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Abstract— We present a framework for agent identity 

with a focus on structured cases and numerical levels of 

evidence and their handling. Our framework focuses on 

id-situations, where a person is judged to be the agent in 

some scenario, particularly a crime scene. An id-

situation has a constellation of associated situations 

(providing what we call an id-case) to produce the ob-

jects used in it. Our idea of a situation is modeled on 

Barwise and Perry’s situation theory. We represent our 

situations using semantic web notation because, for one 

thing, the semantic web supports a structure of partial 

information. From a numeric standpoint, we create a 

justification-based mass function from each id-situation 

and then combine the multiple functions we get from 

having multiple id-situations using Dempster-Shafer 

theory. The id-situations give a measure of similarity 

between each suspect involved and the as yet unknown 

criminal, which we adapt to get a mass function, with a 

frame of discernment that can be approximated as the 

list of suspects. We then refine our frame of discernment 

using constraints based on objects shared between the 

id-situation and its corresponding supporting situations. 

Keywords—identity; Dempster-Shafer theory; semantic 

web 

I. INTRODUCTION 

Identity is a complex, multifaceted problem with aspects 

ranging from the philosophical question of how we define 

ourselves to the practical, legal question of how we identify 

criminals. We consider only some aspects of identity, spe-

cifically how we specify information about persons, rather 

than the deeper philosophical issues involved. To notate that 

information, we enhance the framework for identity intro-

duced by Dominguez et al. [1]. Our framework examines 

how we put together persons’ actions and interactions with 

others, particularly in a criminal justice centric scenario. The 

fundamental question is how we support identity judgments.  

Computational forensics [2, 3] is relevant to the work 

reported here in a general way in that it applies computa-

tional methods to forensic science, where forensic science is 

described as “the methodological correct application of a 

broad spectrum of scientific disciplines to answer questions 

significant to the legal system” [2]. Although our goal is a 

computational framework, most of the more fundamental 

issues we address arise whether or not computational re-

sources are used.  

Our framework focuses on situations, and we represent 

situations using semantic-web standards (RDF, etc.), we 

have developed OWL ontologies for this research, and we 

use these standards in drawing inferences. We are not, how-

ever, concerned at this point with issues of how identity in 

general may be represented on the web (cf., e.g., 

owl:sameAs) as is, for example, [4]. Referential opacity, 

for example, is a notion that we are saving for future work. 

What distinguishes our work from general work on identity 

and the web is that we are concerned with the identity of 

agents both in cyber and physical environments. We are 

particularly concerned with provenance of information and 

how a case fits together to support an identity judgment. 

The SuperIdentity project is the current state-of-the-art 

in frameworks for agent identity [5]. The project is interdis-

ciplinary, considering the psychological and forensic aspects 

of identity, a focus on the relation between identity and the 

internet. To the authors’ knowledge, the SuperIdentity pro-

ject is the only other project that provides a general frame-

work for identity in which evidence for identity of any kind 

is combined. The SuperIdentity framework starts with some 

known information or element of identity, such as a 

username or email address, and transforms that element into 

others, such as by looking up an email address to find the 

associated username or phone number. If this information is 

represented as a directed graph, the transformations form the 

edges, and each element is a node. The elements are 

grouped by type, such as all usernames, into characteristics, 

multisets of elements of the same type. The set of all charac-

teristics is a person’s superidentity, an organized version of 

all known information on the individual. 

The SuperIdentity project also provides a visual repre-

sentation of how much any factor of identity can be used to 

access another, called the reachability matrix [6]. Each col-

umn in the reachability matrix is a known element of identi-
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ty or type of information, while each row is an unknown the 

user is trying to find. Each unknown is given a rating of ease 

and accuracy of accessibility when starting from the element 

in each column. For example, you can find an email address 

from a user’s social media profile that is visible to friends 

with high accuracy and medium effort.  

Any superidentity has a measure of certainty for each 

individual element and the superidentity as a whole. An 

element’s confidence is taken from its provenance; the con-

fidence measures of every element and transformation that 

came before the element in question are multiplied to de-

termine its confidence. Once characteristics are created, 

those element confidence measures can be modified based 

on how similar an element is to others within its characteris-

tic. The quality of the entire superidentity is determined 

from its number of characteristics, lack of conflict, and rein-

forcement, or amount of connection between the sets of 

nodes in the graph interpretation. 

Our framework will cover all aspects of the SuperIdentity 
framework but from a situation-focused perspective rather 
than starting with some known part of the identity. This 
different perspective lets us handle more physical elements 
of identity, such as biometrics, while the SuperIdentity 
project focuses primarily on online forms of identity. We 
also approach measures of confidence in both the individual 
elements and the superidentity as a whole differently.  

The remainder of this paper is organized as follows. The 
next section covers background, including situation theory, 
in which we formulate our cases involving identity, and data 
semantics, which provides an improvement on some aspects 
of situation theory. The background also includes semantic 
web resources (such as RDF), which we use to encode our 
information, query it, and reason about. Finally, background 
includes Dempster-Shafer theory, which we use to reason 
about evidence and uncertainty. Section 3 presents our 
running example, and the next section explains how we 
apply Dempster-Shafer theory, in both combining and 
refining evidence. Section 5 discusses partial objects 
postulated in data semantics that grow, possibly together, as 
information grows, thus providing a dynamic model for 
identity. Section 6 discusses our implementation, 
concentrating on retrieving information for an id-case and 
calculating the level of evidence for various alternatives.  
Section 7 concludes and suggests future work. 

II. BACKGROUND 

A. Situation Theory 

Our framework organizes information around situations 

as described by Barwise’s situation theory. (See [7], the 

reissue of the 1983 text that launched situation theory, and 

[8], Devlin’s systematization of situation theory.) A real 

situation is much like the layman’s definition: some happen-

ing or state in the world, which may contain an unbounded 

number of pieces of information. In contrast, an abstract 

situation is a well-defined subset of that state, made up of a 

finite number of infons, formalized pieces of information. 

Infons are notated as <<R, a1…an, l, t, i>>. R stands for a 

relation, which connects a number of objects a1 through an. 

That relation between the objects occurs at a given time, t, 

and location, l. i is the polarity, which is 0 if things are not 

thus related and 1 if they are. For example, the statement 

“the book is on the table” expresses an infon with relation 

on, objects book and table, and a positive polarity, if given a 

time and location. Infons can be parameterized, with one or 

more objects left unspecified. Situations support infons if 

the infon is true in the given situation.  

A situation can imply the existence of another situation, 

which forms a constraint. Constraints can come from nature, 

language, or societal conventions. Any sort of implicitly 

understood signal forms a constraint. For example, that an 

elevator beeping means you have reached your floor is a 

constraint; the situation of a beeping elevator implies the 

existence of a situation with that elevator reaching a given 

floor. Another example constraint is a verbal description of 

a situation, such as saying “I saw the cat climb the tree.” 

The person stating the fact is in one situation, an utterance 

situation, which is tied with a constraint to the enclosed de-

scribed situation, which is the cat climbing the tree.  

We are especially concerned with situations where 

someone in authority judges the identity of some agent (e.g., 

the culprit in a crime). We call such a judgment an id-action 

and the situation an id-situation, which is an utterance situa-

tion with, e.g., the crime scene the corresponding described 

situation. As we explain below, there are typically several 

situations that together support the id-action; we call these 

supporting situations. The id-situation, the described situa-

tion, and the supporting situations together make up what 

we call an id-case. We consider any id-action to be the as-

sertion of an identity statement even when it contains non-

linguistic elements. For example, pointing at someone and 

saying “He did it” identifies one person in two ways: as the 

target of pointing and as the object denoted by the descrip-

tion (with an understanding of what “it” denotes in this con-

text). Identity is an equivalence relation, and a collection of 

asserted identities defines equivalence classes. All the de-

noting devices in each class denote the same individual, and 

it is these equivalence classes that correspond in our ap-

proach to superidentities. 

B. Data Semantics 

While situation semantics models specific happenings in 

the real world, Landman’s [9] data semantics models facts 

that interpret the statements uttered by language users in a 

conversation. These facts are atomic propositions, describ-

ing relations between objects similarly to infons. Landman 

considers a collection of these facts to be a representation of 

the world, which is shared in conversation. We can allow 

possible facts in our representation of the world. Some pos-

sible facts are not true; they are simply facts that are not 

compatible with others. Information states are sets of com-

patible facts and are partially ordered, defining a lattice. 

(Regarding this partial order, propositions are partially or-



dered by a relation of information containment, and this 

ordering on propositions induces a partial order  on infor-

mation states such that, where s1 and s2 are information 

states, s1  s2 iff s1 contains all the information that s1 con-

tains and possibly more.) An information state grows as the 

conversation or investigation proceeds. How an information 

state grows is constrained by conditional statements, which 

are similar to the constraints in situation theory. Landman’s 

account of information growth and conditionals is particu-

larly appealing since it provides a model for how the infor-

mation from supporting situations is integrated into the id-

situation. We have worked out a way to accommodate situa-

tion theory within data semantics, by enhancing each atomic 

statement with an argument denoting the situation where it 

holds. 

C. Semantic Web Resources 

We notate situations using semantic web resources. 

Statements are given as syntactic “triples” subject property 

object, as specified by the Resource Description Framework 

(RDF) [10]. The subject and object of the triple must be 

Universal Resource Identifiers (URIs), literals, or bnodes, 

which act as placeholders for some existent objects. URIs 

are unique across the web, and can be written more general-

ly as URIrefs, each of which has a prefix and a local identi-

fier. For example, the triple id:314 rdf:type 

foaf:Person has as subject an employee URIref, and the 

property says that the subject is of the type specified by the 

object, here meaning that the URIref represents a person. 

The RDF resource descriptions are saved in a triple store. 

RDF Schema (RDFS) lets us define new RDF vocabu-

laries [11]. We can specify information about a given prop-

erty in RDFS, such as its range and domain. RDFS also 

groups resources into classes and allows for subclass rela-

tions. RDFS can apply set-theoretic relations such as union 

and intersection through subclass or subproperty relations. 

The Web Ontology Language (OWL) is an extension of 

RDFS that provides further classifications of properties and 

classes. (We use OWL 2 [12].)  

We define a number of classes and properties to notate 

situation theory with these semantic web resources. We de-

fine subclasses of class :Infon for specific types of infon, 

such as :AnalystMatchingInfon for where an analyst is 

matching crime scene evidence to biometric information 

from our suspects. The type of infon specifies the relation, 

and each of the objects involved in the infon are connected 

to the infon with properties. This lets us capture n-ary rela-

tions even though RDF properties are binary. 

Triple stores can be queried using SPARQL, which is 

similar to SQL but works with triples. SPARQL uses a 

SELECT clause to extract multiple values that fulfill speci-

fications given in a WHERE clause. We use the Jena Seman-

tic Web framework [13] to write SPARQL queries in Java. 

Semantic web resources are useful because they allow a 

freedom of expression matching the vast possibilities of 

identity. The idea that anyone can say anything about any 

topic is a motto for the semantic web [14]. We use this flex-

ibility to ensure that any facet of identity, whether on or 

offline, is describable in our framework. 

D. Dempster-Shafer Theory 

We use Dempster-Shafer theory to provide a numerical 

measure of confidence in our identities. It distributes and 

combines justification-based evidence that assigns masses to 

sets of elements, with the total mass summing to 1.0 [15]. 

Any set of elements, including singleton sets with only one 

element, with some non-zero mass assigned is called a focal 

element. Evidence can also be given to the set of all possible 

elements, which is the frame of discernment. This mass as-

signment differs from likelihood-based evidence, as used in 

probability theory, primarily in that masses in probability 

theory are only ever assigned to one individual at a time, 

essentially a singleton. Justification-based evidence allows 

for a preservation of uncertainty, represented by the assign-

ment of mass to the entire frame of discernment. 

Frames of discernment can be analyzed to create new, 

more detailed frames in refinements [16]. The analysis pro-

vides a more detailed set of information but not necessarily 

a larger or smaller one. For example, one refinement of the 

frame {A, B, C} is {A, B, C^D, C^D}, which provides 

two more specific categories without changing the total in-

formation from all focal elements. 

Dempster-Shafer theory also has functions to get a lower 

or upper bound on a set’s likelihood, respectively, belief and 

plausibility. The belief associated with a set is determined 

by adding the masses of all of its subsets. For a frame of 

discernment Θ, a mass function m, and any subset θ of Θ, 

𝐵𝑒𝑙(𝜃) = ∑ 𝑚(θ∗)θ∗⊆θ , which sum is in [0,1] as the sum of 

the masses of all focal elements is 1.0. The plausibility of a 

set is the sum of the masses of all sets that overlap with it or, 

for a frame Θ, a mass function m, and any subset θ of Θ, 

𝑃𝑙𝑎𝑢𝑠(𝜃) = ∑ 𝑚(θ∗)θ∗ s.t. θ∗∩θ≠∅ . 

We use Dempster-Shafer theory to combine evidence. It 

provides a number of rules to combine mass functions while 

maintaining uncertainty. For specifics of combination rules 

see Section IV, Work with Dempster-Shafer Theory. 

III. RUNNING EXAMPLE 

We consider a legal case in which a theft has occurred 

immediately following a party, providing a list of possible 

suspects in the form of a guest list. Evidence from the crime 

scene reveals a group photograph from a security camera 

with one guest with their hand on the door to where the val-

uables were kept and a fingerprint from that same door. This 

case can be described as a constellation of situations, center-

ing around two separate id-situations for the two pieces of 

evidence: the fingerprint and the snapshot. 

Situation s1 is the id-situation for the fingerprint, in 

which an analyst compares fingerprints on file from the par-



tygoers to the forensic one found at the crime scene. See 

Figure 1. To compare the fingerprints, each one, whether 

from the crime scene or the police department, is taken and 

handled in its own situation. Specifically, in all the situa-

tions numbered s3a-s3d, a suspect has their fingerprint taken 

by a police officer, and in situation s4, the criminal touches 

the doorknob, placing the forensic fingerprint. The crime 

scene investigation team then lifts the fingerprint from the 

doorknob for usage in this case in situation s5. 

Similarly, the id-situation for the security camera image, 

s2, is supported by its own constellation of situations. See 

Figure 2. Police take a mugshot of each suspect in situations 

s6a-s6d. Those mugshots are then compared with the security 

camera image in s2. The security camera records the group 

in situation s7, which acts as an utterance situation, describ-

ing the actual occurrence of a group standing near the door 

and someone touching the doorknob while at the party, s8. 

Situation s4, in which the fingerprint is left by touching the 

doorknob, is a part of situation s8, the larger scene of what 

occurred at that moment at the party. 

We consider a situation to provide our frame of dis-

cernment, specifically the situation in which the criminal is 

identified, parameterized to handle the different suspects. 

That situation would be an utterance situation, as in a legal 

scenario, a prosecutor would be asserting the criminal’s 

identity. The frame can also be approximated as the group 

of suspects themselves, allowing us to put a mass on an in-

dividual or group of individuals rather than a situation. 

In s1 and s2, additional fingerprint and facial photographs 

are taken for matching. For such searches to be done, search 

warrants are usually required. To obtain such warrants, law 

enforcement must demonstrate that the "situation" satisfies 

the "probable cause" requirement of the Fourth Amendment 

of the US Constitution. There are examples, however, where 

probable cause is evident and search warrants are not need-

ed. For example, a security pack in a bag of cash stolen from 

a bank will “explode,” marking the cash in red. Being cov-

ered in red dye would imply the person’s involvement in in 

the robbery and would be a constraint providing sufficient 

probable cause for additional searches. 

IV. WORK WITH DEMPSTER-SHAFER THEORY 

We now detail how Dempster-Shafer theory is used to 

combine and modify mass functions to get numerical indica-

tions of how the evidence supports alternative identity 

judgments. We consider each id-situation and its constella-

tion of associated situations to create its own mass function 

and provide evidence for the likelihood that each suspect 

was the criminal. Our scenario (Section III) provides a nu-

merical similarity measure between each suspect and the 

crime scene for each piece of evidence, which is turned into 

a mass function and normalized to sum to 1.0. Those mass 

functions would then be combined according to Dempster-

Shafer theory, as discussed in the following subsection, 

Combining Mass Functions. We then refine the frames of 

discernment and therefore modify the mass functions to 

handle the metadata for each similarity measure, which is 

discussed in the second subsection, Refinement and 

Weighting. 

 

Figure 1: The fingerprint id-case 

 
Figure 2: The mugshot id-case 

A. Combining Mass Functions 

We use Dempster’s rule for combining mass functions, 

which divides conflict between the different mass functions 

evenly among these elements and does not set it as uncer-

tainty [17]. Dempster’s rule calculates a measure of conflict 

𝐾 = ∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶≠∅  for each pair of mass functions 

m1 and m2 and all focal elements B and C. The combined 

mass function according to Dempster’s rule is 𝑚12(𝐴) =



 
∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝐴

1−𝐾
, where 1-K (with K as defined above) is 

for normalizing. We chose this combination rule because 

conflict among different pieces of evidence is likely not 

indicating that the suspect is unknown when evidence comes 

from dissimilar sources. This rule works reasonably well for 

the running example in this paper, but in other settings, oth-

er combination rules may be more useful. 

Dempster’s rule directly contrasts with a similar combi-

nation rule, Yager’s rule [18]. Its combined mass function 

would be 𝑚12(𝐴) =  ∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝐴  for all focal 

elements except the frame of discernment, which has K (rep-

resenting conflict) added. Since it applies all conflict direct-

ly to uncertainty, it would be fitting, for example, in a sce-

nario where we believed some or all of the evidence to have 

been planted to blame an innocent for the crime. 

In our running example, we assume a limited list of pos-

sible suspects, which gives us the same suspects and there-

fore the same frame of discernment in both the evidence 

from the fingerprint and from the mugshot. However, in 

other cases, a piece of evidence could lead to new suspects 

not suggested by previous evidence. Therefore, it would be 

appropriate to consider each piece of evidence as its own 

frame of discernment. One existing combination rule, 

Zhang’s center combination rule [19], takes in evidence 

from two separate frames of discernment. However, 

Zhang’s rule takes in a very specific structure of known 

information and would not be appropriate to apply to our 

framework without some adaptation of either the framework 

or the rule because we have no obvious relation between our 

different sources of evidence and therefore between our 

potential frames of discernment.  

B. Refinement and Weighting 

Once we have determined our frame of discernment, we 

refine it. Our refinements come from constraints, similar to 

what was done by Lalmas and van Rijsbergen [20]. Howev-

er, while their constraints are linguistic, based on the nature 

of their work with documents, our constraints are conven-

tional and come from the objects used to form evidence, 

which are shared between situations. By convention, if an 

object is used in evidence, it must have been properly col-

lected and handled. In a legal scenario, this is called the 

chain of custody and must be complete for evidence to be 

admissible in a court, unless there is a witness to identify the 

evidence [21]. In our framework, the collection, copying, 

and handling of the evidence form situations, refining the 

frame of discernment. The people involved in each step may 

or may not be reliable, so the masses are recalculated, low-

ering for unreliable handling, with the removed mass going 

to uncertainty. 

Our refinements were created to follow axioms that cov-

er both the mathematical aspects of Dempster-Shafer theory, 

such as that all masses sum to 1.0, as well as the legal and 

practical aspects of the framework, such as that the mass on 

a particular suspect should not increase without crime scene 

evidence suggesting guilt. We plan to express the axioms in 

informal logic to support inference. 

Some parts of the chain of custody affect the reliability 

of the entire piece of evidence, rather than the mass on any 

particular suspect. Any crime scene evidence that was plant-

ed or in some other way unreliable would set the entire 

piece of evidence in question, even if the information from 

the suspects being compared to it was perfectly reasonable. 

From a legal perspective, this would be considered to be a 

break in protocol. This could be accounted for by using a 

Dempster-Shafer combination rule that allows each piece of 

evidence to be given a weight, such as the mixing rule 

[FK02]. These weights would add to 1.0 in total and allow 

us to classify some evidence as more valuable than other 

pieces. For mass functions m1 through mn and weight func-

tions w1 through wn and focal element A, the mixing combi-

nation rule is 𝑚(𝐴) =  
1

𝑛
∑ 𝑤𝑖𝑚𝑖(𝐴)𝑛

𝑖=1 . In future work, we 

plan to incorporate elements of this combination rule to cre-

ate a more nuanced one. We will use argument schemes, 

patterned on the work by [22], to create a combination rule 

that precisely fits our framework. 

V. PEGS 

A particularly attractive feature of data semantics is how 

it handles information growth, and, indeed, it provides a 

dynamic approach to identity. We have a mix of known and 

unknown information about our culprit, and the known in-

formation grows as we discover more. We represent this as 

a partial object, specifically a peg. According to Landman 

[9], pegs have properties attached to them by the infor-

mation state, an approximation of the world based on lan-

guage and the atomic formulas being shared by language 

users. Pegs are incompletely described, with some known 

information and some given unknowns [9]. When those un-

knowns are discovered, the peg grows, and it can merge 

with other pegs if they are found to be the same. Each piece 

of evidence is likely to reveal properties of our culprit, so 

we continually grow our peg. The world as described by 

pegs is semantic, coming from shared information, which 

contrasts with the physical world mapped by infons. 

We can describe our culprit using the sematic web to no-

tate pegs. A URI, defined perhaps by a police department, 

allows the culprit to be uniquely determined but also possi-

bly combined with other pegs. The semantic web does not 

assume that a URI is a unique identifier of the piece of in-

formation; this assumption is called the non-unique name 

assumption as discussed in [14]. So the URI hung on a par-

ticular peg does not have to be the only URI hung on said 

peg. In fact, two pegs can be easily merged when represent-

ed in this way using the owl:sameAs property. In id-

actions, we combine multiple pegs, setting up an equiva-

lence relation between the peg for the culprit and the peg 

representing the suspect determined to be the criminal. We 

can also specify that two pegs are in fact separate by using 

the owl:differentFrom property. Inverse functional 



properties (of class owl:InverseFunctionalProperty) 

play a special role for identity: if P is an inverse functional 

property and we have a P x and b P x, we can infer a 
owl:sameAs b. 

VI. IMPLEMENTATION 

Our scenario provides a distance measure for facial im-

ages and for fingerprints. When, for example, the fingerprint 

from the crime scene is compared with that of a suspect, a 

vector of the values of certain features of each fingerprint is 

used. These feature vectors are identical in type: they are the 

same length, and values in corresponding positions are for 

the same feature. All values are in the interval [0,1]. We 

calculate the Manhattan distance between the two feature 

vectors and normalize by dividing by the sum of the maxima 

in each dimension so that the value is in [0,1], where identi-

cal documents would have a distance of 0. (See [23] for 

details and justifications.) To create a mass function from 

these distance measures, we first extract the distance 

measures from the triple store using SPARQL and manipu-

late them in Java. The following SPARQL is a fragment of 

the code used for that extraction. 
SELECT ?num ?distance 

WHERE 

?infon sitterms:distanceMeasure ?distance . 

?infon sitterms:fpRecorded ?fp . 

?rec biom:hasFpImage ?fp . 

?num recterms:hasRecord ?rec . 

This code retrieves a suspect’s identification number and an 

associated distance measure by determining the infon in 

which the distance measure is recorded, finding the associ-

ated fingerprint, tracking the criminal record that includes 

said fingerprint, and finding the identification number of the 

suspect with that record. With the help of our colleagues in 

the CASIS Center at North Carolina A&T State University, 

we came up with realistic sets of distances for fingerprint 

and facial-image matching. Comparison of interclass and 

intraclass distances suggested a threshold of 0.65; a finger-

print or facial image farther from the target than this is dis-

carded as a non-match. (Again, see [23] for details.) We 

obtained extremely similar results from both uniformly gen-

erated distance measures between 0 and 1 and more realistic 

distance sets, so we use the random measures from here on. 

These distance measures are then transformed into 

masses using a transformed sigmoid function 𝑦 =

1 𝑒−8(−𝑥+0.65)⁄ . Compared to usual sigmoid functions, the 

argument is scaled by -8 so that values fall in the range [0,1] 

and the value decreases with increasing x (so that greater 

distance results in less mass). We shift right by 0.65 for a 

more gradual threshold at 0.65, but actually just discard 

matches with distances over 0.65. We must still then nor-

malize to get a sum of masses of 1.0. The results of this ini-

tial mass function are shown in Table 1.  

The frame of discernment used to calculate those masses 

is then refined by following the chain of custody for the 

fingerprints. We as yet do not include any information from 

the chain of custody of the forensic fingerprint or the one 

initially located on the doorknob. Instead, we follow the 

chain of custody of each suspect’s fingerprints. The finger-

prints were compared by a forensic analyst and taken by a 

forensic professional, both of whom have some measure of 

reliability between 0 and 1.0 given to them by the police 

department, stored in our triple store as a property of the 

officer. We multiply the masses by these reliability 

measures and move the removed mass to the frame of dis-

cernment, as uncertainty. (Since the mass is being moved to 

uncertainty rather than removed altogether, no renormaliza-

tion is necessary.) See Table 1. The reliability measures 

used in Table 1 and throughout this example were randomly 

generated in [0.7,1.0]. 

Once the mass function for the fingerprint data is final-

ized, a similar process occurs on the group photograph. The 

distance measures are also retrieved, put into a sigmoid  

Suspect 

ID 

Fingerprint 

Distance 

Initial 

Mass 

Analyst 

reliability 

FP taker 

reliability 

Final 

Mass 

201 0.430 0.373 0.800 0.980 0.292 

202 0.660 0.000 0.800 0.860 0.000 

203 0.490 0.342 0.910 0.810 0.252 

204 0.570 0.286 0.800 0.860 0.197 

Table 1: Mass values obtained from fingerprint evidence, along 

each step of their determination. The final mass for the entire 

frame of discernment is 0.228, which must be included for the final 

mass to sum to 1.0. 

Fingerprint Evidence 

Suspect Mass Belief Plaus 

201 0.292 0.292 0.551 

202 0.000 0.000 0.259 

203 0.252 0.252 0.511 

204 0.197 0.197 0.456 

All 0.259 1 1 

Photographic Evidence 

Suspect Mass Belief Plaus 

201 0.503 0.503 0.678 

202 0 0 0.175 

203 0.322 0.322 0.497 

204 0 0 0.175 

All 0.175 1 1 

Combined Evidence 

Suspect Mass Belief Plaus 

201 0.532 0.532 0.605 

202 0 0 0.073 

203 0.338 0.338 0.411 

204 0.056 0.056 0.129 

All 0.073 1 1 
Table 2: Mass, belief, and plausibility (abbreviated to plaus) 

measures for the three mass functions created by our two id-

situations and their combination using Dempster’s rule 



function to get initial masses, and then modified based on 

refinements from the chain of custody of the mugshots. The 

two mass functions from the two pieces of evidence are 

combined using Dempster’s rule, as shown in Table 2.  

We also consider the case where less precise information 

on the suspects gives us non-singleton mass assignments. 

Working with the same scenario and data for fingerprints, 

we assume that we have a photograph where the culprit’s 

face is not clearly visible and all we have to go on is that the 

culprit is blond. A human would need to assign masses here 

based on inspection of the suspects rather than a more pre-

cise distance metric. As suspects 201 and 204 (and no oth-

ers) are blond, the mass function for the photograph assigns 

a mas of 0.8 to {201, 204} and 0.2 to the entire frame of 

discernment. Table 3 shows the combined mass, belief, and 

plausibility measures for a fingerprint with mass assigned as 

above and this mass function for photographs. In this sce-

nario, we assume that masses are assigned by a human in-

specting the photo. A major distinction between photos and 

fingerprints is that a photo depicts a person while a finger-

print depicts only the friction ridges on a person’s finger. A 

photo, but not a fingerprint, may thus provide information 

distinguishing a set of persons on a common property.  

Focal element Mass Belief Plausibility 

{201,204} 0.26 0.872 0.937 

{201} 0.366 0.366 0.69 

{203} 0.063 0.063 0.128 

{204} 0.247 0.247 0.571 

All 0.065 1 1 
Table 3: Combined mass, belief, and plausibility measures for a 

fingerprint with mass assigned as above and a photograph that 

transmits very little data and only differentiates between a set of 

possible suspects (201 and 204) and less likely suspects. 

From the final mass functions both here and in Table 2, 

we can draw a number of conclusions. The simplest one 

would be to set up a threshold of guilt, such as 0.5 belief, 

over which any focal elements would be suspected of being 

guilty. However, we can also determine which factors were 

contributing and note how much each step along the process 

mattered. For example, this series of mass functions could 

easily reveal corruption if a suspect’s mass was much higher 

before reliability measures were taken into account. We are 

working on a web interface to make our software available 

to students in the Criminal Justice Program at North Caroli-

na A&T State University to provide experience with crime-

scene evidence, and we hope to make this framework easily 

accessible to legal and forensic professionals and provide 

those conclusions readily. 

VII. CONCLUSION 

We present an expanded framework of identity, with a 

focus on numerical levels of evidence and their handling. 

Our framework focuses on id-situations, in which a person 

is determined the agent in some scenario, particularly a 

crime. These id-situations each have a constellation of asso-

ciated situations to produce the objects used in the id-

situation. Our idea of a situation is modeled on Barwise and 

Perry’s situation theory. We represent our situations using 

semantic web notation because, for one thing, the semantic 

web supports a structure of partial information. 

From a numeric standpoint, we create a justification-

based mass function from each id-situation and then com-

bine the multiple functions we get from having multiple id-

situations using Dempster-Shafer theory. The id-situations 

give us a measure of similarity between each suspect in-

volved and the as yet unknown criminal, which we adapt to 

get a mass function, with a frame of discernment that can be 

approximated as the list of suspects. We then refine our 

frame of discernment using constraints based on shared ob-

jects between the id-situation and its corresponding support-

ing situations. 

Turning to future work, we plan to expand the frame-

work in a number of ways. The work with data semantics 

and pegs discussed here will ideally be explored further and 

combined more completely with the usage of Dempster-

Shafer theory. We also plan to refine our usage of Demp-

ster-Shafer theory in a number of ways, such as creating our 

own combination rule specific to our framework. It is possi-

ble that our framework should be adapted somewhat to work 

well with Dempster-Shafer theory as well as the reverse, 

particularly in finding non-singleton focal elements that 

make sense with the legal aspect of the framework. 

We have considered a number of applications once the 

framework is somewhat more fleshed out. The next steps in 

terms of application would be continued work with the 

criminal justice arena by getting specific data and scenarios 

from actual past cases, rather than randomly generating our 

data. Our framework could quite easily be applied to digital 

forensics, as the semantic web notation we use was designed 

for handling online information. 

As mentioned, to the authors’ knowledge, the SuperI-

dentity project is the only other project that provides a gen-

eral framework for identity, but we approach identity differ-

ently as we focus on situations that make up a case for iden-

tity and equivalence classes defined by identity statements 

rather than sets of “characteristics” making up a superidenti-

ty. Yet we cover or plan to cover all aspects of their frame-

work that we mentioned, especially measures of identity 

quality and confidence, which we handle with Dempster-

Shafer theory.  

To some extent, our project and the SuperIdentity pro-

ject have different aims. A superidentity is all known infor-

mation on an individual, organized into characteristics, each 

of which consists of identity elements of the same type. 

These elements are connected by transformations that over-

all form a directed graph exhibiting provenance. We, in con-

trast, consider the analogue of a superidentity to be an 

equivalence class defined by identity judgments. Each such 

judgment is supported by a case in the legal sense, and a 

case is analyzed as a constellation of situations. Our concern 



with the details of a case contrasts with the SuperIdentity 

project’s broad-stroke construction of characteristics as mul-

tisets of elements and superidentities as sets of characteris-

tics. Each approach enjoys advantages when the required 

level of detail is appropriate for it. While the more detailed 

approach has the advantage of actually building cases, the 

less detailed approach would allow more individuals and 

“elements of identity” to be considered and could avoid 

constitutional issues regarding access to information to 

which the more detailed approach is subject. 
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