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Abstract— An optimal classification model for classifying on a 

given problem should comprise of a classifier, a proper feature 
subset and a parameter set such that the classifier can attain high 
prediction performance as possible. Many recent feature 
selection methods are either too exhaustive or too greedy. 
Besides, many classification approaches conduct parameter 
search after feature selection stage, resulting in the classification 
results that are not as optimal as they should. In this study, we 
propose a new greedy selection method, called Parallel Apriori-
like Feature Selection (PAFS), which searches for an optimal 
classification model in the combined space of features and 
parameters. Moreover, its greedy search behavior is controllable 
by running options so that it is flexible for different problems. 
We also devised a Tree-based Classifier Model (TCM) algorithm 
which wraps PAFS in solving multi-class problems. Our methods 
achieved excellent results when applied on two multi-class 
datasets. In particular, on a breast cancer dataset consisting of 5 
classes and 13582 features, our methods selected feature subsets 
of no more than 10 features and each with the prediction 
accuracy of at least 94%. 

Keywords— Feature selection, grid search, Parallel Apriori-like 
Feature Selection, PAFS, Tree-based Model for Multi-class 
Problem, optimal classification model search.  

I. INTRODUCTION

In reality, many machine learning tasks involve high 
dimensional data which contain thousands of features and 
millions of samples. For example, a breast cancer dataset in [1] 
has up to 13582 features, where each feature is a gene 
expression; some text classification problems involve 
thousands of m-grams. The curse of dimensionality might keep 
many powerful learning techniques such as Support Vector 
Machine (SVM) [2, 3, 4], Bayesian Network [5], K-Nearest 
Neighbors (K-NN) [2], Decision Tree [6] from being 
applicable in those cases. In such data, there are usually a lot of 
redundant and irrelevant features that can be removed. Thus, 
feature selection is one of the best remedies. This pre-
processing technique is to find the most informative subset of 
features which can still generalize the original data. As a 
consequence, the training time on the projected data can be 
significantly reduced, the result can be explained easier, and 
the prediction accuracy can be improved. Feature selection is 
especially useful in domains where there are much more 
features than samples. Such domains include written text 

analysis, bioinformatics classification/prediction, where there 
are many thousands of features but only a few tens to hundreds 
of samples. It is shown in [1, 7, 8, 9,] that, in many situations, 
only a small number among thousands of features strongly 
correlate with the target feature. However, extracting useful 
features from a universal set of hundreds or thousands of 
features is really challenging as the search space is exponential 
to the number of features. Exhaustive search is almost 
impossible; level-wise search must base on reasonable some 
stop conditions for a good quality; greedy search like Greedy 
Forward Selection might find only a local optimum. Therefore, 
in some cases, it requires a more suitable strategy to guide the 
search.

Besides, to obtain a further improvement for some learners, 
such as SVM, K-NN, there must be an optimal parameter set. 
While the parameter space still can be continuous, trying to 
find the global optimum is almost impossible. Grid search is a 
common and straightforward way to find an optimal parameter 
setting by sparsely sweeping through the parameter space. 
Moreover, the classification performance is different from one 
combination of parameters and feature subset to another. Thus, 
searching for optimal parameter after feature selection step 
probably miss the solution that should be chosen (i.e., when 
combining a feature subset that was skipped in feature 
selection stage with a suitable parameter setting, we may have 
better classification performance). Hence, it seems a good idea 
to optimize both the subset of features and the parameters by 
searching in their combination space. 

Finally, a classifier can be suitable for one problem 
(dataset) but might not for another. Thus, given a dataset, the 
optimal classification model must comprise of a classifier, the 
most informative feature subset and the optimal parameters for 
that classifier.  

Our contribution. These observations motivate us to 
propose a new method, called Parallel Apriori-like Feature 
Selection  (PAFS), that finds the optimal classification model 
for a given classifier by exploring the features space and the 
parameter space at the same time. The ideas of combining the 
spaces may not be new, the way PAFS search for the feature 
subset is. Its search behavior is oriented to the optimal results 
and is controllable by running options to avoid being too 
exhaustive or too greedy. This algorithm is mainly to cope with 
binary classification problems. To handle multi-class problems, 



we extend the tree-based model in [1] to another algorithm 
called Tree-based Classification Model for Multi-class 
Problem (TCM) which wraps PAFS and integrates the space of 
classifiers as well. It outputs a single-path tree where each node 
is a binary classification model learned by PAFS. Both PAFS 
and TCM can be implemented in parallel. When classifying, 
each binary model is applied, according to its order priority, to 
identify whether a new instance belongs to the class of that 
node or not.  

When applied for classifying on a breast cancer of five 
subtypes, our model returned accuracy of about 99%; about 5% 
more than that reported in [1] and required fewer genes. On an 
erythemato-squamous disease dataset, we obtained the 
similarly high accuracy. 

The application of our approach is not limited to 
classification problems, but it can be extended to regression 
problems as well.  

Paper organization. The rest of the paper is organized as 
follows. In section II, we briefly summary the feature selection 
approaches, and some related works on feature selection and 
on classifying breast cancer subtypes. Details of our proposed 
algorithms are presented in section III, and the behavior and 
complexity of PAFS are analyzed as well. Information about 
datasets, implementation notes, the experiment results, and 
discussion are described in section IV. Finally, in section V, we 
summary our contribution and point out what should be 
investigated further. 

II. RELATED WORKS

In this section, we first summary the feature selection 
approaches, and then highlight some recent works on feature 
selection and on breast cancer subtype classification that 
related the most to this study. 

Generally, feature selection methods are categorized into 
the following approaches. 

Filter approaches. Filter approaches can be considered as 
selecting the top features providing the most information about 
the classes, based on a particular statistic criterion. Some of the 
popular criteria are Information Gain, Gain Ratio [6], Chi-
Square [1], mRMR [7, 8]. Since the features are often 
evaluated independently from each other, these approaches are 
clearly fast. They are effective to shrink the features space, 
especially when the number of features in the dataset is large. 
However, they might not perfectly eliminate redundancy 
because the presence of one feature may reduce the impact of 
some others on the class feature. And, as they are not tailored 
to any specific classifier, in many cases, the selected features 
are used as input for another processing steps rather than as the 
final feature subset for classification [9, 10]. 

Wrapper approaches. Wrapper methods, on the other 
hand, consider a subset of features at a time and search for the 
optimal feature subset with regard to a specific classifier. Thus, 
they somehow take the between-feature dependencies into 
account. For each subset, the target classifier is trained and 
tested on the projected data to score the fitness. Various 
strategies can be applied to traverse the space of feature 

subsets, including exhaustive search and greedy searching 
methods such as Greedy Forward Selection, Greedy Backward 
Elimination, Floating With Forward Selection, Floating With 
Backward Selection are likely preferred. In greedy methods, 
starting from a subset of features, new candidates are gradually 
generated by adding/deleting a feature and then evaluated. 
Only one or two best ones are maintained to generate 
candidates for the next step and so on. The process stops when 
some conditions are met, e.g., the size of subset reaches a 
certain threshold or the decline of quality excesses a threshold. 
Basically, none of them guarantees to find the global optimum. 

Wrapper methods usually produce better performance than 
filter ones, but they require expensive computations, 
especially, when classifiers of high computational cost such as 
SVM or Bayesian Network are chosen.  

Hybrid approaches. They are the combinations of filter 
and wrapper methods. Candidate features are first selected by a 
filter criterion to prune the feature search space before a 
wrapper method is applied to find the final subset. One can see 
that they can take advantages and reduce the drawbacks of the 
two previous approaches.  

Embedded approaches. In these approaches, the search 
for an optimal feature subset is integrated with the process of 
constructing the classifier. Decision tree learning can be 
considered an instance of this method. 

Based on one-against-all strategy, the authors of [11]
applied an ensemble learning approach to deal with the multi-
class problem. The classification problem of c classes is first 
transformed into c binary classification problems. In each 
subproblem, the ith class is considered as the positive class 
while the others are combined as the negative one. Then, they 
apply traditional feature selection for each subproblem. In 
classification, all classifiers of the subproblems vote for the 
class label of the new instance. To cope with the imbalanced 
data, the class of the minority can be oversampled. They tested 
their approach with Naïve Bayes, K-NN, C4.5 on 15 datasets, 
whose number of features range from 4 to 64. Three of the 
datasets have more the 3000 samples. On average, their 
approach was better than the traditional approaches from 2% to 
3% of accuracy.  

In [1], also based one-against-all strategy, the authors 
introduced a tree-based model for classification. Its main idea 
is to transform the multi-class problems into binary problems, 
but the easiest one is chosen to build the current node. Then, 
after removing the samples of the chosen class, the remaining 
data are recursively used to build the subtree. It results in a 
single-path tree model (tree model for short) where each node 
is a binary classification model (binary model for short). When 
classifying, each binary model is used to verify whether the 
new instance belongs to the class of that node or not. If not so, 
that instance is passed down to its child node and the process 
keep going on until the class label of the instance is decided. 
They applied Chi-Square as filter criterion and SVM-RBF 
(support vector machine with radial basis kernel [2, 3]) as 
target classifier. When applied for classifying five subtypes of 
breast cancer, their approach produces about 95% accuracy. 
About five features are required for each node, and totally, 18 
features for the whole tree. 



The authors in [9] propose the following hybrid approach. 
Two subsets of features are first filtered by F-Score and 
Information Gain, respectively. Then, the intersection set (say 
S1) and the exclusive-OR set (say S2, resulted from XOR 
operator) are computed from those two feature sets. At wrapper 
stage, Greedy Backward Elimination is conducted on S1 while 
Greedy Forward Selection is executed on S2 to find the most 
potential candidates. This heuristic might come from the fact 
that the features in S1 can contain more information about the 
class than those in S2 and the subsets of the bigger size in S1
can be more promising than the smaller ones. In an experiment 
on a disorder protein data, they selected 355 out of 420 
features, but no improvement in accuracy. On a lung cancer, 
they obtained a subset of 70 out of 7129 features which 
returned 100% accuracy.  

In [10], the authors applied a hybrid feature selection 
approach, named Improved F-score and Sequential Forward 
Floating Search, for classification on six types of erythemato-
squamous diseases. A modification of F-score was first used to 
filter the feature space. Then, Sequential Forward Floating 
Search and SVM were combined during the wrapper stage. 
Grid search was conducted as well to find the optimal 
parameters for SVM. The erythemato-squamous disease 
dataset, from UCI machine learning database, contains 358 
samples with 34 features. Depend on the size of testing set 
partitioned from the data, the accuracies range from 93% to 
100%. 

Recently, there are new algorithms for feature selection 
basing on particle swarm optimization approach, such as [12, 
13]. However, the comparison between these methods and 
PAFS are out of the scope of this study. 

Study on machine learning techniques has stimulated the 
development of the public software for machine learning and 
statistic community. Among which, Weka is one of the most 
well-known (http://www.cs.waikato.ac.nz/ml/weka/). It has 
many tools for grid searching, filter and wrapper feature 
selection, and classification. Thus, many real life classification 
tasks can be solved easily via its graphical user interface. 
However, to the best of our knowledge, no built-in tool in 
Weka can combine the feature space and classifier parameter 
space as one. (At the moment of this study, the newest Weka 
version for developer is 3.9) Thus, sometimes, it hard for this 
software to help us find the optimal classification as expected.  

III. MATERIALS AND METHODS

In this section, we introduce the TCM algorithm to deal 
with multi-class classification problem. It extends the tree-
based scheme introduced in [1] to allow using different 
classifier for different binary models (node) in the same tree 
model. Each binary model consists of a class label, a classifier, 
an optimal subset of features and an optimal parameter set on 
which the given classifier can produce the optimal 
performance. PAFS, our proposed algorithm is to find such 
optimal binary model for a given binary problem and a 
classifier. The ability to find highly optimal model relies on 
exploring the combination space of features and parameters, 
instead of searching within each individual space 
consecutively. However, the main difference with the other 

mentioned works is the way PAFS traverses the search space. 
For datasets of low/high dimensionality, users can adjust the 
running parameters so that its work more exhaustive/greedy, 
while the search still orients to the likely targets. The idea of 
PAFS is adopted from Apriori algorithm [14] which is used for 
frequent itemset mining. 

Let us define some notations before describing our 
proposed algorithms. 

 Definition 1.  Given a feature set F and a set of class labels 
L, a relation or dataset D on F x L, a class label i in L, and A, 
a subset of F. Let 

- D*i denote the new dataset obtained from D by replacing 
the class label of all samples to a new label, except those 
of class i; 

- D-i denote the sub-dataset obtained by removing all 
samples of class i from D;

- D|A denote the new dataset resulting from D by projecting 
all samples on the feature set A.

Thus, D*i is the binary problem derived from D. It is similar to 
a subproblem of the approach in [10], where the sample of 
class i are the positive ones and the others are the negative 
ones.

 Definition 2. Given a two-class problem D*i, a set of 
parameters P and a real number Q. Let M = <i, C, A, P, Q> 
denote a binary model such that when using classifier C to 
train and test with parameters P on i

AD*
|  the average 

performance will be Q.  

Here, Q refers to a static measure such as accuracy, recall, 
area under roc curve.  

 Definition 3. A s-candidate is a set of s features. 

A. Tree-based Classification Model for Multi-class Problem 
Actually, PAFS can deal with multi-class problems directly, 
provided that the classifier used can handle multi-class 
problems, such as K-NN, Decision Tree, Naïve Bayes. 
However, for its application generality, PAFS should better be 
applied to two-class problems, as some classifier is originally 
designed to solve binary problems only, like SVM. Moreover, 
transforming a multi-class problem into many binary 
problems, and then finding the tree model to solve them seems 
to produce a better result than solving the original problem 
directly. The reason is that we can apply different feature 
subsets and parameters for different binary problems; instead 
of using the same setting to classifying all classes. Therefore, 
we extend the scheme for finding a tree-base model for 
classifying on multi-class problems in [1], and name this 
algorithm TCM (Fig. 1). One can see that the main step of 
TCM can be solved in parallel. 
At step 2, for each class label i in L, we find an optimal model 
to discriminate instances of class i against the others. Then, 
the optimal model yielding the highest quality will be chosen 
as the binary model of the current node (step 3). After that, 
dataset D is shrunk by removing all samples of the 



correspondingly chosen class (step 4). The class label i is 
removed from L as well (step 5). Then, the process continues 
to build the model for the subtree until only one class is left. If 
the original data consists of |L| classes then the tree model will 
have |L| nodes. The last node contains only the remaining 
class label since no more classification is needed. This is a 
best-first search heuristic to avoid considering too many 
models; otherwise, trying all permutations of the binary 
models would be very time-consuming.   

Fig. 1. TCM algorithm for constructing the optimal tree-based model for 
multi-class classification problem. Steps 2 can be implemented in 
parallel/distributed by assigning a binary problem to a 
thread/processor/computer to solve. 

B. Parallel Apriori-like Feature Selection  algorithm 
In the one-versus-all scheme in TCM, the main task is to 

find the optimal binary model <i, C, Ai, Pi, Qi> to predict 
where a new instance belongs to class i or not. Indeed, it is to 
find the optimal subset of features Ai, and the optimal 
parameters Pi for classifying on the binary classification 
problem D*i by the given classifier C. It can be done by PAFS 
algorithm which is described in Fig. 2. 

The idea of PAFS is to gradually generate the candidates 
feature subsets in a level-wise manner and select only the high-
quality candidates to generate candidates for the next step. 
Each candidate is evaluated by the given classifier, with the 
corresponding optimal parameters produced by a grid search 
step. The process keeps continuing until the candidates’ size 
excesses a threshold S or there is no more candidate to try. 
Additional stop condition can be integrated as well, e.g., the 
quality keeps decreasing over certain iterations. 

At the initializing step, the original features are filtered by 
criterion, such as Mutual Information, Gain Ratio to reduce the 
search space significantly. Each selected feature forms a 1-
candidates, which is a highly promising one. If this filter stage 
is skipped, then the 1-candidates will be selected by the 
classifier C.

At each following iteration, all of the candidates are of the 
same size (say s), and they will be tested to remove the low-
quality ones. In more details, for each such s-candidate A and 
each parameter setting, the classifier C is trained and tested on 
the projected data AD | , under 10-fold cross-validation scheme. 
To accelerate the process, PAFS can be implemented in 
parallel, where each candidate can be processed by a thread 
(steps 2.a.i); but a thread can handle many candidates. The 
optimal parameter P and its corresponding quality Q is 
returned (steps 2.a.ii). After processing A, the to-be-return 
optimal binary model is updated (step 2.a.iii). After trying all s-
candidates, we compute a new minimum quality threshold, 
MinQ, (step 2.b) which is used as a threshold to remove the 
low-quality candidates. Here, we would like the remaining 
subsets to have at least 80% of the optimal one (step 2.c). By 
this way, the new candidates generated for the next iteration 
can be more promising than the current ones, hopefully. If the 
number of tested remaining subsets is still high, we keep only 
the top-N (step 2.d). 

Fig. 2. PAFS algorithm for searching the optimal classification model for 
two-class classification problem. 

 A new (s+1)-candidate is generated for the next step by 
joining a pair of s-candidates if they share s–1 common 

Input:  
- D: a dataset of two classes. 
- C: a classifier. 
- N: the maximum number of candidates to maintain 

after each iteration. 
- S: the maximum size allowed for a feature subset. 
- G: the grid of parameters to try. 
- X: the number of features to filter. 

Output:  
M: an optimal model for classification on D. 

Method: 
1. Step 1. Apply a filter criterion to select top X features 

from the set of all features. They are the 1-candidates. 
2. Step s (initially, s =1). Execute the following steps 

until s > S or there is no more candidate to try. 
a. For each subset A among the current s-candidates  

i. Use a thread/processor/computer to run 10-
fold cross validation for classifier C on the 
projected data D|A, for each parameter 
setting  in G. 

ii. Obtain the optimal parameter P and the best 
quality Q . 

iii. If Q > QM, the quality of M, then M = <i, A, 
C, P, Q>. 

b. MinQ = 0.8*QM.  
c. Remove every s-candidate having quality smaller 

than MinQ. 
d. Keep only the top N s-candidates according to 

their quality. 
e. Generate new (s+1)-candidates from a pair of s–

candidates if they share s–1 common features.  

Input:  

- F, L, D: as in Definition 1. 
- CS: a set of classifiers to try. 

Output:

- TM: the optimal tree model for classification on D. 
Method:
1. Initialized TM as an empty tree. 
2. For each class value i in L, and for each classifier C in 

CS, find the optimal binary model <i, C, Ai, Pi, Qi> with 
respect to F, L, and D*i. 

3. Choose the model with the maximal value of Qi to 
construct the root node of TM. 

4. Update dataset D = D-i. 
5. Update the class label L = L\{i}.  
6. While |L| > 1, go back to step 2 to build the subtree of 

the current node. 



features. (Some new candidates can be replicated and should 
be removed) This heuristic not only prunes the search space 
but also help find the optimal subset quicker. Intuitively, if we 
consider the members of a s-candidate maintained after step 
2.d as “well cooperating” in classification, then the members of 
the new (s+1)-candidate will likely “cooperate well”. Because 
the new feature coming from one s-candidate already 
“cooperates well” with s-1 common members, it likely 
“cooperates well” with the left feature. As a consequence, the 
quality of the new candidate will tend to increase than 
decrease. (If we adjust MinQ to just well under the value of 
QM, e.g., 95% of QM, then the candidates of the next generation 
tend to produce better quality or not much worse quality than 
the current optimal value.) Thus, each currently remaining 
candidate acts as a direction to the tops of its local hills. The 
more candidates are kept the more local hills can be reached, 
so the higher chance we can find the global optimum; but, of 
course, there will be more computational cost.  

 Note that, both N and MinQ are to adjust the 
greedy/exhaustive behavior of PAFS, but with different effects. 
For example, we can increase N and decrease MinQ (e.g., 
MinQ = 40% of the current optimal quality) to obligate PAFS 
to generate and test more candidates. That is the case when 
running time is not a big concern (the dataset is small or 
simple) and the classification performance is of priority. Note 
that, if we set MinQ to a very small value (e.i., MinQ = 0),  
then N top s-candidates will be selected. However, in such 
case, the selected candidates might be of too low quality. Then, 
they might not generate the promising candidates for the next 
step, and we might waste time considering them. In the reverse 
case (when the dataset is large, and we use the classifier of 
high complexity like SVM), we can decrease N and increase 
MinQ so that, PAFS will generate and test fewer candidates to 
save time. 

The complexity of PAFS. One can see that step 1 (filter 
stage) is executed only once, and it is very quick as compared 
to the whole process of PAFS. For each other step (step s), 
only at most 2/)1( −× NN candidates are generated; each 
candidate is tested with every parameter setting in the grid G.
As step s is repeated S time, the number of candidates to try 
can be 2/)1( −×× NNS  in the worst case. Thus, the 
complexity of PAFS can be estimated to |)|( 2 GSNO ×× ,
where |G| is the dimension of grid G.

Thus, N, S, and G are the primary factors to control the 
complexity of PAFS. Increasing their sizes, PAFS will become 
close to an exhaustive search; while decreasing them, PAFS 
will behave like a greedy one. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Experimental datasets 
We tested our approach on a gene expression data of breast 

cancer of five subtypes (Dataset1), which is not a public one, 
and on an erythemato-squamous disease dataset (Dataset2), 
downloaded from UCI machine learning database.  They were 
used [1] and [10], respectively.  

Dataset1 has 13582 features and 158 samples. Each sample 
corresponds to a patient profile, where each feature records the 
expression of a gene and the class indicates the subtype of 
cancer that the patient has.  In summary, it contains 39 Basal 
samples, 22 Her2 samples, 53 LumA samples,  31 LumB , and 
13 normal samples. Fig. 3 presents the tree-based model 
learned on this data by the approach in [1]. According to this 
model, Basal is the easiest to identify with 99.36% accuracy, 
followed by Normal and Her2. The classification between 
LumA and LumB is said to be the hardest one, with 88.1% 
accuracy.

Fig. 3. Tree-based classification model resulted from [1] for breast cancer 
dataset of five subtypes. 



Dataset2 is a dermatology disease data. It has 34 features 
and 366 samples. There are 12 clinical and 24 
histopathological attributes. 32 out of them take integer the 
values 0, 1, 2, 3 indicating the degree; one is binary and 
another is linear. The diseases are psoriasis (1, 112), seboreic 
dermatitis (2, 61), lichen planus (3, 72), pityriasis rosea (4, 49), 
cronic dermatitis (5, 52), and pityriasis rubra pilaris (6, 20). 
The numbers in parentheses are class code and number of 
instances, respectively. 

In [10], their average classification accuracy on five 
different partitions of Dataset2 is about 97% and their model 
uses about 12 attributes. The best one, which can be considered 
as 10-fold cross-validation,  is 100% accuracy with 14 
attributes.  

One can realize that when transforming these datasets into 
binary problems in one-against-all manners, we have to deal 
with many unbalanced datasets. 

B. Experimental notes 
We have used Weka’s libraries and LibSVM packages [15] 

to develop our own Java program, with multi-thread 
programming. Gain Ratio and Information Gain is used as the 
filter criterion options; K-NN and SVM-RBF (SVM for short) 
as classifiers. We refer readers to references [2, 3, 4, 5, 6] for 
more details about these criteria and classifiers. 

In grid search, for K-NN, it is recommended to find the 
optimal value of K in the range 1 to ),15min( N , where N
is the number of samples. Meanwhile, for SVM, the gamma 
and the cost parameters are taken from the predefined arrays, 
such as {0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5} and {1, 8, 16, 64, 
128}, respectively. Since trying all setting of parameters would 
be time-consuming, we have running options to traverse only a 
few first values of those arrays. For example, we can run PAFS 
with only the first value of the parameter predefined ranges 
(i.e., K = 1 for K-NN and cost = 0, gamma = 1 for SVM). In 
this case, we run PAFS without grid search, and it corresponds 
to running those classifiers with default parameters in Weka.   

The running option setting for TCM is provided in form of 
<classifiers used, criterion for filtering stage, number of 
features to filter, maximum size of a feature subset (i.e., 
parameter S in PAFS), maximum number of subsets to 
maintain after testing (i.e., parameter N in PAFS), with grid 
search or not> as in the captions of Table I - Table V. We 
evaluate the model quality in term of Matthews correlation 
coefficient (MCC), one of the best scores to deal with 
imbalanced data [16]. MCC is in the range [-1, 1], and the 
higher the value of MCC the better the quality of classification. 
We recorded also the model accuracies to comparison with the 
result in [1]. 

PAFS is implemented in multithreading fashion. For step 
2.a, if we use T threads to process Z s-candidates generated at 
each step, then each thread will process about Z/T candidates. 
For each feature subset A and parameter setting P, the 
classification performance (accuracy/MCC) is evaluated in 10-
cross validation scheme. That is, the projected dataset D|A is 
first stratified and partitioned into 10 subsets. Then, at each 

time, a subset is used for testing and the combination of the 9 
others is used for training. This process is repeated 10 times.  

C. Results and discussions 
In our study, each tree model for multi-class classification 

problem is presented as a table, where each row is a binary 
model. The order of the rows corresponds to the order of nodes 
in the tree, and the last node is omitted. For simplicity, we 
consider the overall accuracy of each tree model is the average 
accuracy of its nodes except the omitted node. For example, for 
the breast cancer dataset, the overall accuracy is the average of 
4 nodes, since we have totally 5 subtypes. For each binary 
model corresponding to a node, we tested again by Weka 
software under the same setting (data, classifier, selected 
features, and parameters, etc) and got exactly the same result. 
Thus, there is no logical mistake in our implementation. 

On Dataset1, under many running options, we obtained the 
very good results: the overall accuracies are greater than 99% 
and the overall MCCs are about 0.99. Most of them return the 
following classification order from easiest to hardest to 
classify: Basal against all  Her2 against Normal, LumA and 
LumB  Normal against LumA and LumB  LumA against 
LumB. This is shown in Tables I, II, III, IV; in which class 
LumB is omitted because it is the last one to identify.

Table I gives information about the result (tree model) 
when using SVM as the classifier, Information Gain to filter 
top 100 features at filter stage, with grid search for SVM 
parameters. The maximum size of a feature subset to try is 5. 
Only at most top 40 subsets are maintained after each iteration 
to generate the candidates for the next iteration. Each row in 
the table is a binary model. For example, the first row in Table 
1 means that when classifying for a new patient, the first binary 
model examines on features/genes {TFF3, AGR2} and uses 
SVM with gamma = 0, cost = 1 to verify if the patient has 
Basal cancer or not. This test can yield 100% of accuracy. If 
the patient is predicted not to have Basal cancer, then the 
binary model of the second row is used next, and so on. At the 
last row, if that patient is not predicted as LumA cancer then 
he/she is predicted as LumB. The overall accuracy is 99.49%.  

Table II presents a perfect model with 100% accuracy 
overall, using SVM. Table III presents result when using the 
same running options as the case of Table I, except that {K-
NN, SVM} is the classifier space. Here, SVM is chosen if 
SVM produces the same quality as K-NN. Thus, the model in 
this table in almost similar to that of Table I, but the second 
row is replaced by a model of K-NN which has better quality 
than that of SVM in the second row of Table I. This is a tree 
model using different classifiers for classification. 

Table IV presents a result when running with almost the 
same options as in Table I but without grid search, i.e., gamma 
is set to 0 and cost is set to 1. As it shows here, without grid 
search, we can still obtain higher accuracy than the result in 
[1]. This supports for the effectiveness of the way that AFS 
explores the feature space. However, when comparing to the 
results in Table I, its accuracy and MCC is lower. This implies 
that when integrating the parameter search, we can improve the 
classification further. This means that searching for the optimal 



model in the combination space of features and parameters is a 
reasonable approach. 

TABLE I.  TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <SVM, INFORMATION GAIN, 100, 5, 40, WITH GRID 

SEARCH>, 98.70% ACCURACY.

Class Selected features Parameters Accuracy MCC 
Basal TFF3, AGR2 0, 1  100.0%  1 
Her2 HMGCS1, SLC39A6, 

TARS, YBX1 
0.05, 64  99.16% 0.973 

Normal CX3CL1, ARAP3 0, 1  100.0%  1 
LumA MAD2L1, SRSF5, 

CBX8, KATNB1 
0.75, 8  98.81%  0.975 

TABLE II.  TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <SVM, INFORMATION GAIN, 150, 5, 40, WITH GRID 

SEARCH>, 100% ACCURACY.

Class Selected features Parameters Accuracy MCC 
Basal TFF3, AGR2 0, 1  100.0%  1 
Her2 TARS, YBX1, 

MDP1, ATP1A1OS 
1, 1  100.0%  1 

Normal CX3CL1, ARAP3 0, 1  100.0%  1 
LumA SPAG5, NDC80, 

LRP8, MRPS23, 
NEK2, CACYBP, 
RCL1, LRIG1, 
HMMR

0, 16  100.0%  1 

TABLE III.  TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <K-NN/SVM, INFORMATION GAIN, 100, 5, 40,

WITH GRID SEARCH>, 99.70% ACCURACY.

Class Classifier Selected 
features 

Parameters Accuracy MCC 

Basal  SVM  TFF3, 
AGR2

0, 1  100.0% 1 

Her2  K-NN C2orf54, 
FAM134B, 
DROSHA 

2  100.0% 1 

Normal  SVM CX3CL1, 
ARAP3

 0, 1  100.0% 1 

LumA  SVM MAD2L1, 
SRSF5, 
CBX8,
KATNB1 

0.75, 8  98.81% 0.975 

TABLE IV.  TREE-BASED MODEL LEARNED FROM DATASET1 BY TCM
USING RUNNING OPTIONS <SVM, INFORMATION GAIN, 100, 5, 40, WITHOUT 

GRID SEARCH>, 98.32% ACCURACY.

Class Selected features Parameters Accuracy MCC 
Basal TFF3, AGR2  0, 1  100.0% 1 
Her2 S100A9, BZRAP1, 

THSD4, CEP55 
 0, 1  99.16% 0.972 

Normal CX3CL1, ARAP3  0, 1  100.0% 1 
LumA NUSAP1, KIF4A, 

CACYBP, UTP18 
 0, 1  94.05%  

0.875 
Compare to the result in [1] (Fig. 3), all of our four tree 

models have higher accuracy, both in average and in each 
corresponding binary model. Especially, the accuracy of the 
binary model for classifying LumA, and LumB (the hardest 
case) in Table II, reaches 100%, about 12% higher than that of 
[1]. The order of the second and the third nodes in our model 
are the reversion of that in [1] since PAFS detected that Her2 
cases are easier to be identified than the Normal cases. 
Additionally, the model in [1] they needs 18 genes in total; 
meanwhile, each of our tree models need fewer genes: 12, 17, 

13, 12 genes,  respectively. Even without grid search, as shown 
in Table IV, our model still obtain higher accuracy. This 
supports for the effectiveness of the way that AFS explores the 
feature space. 

In comparison the classification of LumA and LumB (the 
last row) in Table I, Table II, Table III to that in Table IV, one 
can see that the integration of grid search with feature subset 
search has taken significant effect in improving the 
classification. This means that searching for the optimal model 
in the combination space of features and parameters is a 
reasonable approach. 

In Table V, we present the tree model learned from 
Dataset2 when running with the option: <SVM, Gain ratio, 34, 
4, 40, with grid search>. This option means that we did not 
filter any features at filter stage (filter 40 out of 34 features). 
The class labels and the features are shown as their original 
code from the data source. (Class number 4 is omitted because 
it is the last one to identify) Its overall accuracy is 99.26%, just 
slightly smaller than that the best case in [10] but it needs only 
10 features, while that in [10] requires 14 features in the best 
case.

TABLE V.  TREE-BASED MODEL LEARNED FROM DATASET2 BY TCM
USING RUNNING OPTIONS <SVM, GAIN RATIO, 34, 4, 40, WITH GRID SEARCH>,

99.26% ACCURACY.

Class Selected features Parameters Accuracy MCC 
1  20, 22  1, 8  100.0%  1 
3  6, 8  0.75, 1  100.0%  1 
5  1, 15  0, 1  100.0%  1 
6  1, 7  0.05, 1  100.0%  1 
2  5, 26  0, 1  96.3 0.925 

D. A brief results of another study. 
We also applied our method on 9 breast cancer datasets, of 

the Molecular Taxonomy of Breast Cancer International 
Consortium Study [17], for predicting the survival time of 
patient after receiving hormone and chemotherapy treatment. 
Most of them contain about 400 to 500 samples, with class 
imbalance in data. Previously, in [18], mRMR and SVM (in 
Weka) were used to find the most informative genes for 
prediction. mRMR was tried with several searching methods 
such as Linear Floating Forward, Linear Floating Backward, 
Greedy Stepwise and SVM was used for evaluating in wrapper 
approach. The accuracies range from 66% to 84%; however, 
the values of area under ROC curve (AUC) are not high in 
some cases. Meanwhile, our approach can return higher 
accuracies, AUC, and MCCs. In three cases, both accuracies 
and MCCs increase about 20%, while in other cases, the MCCs 
are doubled. 

V. CONCLUSIONS AND FUTURE WORKS

The following three observations inspire the idea of PAFS. 
(1) Feature selection is a key factor in pruning the search space, 
reducing the noise, and increase the prediction quality, while 
maintaining the characteristics of the original data. (2) 
Parameter search is another technique to improve the power of 
classifier and grid search is one of the suitable ways to examine 
the parameter space. And (3) the classifier performance change 
from one dataset to another dataset and from one parameter 



setting to another. Thus, by combing the feature space and the 
parameter space into one, PAFS can find the classification 
model that is more optimal than the approaches exploring those 
spaces separately. Its search behavior is controllable by 
parameters so it cannot be too exhaustive or too greedy. Based 
on PAFS and one-versus-all strategy, we presented in TCM 
that makes use of the power of different classifiers to deal with 
multi-class problems.  

When applying the model for classification on a breast 
cancer of five subtypes dataset, and on an erythemato-
squamous disease dataset, our models can yield more than 99% 
accuracy but require fewer features than previous studies. This 
supports that our approach is effective. Besides, PAFS can be 
applied for regression problems. It can be done by replacing 
the classifier with a regression method, such as K-NN, Neural 
Network, SVMRegression (available in Weka) and replacing 
the quality measurement (i.e., MCC in this paper) by a criterion 
suitable to that regression method (e.g., Minimum least squared 
error). Reference [13] is an example of applying feature 
selection for regression. 

In the future study, we intend to conduct more experiments 
on different and larger datasets to see if our approach fit well 
with sparse data or dense one. Besides, experiments on running 
time and on the number of candidates  generated and tested 
when PAFS parameter change might give more information 
about its behavior and effectiveness. We also plan to 
implement PAFS in a distributed environment so that it can be 
able to solve run on much larger datasets in a reasonable time. 
The comparison with other new methods will be conducted as 
well.
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