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Abstract—Memristors are being considered as a promising 
emerging device able to introduce new paradigms in both data 
storage and computing. In this paper the authors introduce the 
concept of a quasi-ideal experimental device that emulates the 
fundamental behavior of a memristor based on an electro-
mechanical organization. By using this emulator, results about 
the experimental implementation of an unconventional material 
implication-based data-path equivalent to the i-4004 are 
presented and experimentally demonstrated. The use of the 
proposed quasi-ideal device allows the evaluation of this new 
computing paradigm, based on the resistance domain, without 
incorporating the disturbance of process and cycle to cycle 
variabilities observed in real nowadays devices that cause a limit 
in yield and behavior.  

Keywords—Memristor devices; Imply; Material Implication 
function; Unconventional Computing. 

I. INTRODUCTION 
The memristor (M) is a new circuit element postulated by 

Prof. Leon Chua in 1971 [1] extending the conventional set of 
well-known resistance (R), inductance (L) and capacitance (C) 
elements. Conceptually, it is a passive element that holds a 
nonlinear relationship between flux linkage and electric 
charge. This implies that memristor resistance evolves with 
the previous history of charge to which it has been exposed 
exhibiting an interesting nonvolatile characteristic. Memristor-
based research activity was boosted in 2008 when Hewlett 
Packard connected experimental nanodevices with this, for the 
time being, theoretical principle [2], opening a fascinating new 
field of research and applications. 

Memristor devices are a promising alternative for storage 
devices because they inherently behave as nonvolatile 
memory elements, with the corresponding impact on power 
consumption reduction and with the unconventional 
characteristic of storing data (logic states) in form of electrical 
resistance. Moreover, it is back end of line (BEOL) [3] 
compatible, scalable device and can achieve higher density [3] 
levels of stored data than with conventional technology (MOS 
devices, 6T and dynamic cells). It is also expected that 
memristive devices speed could match in a near future the one 
of conventional CMOS devices, focusing on a scenario of 
hybrid technology. Together with the clear application as 

storage device both academia and industry are focusing efforts 
to orient memristors towards unconventional ways to process 
data, exploring beyond-von Neumann architectures [4]. 
Among all computing techniques with memristors that are 
being explored [5], material implication-based [6] is especially 
interesting because it exploits the store/process capability in a 
straightforward way. Material implication (in many cases 
indicated as logic implication and notated as p → q) is based 
on the IMPLY operation, a binary function declared in Table 
I. 

TABLE I.  IMPLY TRUTH TABLE 

Case p q q’ = p →q 
1 0 0 1 
2 0 1 1 
3 1 0 0 
4 1 1 1 

The interest of this function when memristive circuits are 
considered, comes from the fact that when the two logical 
states (1, 0) are represented by the resistance of a memristor 
the IMPLY function can be implemented with the simple 
circuit shown in Fig. 1, where p and q (see Table I) correspond 
to the logic states of the two memristors of the circuit. 

In Fig. 1 the IMPLY function is performed when 
synchronized pulses are applied to Vp (of amplitude Vcond1) and 
Vq (of amplitude Vcond2), when the following conditions (1) are 
verified (Roff and Ron stand for high and low resistance state, 
respectively). It can be shown that any function can be 

 
Fig. 1  Circuit implementation of the IMPLY function, where the logic 
variables p and q correspond to the resistance states of the two memristors. 



performed using the same universal circuit topology, applying 
an appropriate sequence of voltage pulses Vp and Vq. The 
IMPLY function together with the FALSE function (the reset 
of memristors to the high resistance state) form a universal 
logic set. 
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Nevertheless, due to the fact that nowadays memristor 
device technology is still not mature enough and also that the 
first devices to become commercially available are quite 
expensive, the development of hardware emulators has drawn 
a lot of attention from researchers [7]-[9]. Emulators in fact 
facilitate the experimental exploration of memristive dynamics 
in circuits and systems. 

In this context, here we present our memristor emulator, a 
physical device of very simple implementation which behaves 
as an ideal memristor, practically without any 
deviation/variability and being easily parameterizable, based 
on an electromechanical principle. More specifically, section 
II introduces the basics about the electrical behavior of a 
memristor, first from a theoretical point of view and later in 
the case of a modern real device, showing the deviations of 
that last one and commenting the problems that causes when 
the IMPLY function is implemented with it. Next, section III 
introduces our memristor emulator. Section IV deals with 
details of the physical construction of the emulator and shows 
a demonstration assembly composed by seven such emulators, 
being an extension of the IMPLY circuit shown in Fig. 1. In 
this circuit the pulsed voltages of the seven devices are 
generated with a FPGA board and a specific level shifter 
circuit. Section V shows how the basic IMPLY circuit can be 
used to implement a generic computing data path (including 
the memristors memory and processing data owing to the 
IMPLY function). It is then shown how the ten key 
instructions of the i-4004 processor [10] can be implemented 
with this structure and our emulator, showing with detail the 
required pulses sequence for one of them (INC A). Finally in 
section VI, conclusions and discussion of the work are 
presented. 

II. BEHAVIOR OF AN IDEAL AND A REAL MEMRISTOR 

A. The Ideal Memristor 
A memristor is a polarised (nonreversible) dipole element 

with a resistance between its terminals dependable of the past. 
Fig. 2 shows the ideal behaviour of a memristor using the 
developed emulator. The figure shows the i-v characteristic of 
a memristor, where clearly two different resistive states can be 
observed, Ron (low resistance high conductance state) and Roff 
(high resistance low conductance state). In the example of Fig. 
2, Ron ≈ 1100Ω and Roff ≈ 120.000Ω. The transitions from one 
resistance level to the other are achieved by a voltage higher 
than Vset (transition from off to on, in the example around 7V) 
and lower than Vreset (transition from on to off, in the example -

2.5V) thresholds. In the margin between these two voltage 
levels the device remains at a constant non-volatile resistance, 
i.e. it demonstrates linear on and off states (being on or off 
depending on the history of the applied voltage). 

B. Modern Real Memristor Devices 
Fig. 3 shows the corresponding i-v characteristic of a real 

device. In the case shown we are considering a chalcogenide 
memristor manufactured by the KNOWM company [11], [12]. 
The different colored curves correspond just to repetitive 
cycles of set and reset switching, where it can be clearly 
observed that the experimental device exhibits an important 
time-varying variability in the four parameters of the device 
(Ron, Roff, Vset and Vreset). 

For the device shown in Fig. 3 (that has different 
parameters than the one shown in Fig. 2), the Roff keeps quite 
stable but Ron exhibits a significant random variability (with a 
drift between 15.000Ω and 10.000Ω). Additionally Vset shows a 
significant variability (from 1.7V to 2.2V) as well as Vreset 
(from -0.1V to -0.01V, approximately). It has been earlier 

 
 

 
Fig. 2  Memristor symbol and switching convention, along with the i-v 
characteristic of an ideal memristor. The graph shows the two resistance states 
(on and off) of the device as well as the threshold voltages at which the state 
changes occur. 

 
Fig. 3  Characteristic i-v for an experimental memristor, showing variability 
from cycle to cycle. 



analysed and shown that these state and voltage variabilities 
cause a drop in the yield and behavior of the IMPLY circuit in 
[13]. 

III. AN ELECTROMECHANICAL MEMRISTOR EMULATOR 
In order to perform an experimental evaluation of the 

application of the material implication principle in computing, 
a physical quasi-ideal emulator circuitry has to verify the 
following conditions: 

• It should be able to exhibit a binary (without 
intermediate states) and perfectly lineal resistance 
without variability (that is Ron or Roff). 

• The voltages at which the resistance state changes (Vset 
and Vreset) have to be clearly defined exhibiting a 
neglectible cycle to cycle variability. 

• It has to exhibit an inherent nonvolatility property. 

• It is desirable that the device be passive. 

In this context, Fig. 4 shows the proposed emulator circuit. 
Specifically, a and b represent the two terminals of the 
emulator circuit, i.e. of the memristor. The basis of the 
proposal is an electromechanical device TQ latching (bistable) 
relay. The relay keeps the position of the contacts without the 
need of any external source of energy. The connection is 
changed when a pulse of current passes through the set and 
reset coils in one or other sense. 

The main circuit is the branch b-relay-resistors-a. The two 
resistors are conventional resistors with resistances of value Ron 
and Roff. The other branch, b-zeners-coils-a, corresponds to the 
set and reset functions of the memristor. The two anti-series 
zeners cause a potential barrier that defines the Vset and Vreset 
threshold voltages. When Vab is in-between the set and reset 
voltages (the zeners are off) the branch does not conduct 
current. The values of the Ron and Roff of the emulated 

memristor are given by the two resistors and the transition 
voltages by the following (Va-Vb criteria):  
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where Vγ is the forward voltage of diodes. It is possible to adapt 
the design to any set and reset voltages selecting the 
appropriate zener diodes. In cases where the Vreset is near to 
zero (like in the physical memristor shown in Fig. 3) it is 
possible to use just one zener, being in this case:  
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Taking advantage of the fact that the relay device 
(Panasonic TQ 2 coils 2 circuits relay) has two independent 
circuits, the second one can be used to optionally display the 
state of the memristor with a green led and with the inclusion 
of a switch, a push button and an external power supply, the 
option to pre-set the emulator of any of the two resistance 
states (on or off) is achieved. These two complementary 
circuits do not affect the basic circuit shown in Fig. 4. Fig. 5 
shows the scheme of the complete emulator including display 
and pre-setting. 

IV. PHYSICAL CONSTRUCTION OF THE EMULATOR AND 
DESCRIPTION OF A 7-MEMRISTORS IMPLY CIRCUIT SET-UP 

Fig. 6(a) shows the physical aspect of the developed 
emulator implementation (25×25mm) on a printed circuit 
board. Detail 1 (circled) shows the two Ron and Roff resistors, 2 
the zener diode, 3 the relay, 4 the on and off selector switch, 5 
the setting button and 6 the state indication led. Fig. 6(b) shows 
the i-v characteristic of the emulator. 

We next introduce our scheme for the computation between 
two registers in an unconventional data path unit by using the 
IMPLY principle. Let’s consider two registers A and B (in 
order to simplify the physical implementation we will consider 
2-bit registers). The structure of the circuit is universal for any 

 
Fig. 4  Proposed emulator circuitry. 

 
Fig. 5  Complete emulator circuitry including display and pre-setting facilities. 



set of instructions between the registers when including the 
necessary auxiliary memristors. Our approach is 
straightforward. We will consider an extended IMPLY circuit 
as the one shown in Fig. 1 but with 7 memristors (2 per 
register, RA1/RA0 for register A, RB1/RB0 for register B and 
3 auxiliary A0, A1, and A2, enough for the set of instruction of 
section V) for storage of intermediate results (see Fig. 7). 

The seven pulsed signals are independent and are generated 
with a sequencer implemented with an FPGA board with the 
appropriate level shifter buffers. Fig. 8 presents the complete 
set-up implementation. In the experiment the following settings 
have been used: Roff = 1kΩ, Ron = 100Ω, RG = 220Ω, Vset = 7V, 
Vcond1 = 9V, Vcond2 = 6.5V, Vclear (to reset the memristors) = -
2V. The FPGA generates, for each of the 7 pulsed voltages, a 
2-bit code of the applied voltage (Vcond1, Vcond2, Vclear, high 
impedance), decoded by the level shifter buffer board. 

V. APPLICATION OF THE UNIVERSAL DATA PATH CIRCUTRY TO 
AN I-4004-LIKE INSTRUCTION SET  

We will now consider the following set of instructions: 
AND (A,B), OR (A,B), NAND (A,B), NOR (A,B), XOR 
(A,B), R (A), R (B) INC (A), INC (B), DEC (A), DEC (B), 

ADD (A,B) and SUB (A,B). It has to be observed that in this 
structure there is no privileged register (as was the case in the i-
4004 with the register A or accumulator), any register (A and 
B) can be source and/or destination of the instructions, R 
corresponds to rotate, so we consider 10 instructions. 

A. Application of Sequences and Performances 
The electromechanical relays allow working with pulses at 

a cadence of 250Hz. Table II shows the summary of time 
performances of execution of each one of the 10 instructions. 

TABLE II.  INSTRUCTION REQUIREMENTS (@250HZ) 

Instruction Time of 
execution (ms) 

# of pulses 
applied 

# of internal 
operations 

AND 160 40 10 

OR 96 24 6 

NAND 192 48 12 

NOR 256 64 16 

XOR 352 88 22 

R 112 28 7 

INC 320 80 20 

DEC 320 80 20 

ADD 560 140 35 

SUB 832 208 52 

B. The Increment Instruction (INC). 
In this subsection we show in detail as a matter of example 

the sequences of actions and pulses corresponding to the 
instruction INC. In the shown example we apply INC to 
register A, not being used consequently register B, and 
auxiliary memristors A0, A1 and A2, the latter being where the 
carry is stored at the end of the operation. The sequence of the 
20 required operations are given by: 

 

False A2, A0 

RA0 → A0 

RA1 → A0 

A0 → A2 

 
(a) 

 

 
(b) 

Fig. 6  (a) Physical implementation of our memristor emulator. (b) i-v 
characteristic of the emulator (vertical axis: 25mA/div., horizontal axis: 
2volts/div.). 

 
Fig. 7  Universal data path implementation for a two registers data path by 
using the IMPLY principle and the scheme of Fig. 1. 

 
Fig. 8  Global implementation of a universal data path for two 2-bit registers. 
It can be identified the protoboard with 7 emulators, the drivers-specific board 
and the ALTERA D-2 FPGA board as a sequence generator. 



False A0, A1 

RA0 → A0 

RA1 → A1 

RA0 → RA1 

A0 → A1 

False A0 

A1 → A0 

RA1 → A0 

False A1, RA1 

A0 → A1 

A1 → RA1 

False A1, A0 

RA0 → A0 

A0 → A1 

False RA0 

A1 → RA0 

For readability reasons, Fig. 9 shows the 20 operations 
expressed correspondingly as pulsed voltages on the respective 
memristors. The different operations are performed just by 
modifying the sequence of pulses and not the architecture. 
Able to work at a pulsed frequency of 250Hz, the execution 
time of the instructions goes from 96ms in the case of the OR 
to 208ms in the case of the SUB. Therefore, IMPLY logic can 
be considered as an interesting approach to unconventional 
processors. Fig. 10 shows the evolution of the memristors for 
these 20 sequential operations. At the beginning the state of 
A1, A0 is 10 (green, red) and after the 20th operation it is 11 
(green, green), i.e. 10+1, showing the intermediate states of 
memristor for the intermediate operations. 

VI. CONCLUSIONS 
This paper presented a laboratory implementation of a two-

register data path unit by using seven physical memristor 
emulators in a straightforward implementation of the material 
implication or IMPLY logic function. The result is a simple 
enough, satisfactory and universal way to implement a set of 
instructions that in the case of the present article were inspired 
from the basic set of instructions of the i-4004 microprocessor. 
The ten basic considered instructions can be implemented just 
modifying the pulsed voltages sequence. Evidently the 
sequence is independent of the data and also the architecture is 
unique for the ten instructions and for any other that could be 
selected. The memristor used consists in an electromechanical 
emulator, a quasi-ideal and easily customizable device based 
on a bistable relay. Such quasi-ideal memristor emulator allows 
to experiment without considering process and cycle to cycle 
variability limitations, present in modern nanodevices. Such 
variability introduces yield limitations and imposes in many 
cases memristor state refreshing. The experimentation shows 
the benefits of the IMPLY as an unconventional universal 
processing unit.  
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