
Concurrently Searching Branches in Software Tests Generation through Multitask
Evolution

Ramon Sagarna
Rolls-Royce@NTU Corporate Lab c/o

School of Computer Science and Engineering
Nanyang Technological University

Singapore 639798
Email: saramon@ntu.edu.sg

Ong Yew-Soon
Rolls-Royce@NTU Corporate Lab c/o

School of Computer Science and Engineering
Nanyang Technological University

Singapore 639798
Email: asysong@ntu.edu.sg

Abstract—Multitask evolutionary computation (MT-EC) has
been recently identified as a potentially useful paradigm for
significant real-world domains. One such domain is the field
of software testing. Although a number of evolutionary ap-
proaches exist already, there is a lack of strategies that can
leverage knowledge from different sources to enhance the
search process. In this work, we focus on branch testing
and explore the capability of MT-EC to guide the search
by exploiting inter-branch information. To the best of our
knowledge, this is the first application of MT-EC to real-world
problems with more than two tasks. Precisely, we evince that
selection, together with the preference relation used to compare
individuals, form a mechanism capable of achieving a con-
current search for the branches while exploiting inter-branch
knowledge in the process. Further, we demonstrate that the
intensity of the transfer can be altered with the implemented
selection. The experimental results on benchmark programs
suggest that MT-EC can be specially useful in situations where
the budget for the search process is limited.

1. Introduction

Recently, the potential of multitask optimization to ad-
dress application domains of practical significance has been
put forward [1]. Different to multiobjective optimization, in
the multitask scenario we are given a set of functions and
the goal is to find a set of solutions, each of which optimizes
a function.

A prominent real-world problem that remarkably fits in
with this scenario arises from the domain of software testing.
Namely, the generation of the inputs to be applied to a pro-
gram under test is a main concern. Since exhaustive testing
is cost prohibitive in general, test inputs are sought with
the aim of satisfying an adequacy criterion that addresses a
particular aspect of the program [2], [3]. This often turns the
generation of the inputs into a non-trivial task. Further, if
performed manually - as it remains largely in the industry -
it becomes time-consuming, labor-intensive and error-prone
[3], [4], [5], so efforts have been addressed towards its
automation. One alternative that has proven effective over

the last decade and a half is Search Based Software Test
Data Generation (SBSTDG) [5], which relies on the usage
of search heuristics for the selection of the appropriate test
inputs [6], [7], [8]. Whilst a number of testing criteria have
been faced, branch testing has been the main subject of study
to date [9], [10]. This criterion is broadly used, it is part
of well-known standards such as ANSI/IEEE 1008-2002
[11] and RTCA/DO-178B [12], and its relevance prevails
nowadays [13].

In spite of their success, SBSTDG generators are usually
advanced randomized heuristics for which a complete analy-
sis is non-trivial. Since this hampers the design of improved
approaches, the SBSTDG community has called for feasible
strategies to select or adapt the search method [10], [14].
Casting the software testing problem as multitask optimiza-
tion, one direction to study is the exploitation of the inter-
tasks parallelism by leveraging the information of a task
that is potentially beneficial for another. Interestingly, we
observe that one of the earliest and most popular SBSTDG
approaches already makes use of such inter-task parallelism
during the search [7]. However, we find that inter-task
information is not used intensively to guide the search of
the tasks in a concurrent manner. This makes the method
rather restrictive in the way of exploiting the relationships
among tasks. Further, the information exchange across tasks
is handled through archives, which adds to the complexity
of the design and of the parameter tuning.

Recently, a number of research efforts based on evolu-
tionary computation have shown highly effective in leverag-
ing inter-task knowledge during the search [1]. Such multi-
task evolutionary computation (MT-EC) approaches depict a
flexible framework relying on evolutionary mechanisms for
concurrently evolving and actively transferring the informa-
tion across tasks. In the present work, we propose a MT-EC
approach to SBSTDG as a means to achieve a simplified
multitask generator. We will restrict ourselves to branch
testing, although the approach can be extended to other
testing criteria. To the best of our knowledge, this is the
first attempt to apply MT-EC to a real-world problem with
more than two tasks. It thus contributes to demonstrating
the feasibility of this paradigm for real-world scenarios.

Aiming at simplified multitasking, we also contribute to
elucidating the evolutionary mechanisms by which effec-
tive inter-task transfer can be achieved within the MT-EC
framework. In previous works, such transfer has been shown
to be attained through variation operators, e.g. crossover
[1]. Here, we unveil selection as another alternative. More
precisely, we evince that the preference relation used to
compare individuals, jointly with the selection operator, but
with no additional evolutionary operators, allow to accom-
plish inter-task transfer in an effective search. Further, we
demonstrate that the intensity of the transfer can be altered
with the implemented selection. In particular, we evaluate
two extreme selection schemes: one based on the evaluation
of one task only, and another based on all the tasks, and
observe that the former leads to lower transfer intensity than
the latter.

The rest of the paper is organized as follows. Section 2
introduces the SBSTDG approach to branch testing, together
with the early multitask approach in [7]. In Section 3.3, after
motivating MT-EC for SBSTDG, some basic concepts on
MT-EC are outlined, followed by a description of the two
selection schemes and the MT-EC algorithm we employ.
Section 4 presents an empirical study on the effectiveness of
MT-EC for branch testing, and on the impact of the selection
on inter-task transfer. We finish with concluding remarks in
Section 5.

2. Search-based Software Test Data Genera-
tion

The field of Search Based Software Test Data Generation
(SBSTDG) aims at selecting the test inputs that fulfill a
testing criterion by making use of search heuristics in the
process [5]. Hereafter, we concentrate on branch testing.

Given the code of a program, a branch refers to one of
the truth values of the expression in a conditional statement
[15]. The coverage of a branch alludes then to a program
execution with an input such that the control flow brings
about the branch. In the branch testing problem, the goal is
to find a subset of the input domain maximizing the number
of branches covered. Note that the set of solutions for this
optimization problem may be huge, but essentially finite due
to computational limits for data representations. Typically,
the value of a solution is given by the percentage of covered
branches. This does not imply though that 100% coverage
is optimal, as a branch may be infeasible, i.e. no input
can cover it. Since the problem of discovering infeasibility
is undecidable [2], [15], the true optimal percentage is
unknown in general and 100% becomes just an upper bound.

It is sufficient for a solution of the branch testing
problem to have one test input per branch. Thus, the idea
underlying many SBSTDG works is to seek the coverage
of each branch by assigning it an optimization problem.
We follow here a widespread formulation (see [5], [9] and
references therein).

2.1. Branch Coverage Optimization Problem For-
mulation

In order to work with a comprehensive model, we will
represent the potential variations of the control flow with
a control flow graph (CFG) (V,A), where V is the set of
vertices and A ⊆ V ×V is the set of arcs [16]. Each vertex
in V is a code basic block, excepting two vertices labeled s
and e, which refer to the program entry and exit respectively.
A conditional statement maps into a vertex with outdegree
bigger than one, which we call decision vertex. A branch
is represented by an arc incident from a decision vertex.
Likewise, an execution path represents the actual control
flow of the program when executed with a given input.

Given the target branch t and the input domain of the
program, Ω, the goal is to find x∗ = arg minx∈Ω f(x), with
f : Ω −→ IR≥0 defined so as to provide a score of how close
the execution path of an input is to a path reaching t. This
assessment relies on the constraint branches that are deemed
to be covered in a path to t. These are not all the branches,
but those whose decision vertex is related to t through a
control dependence relation. A number of meanings have
been employed in the literature for this relation [5]. We will
resort here to a notion unveiling branches that, if taken, t is
missed for sure; hence a sibling branch should be followed.
Definition 1. Given a CFG G = (V,A), let v, w ∈ V .

v is critical for w if there are two arcs (v, v1), (v, v2),
v1 6= v2, such that in every path p1 from v1 to e, w /∈ p1,
and a path p2 from v2 to w exists.

The following remarks facilitate the description of the
objective function f .
Remark 1. Given a target t = (o, o′), in any execution path

p such that t /∈ p, there is a critical vertex for o inducing
an uncovered constraint branch.

Remark 2. The uncovered constraint branch referred to in
Remark 1 is the only one iff for every critical vertex v
in p, outdegree(v) = 2. That is, if outdegree > 2 for
some critical vertex then several uncovered constrained
branches exist. Figure 1 illustrates such a scenario.

f is obtained by combining the so-called approach level
and branch distance measures [7].

Given a target t = (o, o′), an input x and its execution
path px, the approach level, lo(x), returns the minimum
number of uncovered constraint branches lying in a path
from px to t. This is achieved by looking at each critical
vertex c ∈ px that induces an uncovered constraint branch,
and counting the uncovered constraint branches lying be-
tween c and o.

The branch distance, dc(x), points at the expression in
the conditional statement of c, and measures how far it
was from evaluating to the branch that is heading for t.
For example, let A > B be the expression, with A and B
defined as numerical variables. If Ax and Bx denote their
respective values in the execution of the program with x,
then dc(x) = |Ax−Bx|+1 is typically chosen. In the case
of having a compound expression, or the variables taking

other data types, alternative distances have been proposed
(e.g. see [17]).

The objective function aggregates the two measures
above as follows:

f(x) =

{
lo(x) + dc(x)

M if t not covered
0 otherwise

(1)

where M is a normalization term which serves to guarantee
that an input with a lower approach level than another
receives a smaller function value.

Note that, in order to assess f(x), we need to know the
execution path of x (for lo(x)) and the data produced during
program execution (for dc(x)). This information is acquired
by assembling an instrumented version of the program, and
running it with the input. This implies that, in general, f
is not available in closed form. Hence, it is common to
resort to a black-box search method to address the problem.
In particular, the genetic algorithm has been the method of
choice so far [5], [9].

Figure 1. Illustration of an execution path with several critical vertices.
Dotted lines stand for a path to the target, and dashed lines indicate all
paths from the corresponding vertex miss o.

2.2. A 2-Step Approach

The early approach by Wegener et al. [7] constitutes
one of the most popular SBSTDG works to date. This
approach consists of a two-step iterative process in which,
at each round, firstly, a branch is chosen and marked as
a target, and secondly, a search algorithm is run to solve
the optimization problem of this target. This implies the
search algorithm deals with one optimization problem at a
time, however the real goal is to solve a set of problems.
The approach takes account of this by not only evaluating
an input for the current target branch, but also with regard
to all the others. For each branch, a set storing the best
inputs so far is kept. In the target branch selection step, the
branch with a highest quality set of inputs is chosen, and in
the optimization step, this set is employed to initialize the
search algorithm. By doing so, at each round, we address
the optimization problem with the most promising initial
solutions available. Both target selection and optimization
steps are repeated until 100% branch coverage is attained
or all branches have been treated.

3. An Evolutionary Multitasking Approach to
SBSTDG

The motivation for a multitasking approach to branch
testing can be realized by observing that the objective func-
tion in Equation 1 is total. This can be easily noticed by
revisiting Remark 1 above which states that an uncovered
critical branch always exists. Since all the objective func-
tions share the same search space (the input domain), every
input can be evaluated for any target branch. An execution
path closer to some targets than to others should enclose
some form of information that makes it superior for the
former in terms of uncovered constrained branches. It makes
sense then to try to leverage such information through a
multitask search.

The 2-step SBSTDG approach described in Section 2.2
can be seen as a multitask greedy algorithm where, at
each step, the addition of a new input to the final solution
is checked. This input is generated during the search for
the coverage of the target branch, yet it may solve other
branches or be suitable for future searches. The SBSTDG
generator can be viewed then as a 2-level search: in the
lower level, the target branch is searched for making use
of a black-box algorithm, whereas in the upper level, inputs
sampled in the lower level are handled with a view to solving
the whole problem. Apart from adding to the complexity
in terms of algorithmic design and parameter tuning, we
find that such a 2-level search makes a restricted use of
the relationships among tasks. These relationships are not
employed to guide the search at the lower level, i.e. there
is no competition among tasks during the search. It is only
at the upper level, when the next target branch has to be
chosen, that tasks compete for the next search effort.

We propose here a MT-EC approach as a means to
achieve a concurrent search for the tasks while exploiting
inter-task knowledge in the process. An MT-EC algorithm
keeps a population of individuals, each of which is eval-
uated considering a number of tasks. Since the fitness of
two individuals may be given by different tasks, an active
competition among the latter takes place during selection.
This way, search efforts are dynamically allotted towards
the most promising tasks at each moment in time.

3.1. MT-EC Concepts

In [1], Gupta et al. presented the multifactorial evolu-
tionary algorithm, a general MT-EC method for multitask
optimization. As part of the approach, the authors also
introduced a number of basic concepts to formally handle
solutions in a MT-EC framework. In particular, the pref-
erence relation upon which individuals are compared is of
relevance to us. The next definitions are adapted from their
work. All of them consider a problem with k functions to
be minimized, T = {T1, ..., Tk}, and a population P of
individuals.
Definition 2. The factorial rank rij of Ii ∈ P for a task

Tj ∈ T is the index of Ii in the list of individuals from

P sorted in ascending order with respect to their value
in Tj .

Definition 3. The skill factor τi of Ii ∈ P is the one task
from T assigned to Ii.

Definition 4. The scalar fitness φi of Ii ∈ P is φi = 1/riτi .

Two individuals I1 and I2 are compared through their
respective scalar fitness: I1 ≺ I2 iff φ1 > φ2.

Building upon the definitions above, a preference
relation can be simply specified by taking τi =
argminj∈S{rij}, where S ⊆ T is the subset of tasks being
considered for the individual Ii. If S is the outcome of a
mapping δ : P −→ 2T , the set of possible δ describes a
family of preference relations that compare individuals on
the basis of the task they best perform in (τi).

3.2. Task Selection Schemes

The selection operator that has been implemented in
previous works consists of a mapping δ returning exactly
one task [1]. The rationale behind this choice is to keep the
computational cost of the multitask approach within prac-
tical bounds. We observe however that in some real-world
problems, like the present one, the number of tasks does
not place a significant burden. Particularly, in SBSTDG,
the main cost of the evaluation comes from the execution
of the program, which can be performed once for all the
tasks (branches). This opens the range of feasible definitions
for the δ mapping above, which in turn leads to different
preference relations. Aiming at studying the influence of the
relations on inter-task transfer, we will restrict ourselves to
two extreme cases:
mtec-all All the unsolved tasks are considered for every

individual.
mtec-one Just one task is considered; the skill factor of the

parent.
An important add-on of both schemes is that they incor-

porate a task-reassignment mechanism. That is, whenever
a task has been solved, it is dropped from the search, the
optimum is stored, and in the case of mtec-one, the individ-
uals whose skill factor was the solved task are reassigned
a random task and re-evaluated. As it could be noted, in
SBSTDG, this re-evaluation comes at no significant extra
cost, since we can compute the objective function value
upon the information collected from the program execution
without the need to re-run.

We adduce that, in real-world applications, two situa-
tions may arise in which a task-reassignment is desirable:

• There is a potential risk of the population to con-
verge towards solved tasks.

• Starting from a uniformly random initial population,
it may well happen that, because of the inter-task
competition during selection, no task survives as the
skill factor of an individual. In the case of mtec-one,
this implies the search for those tasks is abandoned.

3.3. A MT-EC Algorithm for SBSTDG

We intend to evaluate the sufficiency of the selection
schemes described above. Therefore, we completely disre-
gard crossover in our MT-EC approach. The only variation
comes from the mutation operator. The pseudo-code in
Algorithm 1 describes the implementation we have adopted.

Algorithm 1 Pseudo-code for the MT-EC approach.
1: P0 ← Generate initial population of N random individ-

uals
2: Evaluate each individual in P0 for all tasks
3: For each Ii ∈ P0 compute skill-factor τi and scalar

fitness φi considering unsolved tasks only
4: for t=0 ... until stopping criteria met do
5: P ct ← Mutate each Ii ∈ Pt
6: Evaluate each individual in P ct according to the
7: selection scheme
8: if New tasks solved then
9: Mark tasks as solved

10: if Selection scheme is one-task then
11: Reassign tasks to individuals in Pt and P ct ,
12: and re-evaluate
13: end if
14: end if
15: For each Ii ∈ Pt ∪ P ct compute skill-factor τi and
16: scalar fitness φi considering unsolved tasks only
17: Pt+1 ← Select the N fittest individuals from Pt∪P ct
18: end for

The initial population consists of individuals generated
uniformly at random which undergo the mtec-all scheme
for their evaluation. Once evolution commences, the chosen
selection scheme is followed (lines 6-17).

In order to rationalize the achievement of an inter-task
transfer of information through this algorithm, we need a
description in precise terms. Given one parent individual Ip
and its child Ic, we say that inter-task transfer from Ip to Ic
has taken place if τp 6= τc. Likewise, generational inter-task
transfer from Ip to Ic has occurred if τp 6= τc and Ic survives
to the next generation or solves a task. The former notion
designates the event in which some information has been
exchanged across tasks, while the latter alludes to a transfer
that can be potentially useful in the search for the recipient
task(s). Grounded on these descriptions, we can realize that,
in the mtec-one scheme, transfer will be triggered just when
a task is solved, owing to the task-reassignment mechanism.
By contrast, it seems intuitive that the mtec-all selection
favors a more intense exploitation of inter-task parallelism
and facilitates generational transfer. Accordingly, it could be
argued that these two schemes promote opposite degrees of
inter-task transfer during the search. We will conduct next
an empirical study to find further support for our rationale.

4. Experimental Evaluation

The following experimental study aims at two main
goals: (i) to evaluate the effectiveness of a MT-EC approach

for branch testing, and (ii) to assess the sufficiency of
the selection strategy as a mechanism to achieve inter-task
transfer during the search.

4.1. Experimental Setup

We consider a benchmark of 10 numerical calculus
functions written in C, extracted from the book Numerical
Recipes in C. The Art of Scientific Computing [18]. The
number of branches in these functions ranges from 16 to
44. The input parameters are of type integer or real, each
function taking between 3 and up to 67 parameters. We
represent an input with a bit string of length n given by the
number of parameters.

To evaluate the feasibility of the MT-EC approach as an
alternative for software testing we compare it against the 2-
level SBSTDG method from Section 2.2 and an independent
optimization for each of the branches. It is important to
note that all these method share the same initialization, i.e.
only the branches that remain uncovered after this step are
sought. The same mutation-based evolutionary algorithm is
employed by all the methods. In particular, the mutation
consists of a standard bit flip with probability 1/n; mutation
of at least one gene is enforced. The population size is set
to 2n. In the 2-level method, the size of the auxiliary pool
of individuals is the same as the population size. As for
the stopping criterion, each method halts if all the branches
have been covered, 30000 inputs are evaluated (program
executions), or a maximum number of 100 generations per
uncovered branch is reached. All the results reported here
are the average over 20 runs of the corresponding method
and program.

4.2. MT-EC versus classical SBSTDG

As pointed above, during the initialization of the popu-
lation a number of branches will necessarily be covered. It
is the set of remaining branches that forms the multitask
optimization problem. The second and third columns in
Table 1 show the total number of branches of each program
and the actual average number of branches being sought,
respectively. It can be observed that in many cases the
amount of tasks being faced is well above two, indicating
the larger scale of the multitask application.

Table 1 also presents the coverage percentage achieved
by the four methods in the comparison. A first observation
is that, in almost all the programs, the three approaches im-
plementing a multitask strategy show superior or equal per-
formance than the method based on independent searches.
This serves to highlight the potential of exploiting inter-task
information during the search for the appropriate inputs.

Further looking at the table, the MT-EC approaches seem
slightly superior, although no apparent difference can be
appreciated. We recall that these are final results after the
stopping criteria described above have been met. A closer
look is displayed through the convergence plots shown in
Figures 2-5. The trends shown herein are similar to those in

the rest of the programs. In particular, Figure 2 is represen-
tative of the behavior observed in fit, laguer and bnldev. It is
clear from Table 1 that in the first two, MT-EC outperforms
the 2-level method. The figure reveals that for bnldev MT-
EC converges substantially faster than 2-level.

Figure 3 depicts the behavior noted in adi, gaussj,
toeplz and plgndr. No clear difference is observed in the
convergence of the multitask methods, however the indepen-
dent searches approach lags visibly behind, until eventually
moves closer to 100% coverage.

In Figure 4, a scenario of no apparent dissimilarity
among any of the methods is shown. However, this time
all the contenders achieve full coverage and, as can be
observed, the multitask methods converge faster than the
other.

Finally, Figure 5 brings out the negative behavior of
mtec-all in program des. As previously, the multitask ap-
proaches present a fast initial convergence, although in
this case, mtec-all stagnates. Finding the cause for such
performance is not easy. We hypothesize that, assuming
mtec-all undergoes a more active inter-task transfer than
the other three methods, in this problem instance a more
focused search on the task may be more adequate.

Wrapping up, the outcomes from these experiments
seem to indicate that MT-EC tends to quickly achieve upper
levels of coverage, although it can later be caught up by
other approaches. This would point at MT-EC as a promising
alternative in situations where the budget that can be allotted
to the search process is limited.

0 100 200 300 400 500 600
71

72

73

74

75

76

77

78

79

80

81

Generation

C
o

v
e

ra
g

e
 %

mtec−all

mtec−one

2−level

indep

Figure 2. Evolution of coverage for program bnldev.

4.3. Selection for Inter-Task Transfer

In this section, we follow the notion of inter-task transfer
and generational inter-task transfer specified in Section 3.3
in order to quantify the amount of information that has been
exploited during the search by the MT-EC method.

TABLE 1. RESULTS OF EXPERIMENTS COMPARING MT-EC WITH STANDARD SBSTDG. SECOND AND THIRD COLUMNS SHOW THE TOTAL NUMBER
OF BRANCHES AND THE NUMBER OF TASKS. THE NEXT COLUMNS PRESENT THE COVERAGE PERCENTAGE ACHIEVED BY EACH METHOD; BEST

VALUES ARE MARKED IN BOLD.

Program Branches Tasks indep 2-level mtec-one mtec-all
plgndr 20 3.25 99.583335 100 100 100
gaussj 42 1.6 97.619 97.619 97.619 97.619
toeplz 20 3.75 84.75 85 85 85
bessj 18 3.1 100 100 100 100
bnldev 26 7.45 76.923055 80.7692 80.7692 80.7692
des 16 2.8 93.4375 93.75 93.4375 91.875
fit 18 8.1 92.777775 95 97.5 97.5
laguer 16 4.7 85 90.3125 91.25 90.9375
sparse 30 5.55 88.000005 89.833335 81.333305 90
adi 44 19.25 56.249995 59.0909 59.0909 59.0909

0 20 40 60 80 100 120 140 160 180
70

75

80

85

90

95

100

Generation

C
o

v
e

ra
g

e
 %

mtec−all

mtec−one

2−level

indep

Figure 3. Evolution of coverage for program plgndr.

Table 2 shows these quantities for both mtec-one and
mtec-all on our benchmark programs. As can be observed,
in almost all the cases, mtec-all produces a fairly larger
amount of transfers and generational transfers than mtec-
one. Interestingly, there exist two programs in which this
does not hold. From an examination of the search trace,
we see that, in bessj, the population of mtec-all forms
niches that evolve rather in isolation. However, in mtec-
one, whenever a task has been solved an amount of transfer
equivalent to the number of individuals with that skill factor
is enforced. As for program fit, mtec-all almost immediately
achieves its peak coverage and covers all the branches but
one, which disables any transfer.

While some exception seems to exist, in general terms,
these outcomes support the intuition that the mtec-all
scheme tends to favor a larger transfer intensity during the
search than mtec-one. Figure 6 provides further support
to this intuition by showing the number of generational
transfers across the generations for program des. mtec-one
only produces new transfers at the generations where a new
branch is covered (compare with Figure 5). By contrast,
mtec-all keeps leveraging information from other tasks that

0 20 40 60 80 100 120 140 160 180
80

82

84

86

88

90

92

94

96

98

100

Generation

C
o

v
e

ra
g

e
 %

mtec−all

mtec−one

2−level

indep

Figure 4. Evolution of coverage for program bessj.

TABLE 2. NUMBER OF INTER-TASK TRANSFERS AND GENERATIONAL
TRANSFERS PERFORMED FOR EACH PROGRAM.

mtec-one mtec-all
Program Transfer GenTransfer Transfer GenTransfer
plgndr 101.45 68.8 114.75 61.75
gaussj 108 77.2 173.65 150.05
toeplz 15 4.85 6089.4 405.7
bessj 60.45 22.5 18 9.25
bnldev 39.45 15.95 12339.7 2739.55
des 172 106.2 1708.05 1254.8
fit 354.9 93.1 0 0
laguer 233.8 51 3269.8 257.5
sparse 0 0 12204.9 8108.55
adi 20.35 17.6 3555.8 2777.65

is subsequently transferred to the next population, even once
it has converged. In this instance, however, such continuous
generational transfer does not seem to help boost the cov-
erage.

Nonetheless, in light of the performance results, these
experiments serve to demonstrate that the selection mech-
anism alone can succeed in achieving effective inter-task
transfer.

0 50 100 150 200 250
82

84

86

88

90

92

94

Generation

C
o

v
e

ra
g

e
 %

mtec−all

mtec−one

2−level

indep

Figure 5. Evolution of coverage for program des.

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

Generation

T
ra

n
s
fe

r

mtec−all

mtec−one

Figure 6. Amount of generational transfer over generations for program
des.

5. Conclusion

In this work, we have proposed a multitask evolutionary
computation approach to software testing. To our knowl-
edge, this has been the first effort demonstrating the fea-
sibility of this paradigm for solving real-world problems
with more than two tasks. Precisely, we have advocated
here for the selection strategy as a sufficient evolutionary
mechanism to actively exploit the inter-relations of the
tasks (branches) during the search. The outcomes from our
experimental investigation support this capability. Further,
the results suggest that the multitask approach may be
specially well suited in testing scenarios in which a limited
amount of resources can be allotted to the search algorithm.
Given these encouraging results, a possible avenue for future
research could be to leverage information from the problem

domain in order to select the most promising tasks on which
to focus on.

Acknowledgments

This work was supported by the Rolls-Royce@NTU
Corporate Laboratory from the National Research Founda-
tion, Singapore, under the Corp Lab@University Scheme.

References

[1] A. Gupta, Y. S. Ong, and L. Feng, “Multifactorial evolution: Toward
evolutionary multitasking,” IEEE Transactions on Evolutionary Com-
putation, vol. 20, no. 3, pp. 343–357, 2016.

[2] B. Beizer, Software Testing Techniques. New York: Van Nostrand
Rheinhold, 1990.

[3] A. Endres and D. Rombach, A Handbook of Software and Systems
Engineering. London: Pearson Education Limited, 2003.

[4] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in Proceedings of the International Conference on Software
Engineering, Workshop on the Future of Software Engineering, L. C.
Briand and A. L. Wolf, Eds. Washington, DC, USA: IEEE CS Press,
2007, pp. 85–103.

[5] P. McMinn, “Search-based software test data generation: a survey,”
Software Testing Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[6] E. Alba and F. Chicano, “Observations in using parallel and sequential
evolutionary algorithms for automatic software testing,” Computers &
Operations Research, vol. 35, pp. 3161–3183, 2008.

[7] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test envi-
ronment for automatic structural testing,” Information and Software
Technology, vol. 43, no. 14, pp. 841–854, 2001.

[8] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J. Wegener,
“Input domain reduction through irrelevant variable removal and its
effect on local, global, and hybrid search-based structural test data
generation,” IEEE Transactions on Software Engineering, vol. 38,
no. 2, pp. 453–477, 2012.

[9] M. Harman, A. Mansouri, and Y. Zhang, “Search based software en-
gineering: A comprehensive analysis and review of trends techniques
and applications,” King’s College London, Department of Computer
Science, Tech. Rep. TR-09-03, 2009.

[10] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in 2015 IEEE
8th International Conference on Software Testing, Verification and
Validation (ICST). Washington, DC, USA: IEEE Computer Society,
2015, pp. 1–12.

[11] ANSI/IEEE 1008-2002, IEEE Standard for Software Unit Testing:
An American National Standard. IEEE Standards Board, American
National Standards Institute, 2002.

[12] RTCA/DO-178B, Software Considerations in Airborne Systems and
Equipment Certification. Radio Technical Commission for Aeronau-
tics, 1992.

[13] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. Alipour, and
D. Marinov, “Guidelines for coverage-based comparisons of non-
adequate test suites,” ACM Transactions on Software Engineering and
Methodology, vol. 24, no. 4, 2015.

[14] R. Sagarna, A. Mendiburu, I. Inza, and J. Lozano, “Assisting in search
heuristics selection through multidimensional supervised classifica-
tion: A case study on software testing,” Information Sciences, vol.
258, pp. 122–139, 2014.

[15] P. Frankl and E. J. Weyuker, “A formal analysis of the fault-detecting
ability of testing methods,” IEEE Transactions on Software Engineer-
ing, vol. 19, no. 3, pp. 202–213, 1993.

[16] N. E. Fenton, “The structural complexity of flowgraphs,” in Graph
Theory with Applications to Algorithms and Computer Science,
Y. Alavy, G. Chartrand, L. Lesniak, D. R. Lick, and C. E. Wall,
Eds. New York: John Wiley & Sons, 1985, pp. 273–282.

[17] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated
framework for structural test-data generation,” in Proceedings of the
13th IEEE Conference on Automated Software Engineering, D. Red-
miles and B. Nuseibeh, Eds. IEEE CS Press, 1998, pp. 285–288.

[18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C. The Art of Scientific Computing. New York:
Cambridge University Press, 1988.

