MCC the better the quality of classification.
We recorded also the model accuracies to comparison with the
result in [1].

PAFS is implemented in multithreading fashion. For step
2.a, if we use T threads to process Z s-candidates generated at
each step, then each thread will process about Z/T candidates.
For each feature subset A and parameter setting P, the
classification performance (accuracy/MCC) is evaluated in 10-
cross validation scheme. That is, the projected dataset D|A is
first stratified and partitioned into 10 subsets. Then, at each

time, a subset is used for testing and the combination of the 9
others is used for training. This process is repeated 10 times.

C. Results and discussions
In our study, each tree model for multi-class classification

problem is presented as a table, where each row is a binary
model. The order of the rows corresponds to the order of nodes
in the tree, and the last node is omitted. For simplicity, we
consider the overall accuracy of each tree model is the average
accuracy of its nodes except the omitted node. For example, for
the breast cancer dataset, the overall accuracy is the average of
4 nodes, since we have totally 5 subtypes. For each binary
model corresponding to a node, we tested again by Weka
software under the same setting (data, classifier, selected
features, and parameters, etc) and got exactly the same result.
Thus, there is no logical mistake in our implementation.

On Dataset1, under many running options, we obtained the
very good results: the overall accuracies are greater than 99%
and the overall MCCs are about 0.99. Most of them return the
following classification order from easiest to hardest to
classify: Basal against all Her2 against Normal, LumA and
LumB Normal against LumA and LumB LumA against
LumB. This is shown in Tables I, II, III, IV; in which class
LumB is omitted because it is the last one to identify.

Table I gives information about the result (tree model)
when using SVM as the classifier, Information Gain to filter
top 100 features at filter stage, with grid search for SVM
parameters. The maximum size of a feature subset to try is 5.
Only at most top 40 subsets are maintained after each iteration
to generate the candidates for the next iteration. Each row in
the table is a binary model. For example, the first row in Table
1 means that when classifying for a new patient, the first binary
model examines on features/genes {TFF3, AGR2} and uses
SVM with gamma = 0, cost = 1 to verify if the patient has
Basal cancer or not. This test can yield 100% of accuracy. If
the patient is predicted not to have Basal cancer, then the
binary model of the second row is used next, and so on. At the
last row, if that patient is not predicted as LumA cancer then
he/she is predicted as LumB. The overall accuracy is 99.49%.

Table II presents a perfect model with 100% accuracy
overall, using SVM. Table III presents result when using the
same running options as the case of Table I, except that {K-
NN, SVM} is the classifier space. Here, SVM is chosen if
SVM produces the same quality as K-NN. Thus, the model in
this table in almost similar to that of Table I, but the second
row is replaced by a model of K-NN which has better quality
than that of SVM in the second row of Table I. This is a tree
model using different classifiers for classification.

Table IV presents a result when running with almost the
same options as in Table I but without grid search, i.e., gamma
is set to 0 and cost is set to 1. As it shows here, without grid
search, we can still obtain higher accuracy than the result in
[1]. This supports for the effectiveness of the way that AFS
explores the feature space. However, when comparing to the
results in Table I, its accuracy and MCC is lower. This implies
that when integrating the parameter search, we can improve the
classification further. This means that searching for the optimal

model in the combination space of features and parameters is a
reasonable approach.

TABLE I. TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <SVM, INFORMATION GAIN, 100, 5, 40, WITH GRID

SEARCH>, 98.70% ACCURACY.

Class Selected features Parameters Accuracy MCC
Basal TFF3, AGR2 0, 1 100.0% 1
Her2 HMGCS1, SLC39A6,

TARS, YBX1
0.05, 64 99.16% 0.973

Normal CX3CL1, ARAP3 0, 1 100.0% 1
LumA MAD2L1, SRSF5,

CBX8, KATNB1
0.75, 8 98.81% 0.975

TABLE II. TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <SVM, INFORMATION GAIN, 150, 5, 40, WITH GRID

SEARCH>, 100% ACCURACY.

Class Selected features Parameters Accuracy MCC
Basal TFF3, AGR2 0, 1 100.0% 1
Her2 TARS, YBX1,

MDP1, ATP1A1OS
1, 1 100.0% 1

Normal CX3CL1, ARAP3 0, 1 100.0% 1
LumA SPAG5, NDC80,

LRP8, MRPS23,
NEK2, CACYBP,
RCL1, LRIG1,
HMMR

0, 16 100.0% 1

TABLE III. TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <K-NN/SVM, INFORMATION GAIN, 100, 5, 40,

WITH GRID SEARCH>, 99.70% ACCURACY.

Class Classifier Selected
features

Parameters Accuracy MCC

Basal SVM TFF3,
AGR2

0, 1 100.0% 1

Her2 K-NN C2orf54,
FAM134B,
DROSHA

2 100.0% 1

Normal SVM CX3CL1,
ARAP3

 0, 1 100.0% 1

LumA SVM MAD2L1,
SRSF5,
CBX8,
KATNB1

0.75, 8 98.81% 0.975

TABLE IV. TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <SVM, INFORMATION GAIN, 100, 5, 40, WITHOUT

GRID SEARCH>, 98.32% ACCURACY.

Class Selected features Parameters Accuracy MCC
Basal TFF3, AGR2 0, 1 100.0% 1
Her2 S100A9, BZRAP1,

THSD4, CEP55
 0, 1 99.16% 0.972

Normal CX3CL1, ARAP3 0, 1 100.0% 1
LumA NUSAP1, KIF4A,

CACYBP, UTP18
 0, 1 94.05%

0.875
Compare to the result in [1] (Fig. 3), all of our four tree

models have higher accuracy, both in average and in each
corresponding binary model. Especially, the accuracy of the
binary model for classifying LumA, and LumB (the hardest
case) in Table II, reaches 100%, about 12% higher than that of
[1]. The order of the second and the third nodes in our model
are the reversion of that in [1] since PAFS detected that Her2
cases are easier to be identified than the Normal cases.
Additionally, the model in [1] they needs 18 genes in total;
meanwhile, each of our tree models need fewer genes: 12, 17,

13, 12 genes, respectively. Even without grid search, as shown
in Table IV, our model still obtain higher accuracy. This
supports for the effectiveness of the way that AFS explores the
feature space.

In comparison the classification of LumA and LumB (the
last row) in Table I, Table II, Table III to that in Table IV, one
can see that the integration of grid search with feature subset
search has taken significant effect in improving the
classification. This means that searching for the optimal model
in the combination space of features and parameters is a
reasonable approach.

In Table V, we present the tree model learned from
Dataset2 when running with the option: <SVM, Gain ratio, 34,
4, 40, with grid search>. This option means that we did not
filter any features at filter stage (filter 40 out of 34 features).
The class labels and the features are shown as their original
code from the data source. (Class number 4 is omitted because
it is the last one to identify) Its overall accuracy is 99.26%, just
slightly smaller than that the best case in [10] but it needs only
10 features, while that in [10] requires 14 features in the best
case.

TABLE V. TREE-BASED MODEL LEARNED FROM DATASET2 BY TCM
USING RUNNING OPTIONS <SVM, GAIN RATIO, 34, 4, 40, WITH GRID SEARCH>,

99.26% ACCURACY.

Class Selected features Parameters Accuracy MCC
1 20, 22 1, 8 100.0% 1
3 6, 8 0.75, 1 100.0% 1
5 1, 15 0, 1 100.0% 1
6 1, 7 0.05, 1 100.0% 1
2 5, 26 0, 1 96.3 0.925

D. A brief results of another study.
We also applied our method on 9 breast cancer datasets, of

the Molecular Taxonomy of Breast Cancer International
Consortium Study [17], for predicting the survival time of
patient after receiving hormone and chemotherapy treatment.
Most of them contain about 400 to 500 samples, with class
imbalance in data. Previously, in [18], mRMR and SVM (in
Weka) were used to find the most informative genes for
prediction. mRMR was tried with several searching methods
such as Linear Floating Forward, Linear Floating Backward,
Greedy Stepwise and SVM was used for evaluating in wrapper
approach. The accuracies range from 66% to 84%; however,
the values of area under ROC curve (AUC) are not high in
some cases. Meanwhile, our approach can return higher
accuracies, AUC, and MCCs. In three cases, both accuracies
and MCCs increase about 20%, while in other cases, the MCCs
are doubled.

V. CONCLUSIONS AND FUTURE WORKS

The following three observations inspire the idea of PAFS.
(1) Feature selection is a key factor in pruning the search space,
reducing the noise, and increase the prediction quality, while
maintaining the characteristics of the original data. (2)
Parameter search is another technique to improve the power of
classifier and grid search is one of the suitable ways to examine
the parameter space. And (3) the classifier performance change
from one dataset to another dataset and from one parameter

setting to another. Thus, by combing the feature space and the
parameter space into one, PAFS can find the classification
model that is more optimal than the approaches exploring those
spaces separately. Its search behavior is controllable by
parameters so it cannot be too exhaustive or too greedy. Based
on PAFS and one-versus-all strategy, we presented in TCM
that makes use of the power of different classifiers to deal with
multi-class problems.

When applying the model for classification on a breast
cancer of five subtypes dataset, and on an erythemato-
squamous disease dataset, our models can yield more than 99%
accuracy but require fewer features than previous studies. This
supports that our approach is effective. Besides, PAFS can be
applied for regression problems. It can be done by replacing
the classifier with a regression method, such as K-NN, Neural
Network, SVMRegression (available in Weka) and replacing
the quality measurement (i.e., MCC in this paper) by a criterion
suitable to that regression method (e.g., Minimum least squared
error). Reference [13] is an example of applying feature
selection for regression.

In the future study, we intend to conduct more experiments
on different and larger datasets to see if our approach fit well
with sparse data or dense one. Besides, experiments on running
time and on the number of candidates generated and tested
when PAFS parameter change might give more information
about its behavior and effectiveness. We also plan to
implement PAFS in a distributed environment so that it can be
able to solve run on much larger datasets in a reasonable time.
The comparison with other new methods will be conducted as
well.

ACKNOWLEDGMENT

We thank reviewers for useful comment and suggestions so
that we can improve the paper and figure out what could be
investigated further.Acknowledgment

We thank reviewers for useful comment and suggestions so
that we can improve the paper and figure out what should be
investigated further.

REFERENCES

[1] Iman Rezaeian, Yifeng Li, Martin Crozier, Eran Andrechek, Alioune
Ngom, Luis Rueda, and LisaPorter, "Identifying informative genes for
prediction of breast cancer subtypes", Pattern Recognition in
Bioinformatics, Springer Berlin Heidelberg, 2013.

[2] Sergios Theodoridis and Konstantinos Koutroumbas, “Pattern
Recognition, 4th Edition”, Academic Press, 2009.

[3] Dustin Boswell, “An introduction to Support Vector Machine”, 2002,
PDF file available at http://dustwell.com/past-work.html.

[4] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, “A practical
guide to support vector classification”, 2003.

[5] Judea Pearl, “Causality: Models, Reasoning, and Inference”, Cambridge
University Press, 2000.

[6] Tom Mitchell, Machine Learning, McGraw Hill, 1997, pp. 52-80.
[7] Chris Ding, and Hanchuan Peng, “Minimum redundancy feature

selection from microarray gene expression data”, Journal of
Bioinformatics and Computational Biology,
Vol. 3, No. 2, 2005, pp.185-205.

[8] Hanchuan Peng, Fuhui Long, and Chris Ding, “Feature selection based
on mutual information: criteria of max-dependency, max-relevance, and

min-redundancy”, Pattern Analysis and Machine Intelligence, IEEE
Transactions, Vol. 27, No. 8, 2005, pp.1226-1238, 2005.

[9] Hui-Huang Hsu, Cheng-Wei Hsieh, and Ming-Da Lu. “Hybrid feature
selection by combining filters and wrappers”, Expert Systems with
Applications, Elsevier, Vol. 38, Issue 7, 2011, pp.8144-8150.

[10] Juanying Xie, Weixin Xie, Chunxia Wang and Xinbo Gao, “A Novel
Hybrid Feature Selection Method Based on IFSFFS and SVM for the
Diagnosis of Erythemato-Squamous Diseases”, JMLR: Workshop and
Conference Proceedings 11, 2010, pp. 142–151.

[11] Pineda-Bautista, Carrasco-Ochoa, and Martınez-Trinidad. “General
framework for class-specific feature selection”, Expert Syst Appl., Vol.
38, Issue 8, 2011, pp. 10018-10024.

[12] Hoai Bach Nguyen, Bing Xue and Peter Andreae, "Mutual Information
Estimation for Filter Based Feature Selection Using Particle Swarm
Optimization", European Conference on the Applications of
Evolutionary Computation, Springer International Publishing, 2016.

[13] Hu, Z., Bao, Y., and Xiong, T., “Comprehensive learning particle
swarm optimization based memetic algorithm for model selection in
short-term load forecasting using support vector regression”, Applied
Soft Computing, 25, 2014, pp 15-25.

[14] Rakesh Agrawal, and Ramakrishnan Srikant, "Fast algorithms for
mining association rules", Proc. 20th int. conf. very large data bases,
VLDB, Vol. 1215, 1994, pp. 487-499.

[15] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM : a library for support
vector machines”, ACM Transactions on Intelligent Systems and
Technology, 2:27:1--27:27, 2011, Software available at
http://wwsw.csie.ntu.edu.tw/~cjlin/libsvm.

[16] Giuseppe Jurman, Samantha Riccadonna, Cesare Furlanello“A
Comparison of MCC and CEN Error Measures in Multi-Class
Prediction”, PLoS One. 2012; 7(8):
e41882, 2012, doi: 10.1371/journal.pone.0041882,
PMCID: PMC3414515.

[17] Huy Q. Pham, Iman Rezaeian, Eliseos J. Mucaki, Alioune Ngom, Luis
Rueda, Peter K. Rogan, “Predicting Breast Cancer Drug Response via a
Level-wise Gene Selection Approach”, ISCB-Latin America 2016,
2016, unpublished.

[18] Rezaeian I, Mucaki EJ, Baranova K et al, “Predicting Outcomes of
Hormone and Chemotherapy in the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) Study by
Biochemically-inspired Machine Learning”, [version 1; referees: 2
approved with reservations], F1000Research 2016, 5:2124
(doi:10.12688/f1000research.9417.1).

