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Abstract—RNA design is the inverse of RNA folding and it
appears to be NP-hard. In RNA design, a secondary structure is
given and the goal is to find a nucleotide sequence that will fold
into this structure. To find such sequence(s) involves exploring
the exponentially large sequence space. In literature, heuristic al-
gorithms are the standard technique for tackling the RNA design.
Heuristic algorithms enable effective and efficient exploration of
the high-dimensional sequence-structure space when searching
for candidates that fold into a given target structure. The main
goal of this paper is to investigate the use of multi-objective
criteria in SIMARD and Quality Pre-selection Strategy (QPS).
The objectives that we optimize are Hamming distance (between
designed structure and target structure) and thermodynamic free
energy. We examine the different combinations of optimization
criteria, and attempt to draw conclusions about the relationships
between them. We find that energy is a poor primary objective
but makes an excellent secondary objective. We also find that
using multi-objective pre-selection produces viable solutions in
far fewer steps than was previously possible with SIMARD.

I. INTRODUCTION

The RNA design problem is one of the NP-Hard prob-
lems [1] in the field of bioinformatics and it refers to the
procedure of determining an RNA primary sequence given its
secondary structure. Thus, it is the reverse of RNA secondary
structure prediction. As the function of RNA is determined by
its secondary structure, researchers in the field are interested
in this problem to pave the way for new biotechnology and
medicine researches such as customized drug design.

RNA secondary structure prediction is a well studied com-
putational problem [2], [3], [4], [51, [6], [7], [8], [9]. In
general, there are two types of approaches to study RNA
secondary structures: 1) the single sequence approaches which
predict the secondary structure based on experimentally deter-
mined energy parameters and 2) comparative sequence analy-
sis approaches that try to improve their results by using func-
tionally related sequences. The most popular single sequence
approach to structure prediction methodology is the minimum
free energy method. Among the different approaches, heuristic
algorithms are a very popular and successful approach when
compared to other deterministic approach. Our lab has devel-
oped a heuristic algorithm to predict RNA secondary structure
and it has shown good prediction result even in pseudoknotted
structures [10] [11] [12] [13].

Most of the RNA design and prediction problems are
structured as optimization problems. In general, they require
a long run-time. The obvious goal for improvement will be

to decrease the run-time and to increase the quality of the
solution at the same time.

Recently, we have introduced SIMARD, a RNA prediction
algorithm based on simulated annealing [14]. SIMARD is
structured as a single-objective optimization problem and
it minimized over Hamming distance between the designed
structure and desired structure. We have seen promising results
by using Hamming distance only.

In this paper, we utilized the simulated annealing framework
in SIMARD, and additionally incorporate a multi-objective
optimization approach. We examined the result of employing
both Hamming distance and free energy objectives. In the
subsequent sections, the method, experimental setup, data used
and results are expanded on in detail.

II. MULTI-OBJECTIVE OPTIMIZATION
A. Computational Intelligence for RNA Prediction and Design

Current algorithms in the field for RNA prediction and
design are generally using global/local sampling methods,
dynamic programming, stochastic searches, evolutionary algo-
rithms and context free grammars. Most of them lack a robust
optimization methodology as our previous experiments sug-
gest [14]. Thus, they generally suffer from lack of reasonable
run-time or better results.

Most RNA design algorithms are based on the heuristic
approach. Some of the well-known single objective optimiza-
tion RNA design packages are RNA-SSD [15] and INFO-
RNA [16] using local stochastic searches, RNA-ensign [17]
and improved version of RNA-ensign called IncaRNAtion [18]
to decrease time complexity using global sampling method-
ology, MODENA [19], Frnakestein [20], GGI-FOLD [21],
ERD [22] and our algorithm SIMARD [14] using evolutionary
algorithms, incaRNAfbinv [23] using fragment-based design,
and lastly antaRNA [24] which uses the ant colony optimiza-
tion technique. Recently, some researchers has developed an
online game to help with the RNA design problem [25]. They
had summarized the design efforts of tens of thousands of
human participants and three automated algorithms (RNAIn-
verse, INFO-RNA and RNA-SSD) to generate some design
principles.

B. Using MOO for RNA Design

Multi-objective optimization (MOQO) is a paradigm which
optimizes more than one objective at the same time [26]. When



the number of objectives increases or there are conflicting
objectives, optimizing them gets more difficult.

The rationale behind using MOO criteria for RNA design
comes from our previous findings as a result of SIMARD
experiments. We found that there are two separate objectives
to optimize in RNA Design problem: Hamming distance and
free energy. However, when we used simulated annealing (SA)
technique for optimization, we had to choose one of them to
optimize. Also, our experiments showed that when we choose
Hamming distance as an objective, free energy increases as
we ignore it in the optimization step. Similarly, when we
use energy as an optimization objective, Hamming distance
increases. These results brought using MOO as a new criteria
for RNA Design to optimize both Hamming distance and free
energy to our mind.

The objectives of this paper are as follows:

o To explain the methodology behind SIMARD with and
without Quality Pre-selection Strategy (QPS).

o To give experiment setup and data together with the
importance of two criteria: Hamming distance and free
energy.

« To show the correlations

« To observe the impact of using Multi-Objective Optimiza-
tion (MOO).

III. METHOD

The main RNA design framework for our algorithm is
SIMARD (Simulated Annealing RNA Design) [14]. SIMARD
uses an optimization strategy to find the optimal solution. In
the following sections, we will describe SIMARD framework
with Quality Pre-selection Strategy (QPS). This setup was
described in detail in our other paper [27]. The contribution of
this paper will be to show modification of SIMARD to accom-
modate multi-objective modification, including optimization
based on thermodynamic energies and Hamming distance.

A. SIMARD with QPS

SIMARD is a heuristic algorithm to design RNA secondary
structure. It uses Simulated Annealing in order to find an
optimal solution before the terminal condition is met. Al-
gorithm 1 shows pseudo-code for SIMARD. After a starting
solution is generated, a mutation is made to it and its fitness
is evaluated based on given criteria. The solution is accepted
or rejected based on its fitness and the current temperature of
the algorithm. The temperature is reduced over time, moving
the nature of the algorithm from exploration to exploitation.

Quality Pre-selection Strategy (QPS) is a mutation operator
for SIMARD that generates a given number of sequences
and returns the best based on given optimization criteria, dis-
carding the dominated sequences. Algorithm 2 shows pseudo-
code for QPS. QPS is flexible in two main areas: pool size
and optimization criteria. Pool size refers to the number
of sequences considered per step. The more sequences we
generate the more expensive the mutation operator is, but the
quality of the best solution is generally higher due to a larger
sample size. Optimization criteria refers to the standard by

Algorithm 1 Secondary structure design with SIMARD
1: Sequence = InitialSequence;

2: Temperature = InitialTemperature;

3: Fitness = FitnessEvaluation(Sequence);

4: while (Temperature > FinalTemperature) do

5: for (¢ = 1 to NumberOflterations) do

6: NewSequence = Mutate(Sequence);

7: Fitness = FitnessEvaluation(NewSequence);

8: A Fitness = NewFitness - Fitness;

9: . Ei)fst(a%wFitness > 0) OR (with Probability[Accept]
= eTemperature ) then

10: Fitness = NewFitness;

11: Sequence = NewSequence;

12: end if

13: end for

14: decrease Temperature;

15: end while

16: HammingDistance =
Structure);

17: FreeEnergy = FoldAndEvaluate(Sequence);

HammingDistance(NewSequence,

which each sequence is judged. The two main criteria that
could be considered are Hamming distance to target structure
and free energy.

Algorithm 2 High quality mutation selection with QPS
1: function QPS(Sequence)
2 BestSequence = Sequence;

3: initialize BestQuality;

4: for (¢ = 1 to SequencesToGenerate) do
5: NewSequence = Modify(Sequence);

6: NewQuality = Evaluate(NewSequence);
7: if (NewQuality > BestQuality) then
8: BestSequence = NewSequence;

9: BestQuality = NewQuality;

10: end if

11 Reset Sequence;

12: end for

13: return BestSequence

14: end function

B. Optimization Combinations

When performing the optimization there are two criteria that
we examine under the Multi-objective optimization (MOO)
paradigm. These two criteria are: Hamming distance to target
structure and free energy. There are a number of different com-
binations of optimization that we can test with our combination
of pre-selection and SA acceptance.

1) Hamming distance: Hamming distance is a measure of
the difference between two strings. Equation 1 specified the
calculation of the hamming between two sequences A; and
B;, where N is the total length of the strings.

N-1
Hamming_Distance = Z |A; — Byl (1)

=0
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Fig. 1. RNA secondary structure expressed visually with dot bracket notation
shown above. Image was generated using RNA-DV software [28]

Figure 1 is showing the visualization of RNA secondary
structure in both 2D structure and dot bracket format. The dot
bracket format is a string composed of three symbols: dots,
opening parentheses, and closing parentheses. This makes
computing the Hamming distance of two structures very
straight forward. Using this metrics, we can get a measure of
how similar our designed structure is to the target structure.

In our case, we want to minimize Hamming distance to
target structure, as a lower Hamming distance means that our
working structure is closer to folding into the right shape. A
Hamming distance to target structure of zero means that our
working structure is identical to our target structure. This is
one of our terminal conditions.

2) Free energy: Free energy is a measure of how stable
a structure is. The lower the free energy, the more stable the
structure. Most RNA secondary structure prediction and design
algorithms are based on free energy minimization techniques,
SIMARD can heuristically search for the structure with a free
energy close to the minimum free energy AG for a strand of
RNA, within given constraints.

SIMARD uses the thermodynamic energy model from Vi-
enna RNA package [29]. For the purposes of this paper, the
process of calculating the energy can be considered as a black
box. The most important thing to realize is that we want a
structure with as low free energy as possible. It is important
to note that there are many ways any given RNA primary
sequence can fold but we only consider the lowest possible
free energy structure.

3) Correlation and problems: In our previous studies,
we generally examined thermodynamic energy and Hamming
distance separately as the optimization parameters [14] [27].
However, according to our trials, Hamming distance to target
structure and free energy have a negative correlation. We
calculated a correlation coefficient of —0.699 from 235,226

analyzed sequences produced by SIMARD. The sequences
were all generated within the first 10,000 steps of the al-
gorithm, where its behaviour is still fairly unbiased due to
its exploratory nature. This negative correlation is easy to see
when shown a plot of Hamming distance to target structure and
free energy over the course of a SIMARD run. Figure 2 shows
this. Without QPS, whichever objective is being optimized
gradually decreases, while the other gradually increases.

In summary, because of this unexpected relationship be-
tween thermodynamic energy and Hamming distance, we
propose to optimize based on both criteria. Table I shows
the options of the different combination of the two criteria
that we explored for this paper. While there are many other
possibilities to explore, these are the ones we felt had the most
promise, and would give us the best idea of the relationships
between these values.

TABLE I
OPTIMIZATION COMBINATIONS BETWEEN THE TWO CRITERIA (HAMMING
DISTANCE AND THERMODYNAMIC ENERGY).

SIMARD optimization | QPS optimization QPS
pool
size

Hamming distance Energy 2

Energy Hamming distance 2

Hamming distance Multi-optimization method (Table II) | 2

Hamming distance Energy 3

Energy Hamming distance 3

Hamming distance Multi-optimization method (Table II) | 3

C. Experiments Setup

The primary goal of SIMARD is to produce a sequence with
Hamming distance of zero to the target structure. However,
without energy optimization from QPS, the system often
returns a sequence with poor free energy. This is why our
first experimental SIMARD configuration was to preselect an
optimal energy sequence but accept it based on Hamming
distance to target structure. Two variations of this were run:
with QPS pool size 2, and with QPS pool size 3.

For our next experimental configuration, we preselected an
optimal Hamming distance structure and accepted it based on
energy. While we realize that it is not likely going to be a
better solution, testing Hamming distance to target structure
optimization in pre-selection (QPS) and SA optimization of
energy can give us an idea of the relationship between the two
objectives. We also ran two variations of this configuration:
with QPS pool size 2, and with QPS pool size 3.

Finally, we present a novel multi-objective technique for
pre-selection with QPS, described in Table II. In essence, we
choose the best overall sequence - the one with the lowest
relative Hamming distance to target structure and free energy.
In a situation where sequence A has the lowest Hamming
distance and the second lowest energy, and sequence B has
the lowest energy and the second lowest Hamming distance,
sequence A will be selected as Hamming distance is prioritized
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Fig. 2. Solutions generated in a run of SIMARD using energy as pre-selection criteria and Hamming distance to target as SA criteria. The horizontal axis

represents Hamming distance and the vertical axis represents energy.

over energy. Once again, we also ran two variations of this
configuration: with QPS pool size 2, and with QPS pool size
3.

TABLE II
MINIMIZING MULTIPLE OBJECTIVES
Rank  Hamming distance  Free energy Ranking
1 A C A (1+2=3)
2 B A C (3+1=4)
3 C B B (2+3=5)
D. Data

We ran the experiments on sequences 1-30 from the Rfam
dataset, excluding sequence RF00023 [30]. This is because
RF00023 has lots of pseudo-knotted base pairs [20]. The Rfam
dataset contains sequences with lengths varying between 54 —
451 nt inclusive.

IV. RESULTS AND DISCUSSION
Table IIT summarized the three sets of results.

TABLE 11
THREE SETS OF EXPERIMENTS RESULTS.

Result | Pre-selection SA optimization

1 Energy Hamming distance

2 Hamming distance Energy

3 Multi-objective strategy | Hamming distance
outlined in Table II

A. Energy optimized in pre-selection, Hamming distance op-
timized in SA

In addition to having good Hamming distance, solutions
produced by this technique have large energy improvements
over Vanilla SIMARD. A pool size of 3 sees a greater
improvement of energy than a pool size of 2.

However, as the algorithm runs, the higher the pool size,
the more the energy increases near the end of the run (relative
to where it was before). This is surprising behavior that
may be caused by the strict pre-selection and exploratory
SA optimization early on in the algorithm, forcing the search
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space into a poor Hamming distance area, resolved by the
exploitative nature of the late stage of SA optimization. If this
is a case, a high pool size past a certain point is redundant
as it just drives the algorithm from the optimal space at early
stages, only to be overpowered by the strict SA optimization
at late stages of the algorithm.

A segmented run may be the answer to this, as even though
the run is driven back into a higher energy state, it is not driven
all the way back up to its initial state. With this in mind, we
could preselect energy for the early stages of the run, and then
stop pre-selecting when the run got to a certain point.

It should be noted that the rise in energy is accompanied
by a sharp fall in Hamming distance. This shows the negative
correlation between the objectives in the case of this problem.
Figure 3 shows the differences in early algorithm energy and
the rise at the end of the algorithm.

Note that the sudden rise in energy is accompanied by a
drop in Hamming distance. Also, the run with pool size 3
takes more steps. This is likely due to the negative correlation
between Hamming distance to target structure and free energy,
as the more greedy pre-selection tends to return sub-optimal
Hamming distance solutions, making a longer road to one with
Hamming distance of zero.

B. Hamming distance optimized in pre-selection, energy opti-
mized in SA

While it is clear that this technique is not optimal for de-
signing sequences, due to the larger final Hamming distance to
target structure, it can be helpful in determining the connection
between Hamming distance and energy. Our tests confirmed
our hypothesis: that energy and Hamming distance don’t have
a very meaningful connection. There are a theoretically infinite
amount of low energy structures, but they will not necessarily
be the same structure as the target.

On the other hand, when paired with Hamming distance
optimization, as is the case in the early phases of this algorithm

(when SA is in an exploratory state and accepts almost every
sequence), Hamming distance is optimized, the algorithm
is guided towards the correct structure’s low energy state.
However, as the algorithm gets more and more greedy for low
energy, it abandons the target structure and moves towards
the closest free energy structure to its current state. Firure 5
shows this phenomenon around step 1, 500. It is unlikely that
an energy focused approach will ever be the optimal solution to
the RNA design problem. Energy guided Hamming distance
optimization, on the other hand, shows great promise. It is
further explored in the following section.

C. Multi Objective pre-selection, Hamming distance optimized
in SA

This technique found sequences with Hamming distance to
target structure of zero surprisingly fast. Table V shows a
comparison between the number of steps taken to terminate be-
tween the pool size 2 and 3 runs of this technique and the pool
size 2 and 3 runs of the energy pre-selection technique(see
Section IV-A). Fewer steps are required likely due to the fact
that Hamming distance was optimized in pre-selection as well
as in SA acceptance for this method, as opposed to only in
SA acceptance for the other.

Table IV shows that free energy of solutions was also very
low. A likely reason for energy being lower when the pool size
was bigger could be that a bigger pool size skewed the overall
optimization bias towards energy (since the pool of multi-
objective optimization was growing but the SA Hamming
optimization was not becoming more strict).

Because of how quickly this run terminates, we could try
letting it run longer and increasing the weight of energy in
the pre-selection phase. This would allow us to run it for
however much time is available to us, continuing to optimize
the solution further after a viable solution is found.

V. CONCLUSION

In this paper, we explored different SIMARD configurations
using QPS. We looked at energy optimized in pre-selection
and Hamming distance optimized with SA, as well as the
opposite: Hamming distance optimized in pre-selection and
energy optimized with SA.

From these two methods we learned that Hamming distance
is a far better primary objective than energy as there are many
low energy states that are not the same as a given target
structure. We also confirmed that there is a negative correlation
between those objectives in terms of this problem. Finally, we
looked at a new multi-objective pre-selection technique, which
proved to find a solution much faster than any other explored
technique. It also outperformed vanilla SIMARD (no QPS) in
terms of free energy.

As we have discussed in previous papers, a direction that
we could go in would be to try a new secondary prediction
structure (instead of Vienna Package). We can also look at
trying to do a segmented run, or change the weight of the
objectives in our multi-objective pre-selection.
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DESIGNED STRUCTURE. THE SEQUENCES ARE ARRANGED IN ORDER OF
INCREASING LENGTH. BEST RESULTS ARE DENOTED IN BOLD.

Energy (kcal/mol)

Sequence name  Length | Multi objective pre-selection  Vanilla SIMARD
pool size 2 pool size 3

RF0008 54 -5 -10 -26
RF00029 73 -11 -16 -8
RF0005 74 -12 -14 -13
RF00027 79 -24 -29 -25
RF00019 83 -16 -18 -14
RF00014 87 -23 =27 -15
RF0006 89 -10 -15 -63
RF00026 102 -2 -2 -1
RF0001 117 -18 -23 -8
RF00021 118 =27 -38 -20
RF00020 119 =22 -24 -15
RF00016 129 -13 -15 -31
RF00015 140 -18 -20 -18
RF00022 148 -21 -30 -18
RF0002 151 -14 -13 -31
RF0007 154 -31 -36 -23
RF0003 161 -28 -34 -25
RF00013 185 -31 -47 -15
RF0004 193 -33 -37 -2
RF00025 210 -22 -30 -23
RF00012 215 -26 -36 -67
RF00017 301 -70 -99 -65
RF00030 340 -41 -49 -45
RF00028 344 -32 -41 -29
RF0009 348 -34 -39 -19
RF00010 357 -65 -79 -14
RF00018 360 -38 -49 -36
RF00011 382 -68 -75 -28
RF00024 451 -76 -76 -55




TABLE V
THE NUMBER OF STEPS, OR ATTEMPTED SOLUTIONS, BEFORE THE TERMINARY CONDITION IS MET. RESULTS SHOWN ARE THE AVERAGE OF TWO RUNS
PER SEQUENCE. THE SEQUENCES ARE ARRANGED IN ORDER OF INCREASING LENGTH. BEST RESULTS ARE DENOTED IN BOLD.

Algorithm Steps
Sequence name  Length | Multi objective pre-selection Energy pre-selection

pool size 2 pool size 3 pool size 2 pool size 3

RF0008 54 92 92 14419 30439
RF00029 73 274 319 26033 19625
RF0005 74 92 92 802 802
RF00027 79 92 92 17222 10414
RF00019 83 92 319 25279 19924
RF00014 87 92 137 70509 71296
RF0006 89 137 183 27235 26834
RF00026 102 92 46 802 802
RF0001 117 1138 1366 28762 55865
RF00021 118 92 92 30439 28837
RF00020 119 2185 2048 29534 23624
RF00016 129 2139 2048 8411 8411
RF00015 140 365 547 53343 31640
RF00022 148 183 183 1202 802
RF0002 151 1730 2231 33242 32441
RF0007 154 729 638 19807 15739
RF0003 161 2230 2412 37247 35169
RF00013 185 410 729 38878 32857
RF0004 193 137 228 802 802
RF00025 210 1366 1411 13217 20026
RF00012 215 319 410 36465 30350
RF00017 301 1320 1502 22429 18824
RF00030 340 1821 2003 48862 30439
RF00028 344 2367 2139 61678 51038
RF0009 348 1821 1639 8411 4406
RF00010 357 2641 3006 65311 65689
RF00018 360 2823 2868 25232 22028
RF00011 382 2549 2641 17222 15620
RF00024 451 2321 2958 36847 30439




