
Experience on Material Implication Computing With
an Electromechanical Memristor Emulator

S. Zuin1, M. Escudero-López1, F. Moll1, A. Rubio1

(1) Department of Electronic Engineering
Universitat Politècnica de Catalunya (UPC), BarcelonaTech

Barcelona, Spain
antonio.rubio@upc.edu

I. Vourkas2, G. Ch. Sirakoulis3

(2) Department of Electrical Engineering
Pontificia Universidad Católica de Chile, Santiago, Chile
(3) Department of Electrical and Computer Engineering

Democritus University of Thrace, Xanthi, Greece
iovourkas@uc.cl, gsirak@ee.duth.gr

Abstract—Memristors are being considered as a promising
emerging device able to introduce new paradigms in both data
storage and computing. In this paper the authors introduce the
concept of a quasi-ideal experimental device that emulates the
fundamental behavior of a memristor based on an electro-
mechanical organization. By using this emulator, results about
the experimental implementation of an unconventional material
implication-based data-path equivalent to the i-4004 are
presented and experimentally demonstrated. The use of the
proposed quasi-ideal device allows the evaluation of this new
computing paradigm, based on the resistance domain, without
incorporating the disturbance of process and cycle to cycle
variabilities observed in real nowadays devices that cause a limit
in yield and behavior.

Keywords—Memristor devices; Imply; Material Implication
function; Unconventional Computing.

I. INTRODUCTION
The memristor (M) is a new circuit element postulated by

Prof. Leon Chua in 1971 [1] extending the conventional set of
well-known resistance (R), inductance (L) and capacitance (C)
elements. Conceptually, it is a passive element that holds a
nonlinear relationship between flux linkage and electric
charge. This implies that memristor resistance evolves with
the previous history of charge to which it has been exposed
exhibiting an interesting nonvolatile characteristic. Memristor-
based research activity was boosted in 2008 when Hewlett
Packard connected experimental nanodevices with this, for the
time being, theoretical principle [2], opening a fascinating new
field of research and applications.

Memristor devices are a promising alternative for storage
devices because they inherently behave as nonvolatile
memory elements, with the corresponding impact on power
consumption reduction and with the unconventional
characteristic of storing data (logic states) in form of electrical
resistance. Moreover, it is back end of line (BEOL) [3]
compatible, scalable device and can achieve higher density [3]
levels of stored data than with conventional technology (MOS
devices, 6T and dynamic cells). It is also expected that
memristive devices speed could match in a near future the one
of conventional CMOS devices, focusing on a scenario of
hybrid technology. Together with the clear application as

storage device both academia and industry are focusing efforts
to orient memristors towards unconventional ways to process
data, exploring beyond-von Neumann architectures [4].
Among all computing techniques with memristors that are
being explored [5], material implication-based [6] is especially
interesting because it exploits the store/process capability in a
straightforward way. Material implication (in many cases
indicated as logic implication and notated as p → q) is based
on the IMPLY operation, a binary function declared in Table
I.

TABLE I. IMPLY TRUTH TABLE

Case p q q’ = p →q
1 0 0 1
2 0 1 1
3 1 0 0
4 1 1 1

The interest of this function when memristive circuits are
considered, comes from the fact that when the two logical
states (1, 0) are represented by the resistance of a memristor
the IMPLY function can be implemented with the simple
circuit shown in Fig. 1, where p and q (see Table I) correspond
to the logic states of the two memristors of the circuit.

In Fig. 1 the IMPLY function is performed when
synchronized pulses are applied to Vp (of amplitude Vcond1) and
Vq (of amplitude Vcond2), when the following conditions (1) are
verified (Roff and Ron stand for high and low resistance state,
respectively). It can be shown that any function can be

Fig. 1 Circuit implementation of the IMPLY function, where the logic
variables p and q correspond to the resistance states of the two memristors.

performed using the same universal circuit topology, applying
an appropriate sequence of voltage pulses Vp and Vq. The
IMPLY function together with the FALSE function (the reset
of memristors to the high resistance state) form a universal
logic set.

onGoff

setcond

setcond

RRR
VV
VV

>>

>

<

2

1

 (1)

Nevertheless, due to the fact that nowadays memristor
device technology is still not mature enough and also that the
first devices to become commercially available are quite
expensive, the development of hardware emulators has drawn
a lot of attention from researchers [7]-[9]. Emulators in fact
facilitate the experimental exploration of memristive dynamics
in circuits and systems.

In this context, here we present our memristor emulator, a
physical device of very simple implementation which behaves
as an ideal memristor, practically without any
deviation/variability and being easily parameterizable, based
on an electromechanical principle. More specifically, section
II introduces the basics about the electrical behavior of a
memristor, first from a theoretical point of view and later in
the case of a modern real device, showing the deviations of
that last one and commenting the problems that causes when
the IMPLY function is implemented with it. Next, section III
introduces our memristor emulator. Section IV deals with
details of the physical construction of the emulator and shows
a demonstration assembly composed by seven such emulators,
being an extension of the IMPLY circuit shown in Fig. 1. In
this circuit the pulsed voltages of the seven devices are
generated with a FPGA board and a specific level shifter
circuit. Section V shows how the basic IMPLY circuit can be
used to implement a generic computing data path (including
the memristors memory and processing data owing to the
IMPLY function). It is then shown how the ten key
instructions of the i-4004 processor [10] can be implemented
with this structure and our emulator, showing with detail the
required pulses sequence for one of them (INC A). Finally in
section VI, conclusions and discussion of the work are
presented.

II. BEHAVIOR OF AN IDEAL AND A REAL MEMRISTOR

A. The Ideal Memristor
A memristor is a polarised (nonreversible) dipole element

with a resistance between its terminals dependable of the past.
Fig. 2 shows the ideal behaviour of a memristor using the
developed emulator. The figure shows the i-v characteristic of
a memristor, where clearly two different resistive states can be
observed, Ron (low resistance high conductance state) and Roff
(high resistance low conductance state). In the example of Fig.
2, Ron ≈ 1100Ω and Roff ≈ 120.000Ω. The transitions from one
resistance level to the other are achieved by a voltage higher
than Vset (transition from off to on, in the example around 7V)
and lower than Vreset (transition from on to off, in the example -

2.5V) thresholds. In the margin between these two voltage
levels the device remains at a constant non-volatile resistance,
i.e. it demonstrates linear on and off states (being on or off
depending on the history of the applied voltage).

B. Modern Real Memristor Devices
Fig. 3 shows the corresponding i-v characteristic of a real

device. In the case shown we are considering a chalcogenide
memristor manufactured by the KNOWM company [11], [12].
The different colored curves correspond just to repetitive
cycles of set and reset switching, where it can be clearly
observed that the experimental device exhibits an important
time-varying variability in the four parameters of the device
(Ron, Roff, Vset and Vreset).

For the device shown in Fig. 3 (that has different
parameters than the one shown in Fig. 2), the Roff keeps quite
stable but Ron exhibits a significant random variability (with a
drift between 15.000Ω and 10.000Ω). Additionally Vset shows a
significant variability (from 1.7V to 2.2V) as well as Vreset
(from -0.1V to -0.01V, approximately). It has been earlier

Fig. 2 Memristor symbol and switching convention, along with the i-v
characteristic of an ideal memristor. The graph shows the two resistance states
(on and off) of the device as well as the threshold voltages at which the state
changes occur.

Fig. 3 Characteristic i-v for an experimental memristor, showing variability
from cycle to cycle.

analysed and shown that these state and voltage variabilities
cause a drop in the yield and behavior of the IMPLY circuit in
[13].

III. AN ELECTROMECHANICAL MEMRISTOR EMULATOR
In order to perform an experimental evaluation of the

application of the material implication principle in computing,
a physical quasi-ideal emulator circuitry has to verify the
following conditions:

• It should be able to exhibit a binary (without
intermediate states) and perfectly lineal resistance
without variability (that is Ron or Roff).

• The voltages at which the resistance state changes (Vset
and Vreset) have to be clearly defined exhibiting a
neglectible cycle to cycle variability.

• It has to exhibit an inherent nonvolatility property.

• It is desirable that the device be passive.

In this context, Fig. 4 shows the proposed emulator circuit.
Specifically, a and b represent the two terminals of the
emulator circuit, i.e. of the memristor. The basis of the
proposal is an electromechanical device TQ latching (bistable)
relay. The relay keeps the position of the contacts without the
need of any external source of energy. The connection is
changed when a pulse of current passes through the set and
reset coils in one or other sense.

The main circuit is the branch b-relay-resistors-a. The two
resistors are conventional resistors with resistances of value Ron
and Roff. The other branch, b-zeners-coils-a, corresponds to the
set and reset functions of the memristor. The two anti-series
zeners cause a potential barrier that defines the Vset and Vreset
threshold voltages. When Vab is in-between the set and reset
voltages (the zeners are off) the branch does not conduct
current. The values of the Ron and Roff of the emulated

memristor are given by the two resistors and the transition
voltages by the following (Va-Vb criteria):

γ

γ

VVV
VVV

Zreset

Zset

−−=

+=

1

2 (2)

where Vγ is the forward voltage of diodes. It is possible to adapt
the design to any set and reset voltages selecting the
appropriate zener diodes. In cases where the Vreset is near to
zero (like in the physical memristor shown in Fig. 3) it is
possible to use just one zener, being in this case:

γVV
VV

reset

Zset

−=

= 2 (3)

Taking advantage of the fact that the relay device
(Panasonic TQ 2 coils 2 circuits relay) has two independent
circuits, the second one can be used to optionally display the
state of the memristor with a green led and with the inclusion
of a switch, a push button and an external power supply, the
option to pre-set the emulator of any of the two resistance
states (on or off) is achieved. These two complementary
circuits do not affect the basic circuit shown in Fig. 4. Fig. 5
shows the scheme of the complete emulator including display
and pre-setting.

IV. PHYSICAL CONSTRUCTION OF THE EMULATOR AND
DESCRIPTION OF A 7-MEMRISTORS IMPLY CIRCUIT SET-UP

Fig. 6(a) shows the physical aspect of the developed
emulator implementation (25×25mm) on a printed circuit
board. Detail 1 (circled) shows the two Ron and Roff resistors, 2
the zener diode, 3 the relay, 4 the on and off selector switch, 5
the setting button and 6 the state indication led. Fig. 6(b) shows
the i-v characteristic of the emulator.

We next introduce our scheme for the computation between
two registers in an unconventional data path unit by using the
IMPLY principle. Let’s consider two registers A and B (in
order to simplify the physical implementation we will consider
2-bit registers). The structure of the circuit is universal for any

Fig. 4 Proposed emulator circuitry.

Fig. 5 Complete emulator circuitry including display and pre-setting facilities.

set of instructions between the registers when including the
necessary auxiliary memristors. Our approach is
straightforward. We will consider an extended IMPLY circuit
as the one shown in Fig. 1 but with 7 memristors (2 per
register, RA1/RA0 for register A, RB1/RB0 for register B and
3 auxiliary A0, A1, and A2, enough for the set of instruction of
section V) for storage of intermediate results (see Fig. 7).

The seven pulsed signals are independent and are generated
with a sequencer implemented with an FPGA board with the
appropriate level shifter buffers. Fig. 8 presents the complete
set-up implementation. In the experiment the following settings
have been used: Roff = 1kΩ, Ron = 100Ω, RG = 220Ω, Vset = 7V,
Vcond1 = 9V, Vcond2 = 6.5V, Vclear (to reset the memristors) = -
2V. The FPGA generates, for each of the 7 pulsed voltages, a
2-bit code of the applied voltage (Vcond1, Vcond2, Vclear, high
impedance), decoded by the level shifter buffer board.

V. APPLICATION OF THE UNIVERSAL DATA PATH CIRCUTRY TO
AN I-4004-LIKE INSTRUCTION SET

We will now consider the following set of instructions:
AND (A,B), OR (A,B), NAND (A,B), NOR (A,B), XOR
(A,B), R (A), R (B) INC (A), INC (B), DEC (A), DEC (B),

ADD (A,B) and SUB (A,B). It has to be observed that in this
structure there is no privileged register (as was the case in the i-
4004 with the register A or accumulator), any register (A and
B) can be source and/or destination of the instructions, R
corresponds to rotate, so we consider 10 instructions.

A. Application of Sequences and Performances
The electromechanical relays allow working with pulses at

a cadence of 250Hz. Table II shows the summary of time
performances of execution of each one of the 10 instructions.

TABLE II. INSTRUCTION REQUIREMENTS (@250HZ)

Instruction Time of
execution (ms)

of pulses
applied

of internal
operations

AND 160 40 10

OR 96 24 6

NAND 192 48 12

NOR 256 64 16

XOR 352 88 22

R 112 28 7

INC 320 80 20

DEC 320 80 20

ADD 560 140 35

SUB 832 208 52

B. The Increment Instruction (INC).
In this subsection we show in detail as a matter of example

the sequences of actions and pulses corresponding to the
instruction INC. In the shown example we apply INC to
register A, not being used consequently register B, and
auxiliary memristors A0, A1 and A2, the latter being where the
carry is stored at the end of the operation. The sequence of the
20 required operations are given by:

False A2, A0

RA0 → A0

RA1 → A0

A0 → A2

(a)

(b)

Fig. 6 (a) Physical implementation of our memristor emulator. (b) i-v
characteristic of the emulator (vertical axis: 25mA/div., horizontal axis:
2volts/div.).

Fig. 7 Universal data path implementation for a two registers data path by
using the IMPLY principle and the scheme of Fig. 1.

Fig. 8 Global implementation of a universal data path for two 2-bit registers.
It can be identified the protoboard with 7 emulators, the drivers-specific board
and the ALTERA D-2 FPGA board as a sequence generator.

False A0, A1

RA0 → A0

RA1 → A1

RA0 → RA1

A0 → A1

False A0

A1 → A0

RA1 → A0

False A1, RA1

A0 → A1

A1 → RA1

False A1, A0

RA0 → A0

A0 → A1

False RA0

A1 → RA0

For readability reasons, Fig. 9 shows the 20 operations
expressed correspondingly as pulsed voltages on the respective
memristors. The different operations are performed just by
modifying the sequence of pulses and not the architecture.
Able to work at a pulsed frequency of 250Hz, the execution
time of the instructions goes from 96ms in the case of the OR
to 208ms in the case of the SUB. Therefore, IMPLY logic can
be considered as an interesting approach to unconventional
processors. Fig. 10 shows the evolution of the memristors for
these 20 sequential operations. At the beginning the state of
A1, A0 is 10 (green, red) and after the 20th operation it is 11
(green, green), i.e. 10+1, showing the intermediate states of
memristor for the intermediate operations.

VI. CONCLUSIONS
This paper presented a laboratory implementation of a two-

register data path unit by using seven physical memristor
emulators in a straightforward implementation of the material
implication or IMPLY logic function. The result is a simple
enough, satisfactory and universal way to implement a set of
instructions that in the case of the present article were inspired
from the basic set of instructions of the i-4004 microprocessor.
The ten basic considered instructions can be implemented just
modifying the pulsed voltages sequence. Evidently the
sequence is independent of the data and also the architecture is
unique for the ten instructions and for any other that could be
selected. The memristor used consists in an electromechanical
emulator, a quasi-ideal and easily customizable device based
on a bistable relay. Such quasi-ideal memristor emulator allows
to experiment without considering process and cycle to cycle
variability limitations, present in modern nanodevices. Such
variability introduces yield limitations and imposes in many
cases memristor state refreshing. The experimentation shows
the benefits of the IMPLY as an unconventional universal
processing unit.

ACKNOWLEDGMENT
This work has been funded by the Spanish MINECO and

ERDF through project Maragda (TEC2013-45638-C3-2-R).
This work has been also partially supported by CONICYT
FONDECYT Postdoctorado No. 3160042/2016 Chilean
government research grant.

REFERENCES
[1] L. Chua, “If it’s pinched it’s a memristor,” Semicond. Sci. Technol., vol.

29, (104001), 2014.
[2] D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, “The

missing memristor found,” Nature, vol. 453, pp. 80-84, May 2008.
[3] E. Korczynski, “Knowm first to deliver configurable artificial neural

networks using bi-directional learning memristors,” Semiconductor
Manufacturing and Design, Solid State Technology, semimd.com.

[4] I. Vourkas and G.Ch. Sirakoulis, Memristor-Based Nanoelectronic
Computing Circuits and Architectures: Foreword by Leon Chua, ser.
Emergence, Complexity and Computation, New York, NY, USA:
Springer-Verlag, 2015.

[5] I. Vourkas, and G.Ch. Sirakoulis, “Emerging Memristor-based Logic
Circuit Design Approaches: A Review,” IEEE Circuits and Systems
Magazine, vol. 16, no. 3, pp. 15-30, 2016.

[6] J. Borguhetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, and
R.S. Williams, “Memristive switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, pp. 873-876, April 2010.

Fig. 9 Sequence of voltage levels applied to the five memristors used in the
INC instruction.

Fig. 10 State and evolution of the five memristors for the sequence of 20
pulses that perform the INC(10) =11.

[7] D. Biolek, “Memristor Emulators,” in Memristor Networks, A.
Adamatzky and L. Chua, Eds., Springer Int. Publishing, 2014, pp. 487-
503.

[8] C. Yang, H. Choi, S. Park, M. Pd Sah, H. Kim, and L.O. Chua, “A
memristor emulator as a replacement of a real memristor,” Semicond.
Sci. Technol., vol. 30, (015007), 2015.

[9] I. Vourkas, V. Ntinas, A. Abusleme, G.Ch. Sirakoulis, and A. Rubio, “A
Digital Memristor Emulator for FPGA-Based Artificial Neural
Networks,” 2016 IEEE Int. Verification and Security Workshop
(IVSW), Sant Feliu de Guixols, Cataluña, Spain, July 4-6, pp. 54-57.

[10] W. Aspray, “The Intel 4004 microprocessor,” IEEE Annals of the
History of Computing, vol. 19, no. 3, pp. 4-15, August 2002.

[11] R. Colin Johnson, “Memristor computer emulates brain functions”, EE
Times, 1/20/2016.

[12] Bio Inspired Technologies, “Neuro-bit: the world's first commercially
available memristor,” [Online]. Available: http://www.bioinspired.net/
[Accessed 15 December 2015].

[13] X. Fang and Y. Tang, “Circuit analysis of the memristor stateful
implication gate,” Electronic Letters, vol. 49, no. 20, pp. 1282-1283,
September 2013.

