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Abstract—A new Q-learning algorithm is developed for a
class of discrete-time nonlinear systems in this paper to solve
the infinite horizon optimal tracking problems. Using system
transformations, the optimal tracking problem is transformed to
be an optimal regulation problem. Thereafter, for the regulation
system, the new Q-learning algorithm is developed in order to
obtain the optimal control law. Convergence of the iterative
Q functions and the admissibility of the iterative control
law are analyzed. In the end, two corresponding simulation
examples are presented to illustrate the performance of the
newly developed algorithm.

I. INTRODUCTION

In the past several decades, the optimal control prob-
lems especially for nonlinear systems have always been
the focus in the control field [6]. As is known to all,
dynamic programming is a very useful tool while solving
the optimal control problems. Nevertheless, considering the
“curse of dimensionality” , when trying to obtain the optimal
solution, it is very likely to be computationally untenable
to perform dynamic programming. Correspondingly, The
adaptive dynamic programming (ADP) algorithm was pro-
posed by [1], [2] as a solution to optimal control problems
in a forward-in-time way. Policy and value iterations are
two primary iterative ADP algorithms [3]. In [4], policy
iteration algorithms are firstly used for optimal control of
continuous-time (CT) systems, which have continuous states
and action spaces. In [5], the optimal control law for multiple
actor-critic structures was effectively obtained using shunting
inhibitory artificial neural network (SIANN). Policy iteration
for zero-sum and non-zero-sum games was discussed in [7]–
[9]. In [10], the multi-agent optimal control was obtained
using fuzzy approximation structures. In [11], while solving
problems of discrete-time (DT) nonlinear systems, policy
iteration algorithm was developed. Thereafter, value iteration
algorithm was presented for the optimal control problems
of discrete-time nonlinear systems in [12]. For determinis-
tic discrete-time affine nonlinear systems, [13] studied the
value iteration algorithm. It was proven that the iterative
value function is non-decreasing and bounded, and hence
converges to the optimum as the iteration index increases
to infinity. In [6], [14], [15], value iteration algorithms with
approximation errors were analyzed. Based on the framework
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of policy and value iteration algorithms, more investigations
on iterative ADP algorithms have been developed [16]–[32].
Q-learning, proposed by Watkins [33], [34], is a represen-

tative data-based ADP algorithms. In Q-learning algorithms,
the Q function depends on both system state and control
[35], which means that it already includes the information
about the system and the utility function. A new policy
iteration Q-learning algorithm is established in this paper for
a large class of discrete-time-nonlinear systems. According to
system transformation processes, the corresponding optimal
tracking problem is effectively transformed into an optimal
regulation one. The corresponding tracking error system is
presented. According to the tracking error and the reference
tracking control, the performance index function is displayed.
Next, the policy iteration Q-learning algorithm for the trans-
formed system is derived. The convergence and stability
properties are analyzed. It is shown that the nonlinear system
can be stabilized by any of the iterative control laws. The
iterative Q function is nonincreasing in a monotonic way and
converges to the optimal Q function, which is proven. Neural
networks are employed to implement the policy iteration Q-
learning algorithm by approximating the iterative Q function
and iterative control law, respectively. At the end, simulation
results will illustrate the good effectiveness of the developed
algorithm.

II. PROBLEM STATEMENT

The following discrete-time nonlinear systems are consider
in this paper.

x(k + 1) = f(x(k)) + gu(k), (1)

where x(k) ∈ Rn is the state vector and u(k) ∈ Rm is
the control vector. Let f and g denote system function. For
infinite-time optimal tracking problem, the control objective
is to design optimal feedback control u(x(k)) for system (1)
such that the state x(k) track the specified desired trajectory
xr(k) ∈ Rn, k = 0, 1, . . .. In this paper, we assume that
the control gain matrix g satisfies rank{g} ≥ n for the
convenience of our analysis. Let ur(k) be the reference
control. Then, the reference control ur(k) should satisfy

xr(k + 1) = f(xr(k)) + gur(k), (2)

and the reference control talked above can be computed by
the following equation

ur(k) = g+(xr(k + 1)− f(xr(k))), (3)

where g+ is the Moore-Penrose pseudo-inverse matrix of g.
Define the tracking error as

y(k) = x(k)− xr(k). (4)



Then, the tracking error system can be expressed as

y(k + 1) = x(k + 1)− xr(k + 1)

= a(y(k)) + gc(k) (5)

where a(y(k)) = f(xr(k) + y(k)) − f(xr(k)) and the
tracking error control input c(k) = u(k)− ur(k).

To find an optimal-tracking-error control c(k) is our ob-
jective, which makes the tracking error system (5) stable, and
makes the following performance index function minimum

J(y(0), c(0)) =

∞∑
k=0

U(y(k), c(k)) (6)

where c(0) = {c(0), c(1), . . . } is the tracking error control
input sequence, and U(y(k), c(k)) > 0, for ∀ y(k), c(k) ̸= 0,
is the utility function.

Then we can define its optimal performance index function
to be

J∗(y(k)) = min
c(k)

{
J(y(k), c(k)) : c(k) ∈ U(k)

}
, (7)

where U(k) =
{
c(k) : c(k) = (c(k), c(k + 1), . . .), ∀c(k +

i) ∈ Rm, i = 0, 1, . . .
}

.
On the other hand, define Q-Bellman equation as

Q∗(y(k), c(k)) =U(y(k), c(k))

+ min
c(k+1)

Q∗(y(k + 1), c(k + 1)). (8)

Therefore, the optimal performance index function satisfies

J∗(y(k)) = min
c(k)

Q∗(y(k), c(k)) (9)

and the optimal tracking control input is expressed as

c∗(y(k)) = argmin
c(k)

Q∗(y(k), c(k)). (10)

We know that the optimal Q function Q∗(y(k), c(k))
is generally an unknown and non-analytic function, which
cannot be obtained directly by (8). Hence, a discrete-time
policy iteration Q learning algorithm will be presented to
obtain the approximate optimal Q function iteratively.

III. POLICY ITERATION Q-LEARNING ALGORITHM FOR
OPTIMAL TRACKING CONTROL

In this section, the policy iteration Q-learning algorithm
will be developed while obtaining the optimal tracking
controller for discrete-time nonlinear systems. Stability and
convergence proofs will be given to show the iterative Q-
learning algorithm properties.

In the developed policy iteration Q-learning algorithm, the
iterative tracking error control law and iterative Q function
are updated by iterations, as the iteration index i → ∞. For
i = 0, by an arbitrary admissible tracking control c[0](k)
[13], the initial iterative Q function Q[0](y(k), c(k)) is con-
structed by the following generalized Q-Bellman equation

Q[0](y(k), c(k)) =U(y(k), c(k))

+Q[0](y(k + 1), c[0](y(k + 1))). (11)

Then, the iterative tracking control is computed by

c[1](y(k)) = argmin
c(k)

Q[0](y(k), c(k)). (12)

For i = 1, 2, · · · , the iterative Q function Q[i](y(k), c(k))
satisfies the following generalized Q-Bellman equation

Q[i](y(k), c(k)) =U(y(k), c(k))

+Q[i](y(k + 1), c[i](y(k + 1))) (13)

and the iterative tracking control is updated by

c[i+1](y(k)) = argmin
c(k)

Q[i](y(k), c(k)). (14)

IV. PROPERTIES OF THE POLICY ITERATION
Q-LEARNING ALGORITHM

In this section, the detailed property analysis of the de-
veloped policy iteration Q-learning algorithm will be given
.

Theorem 1: Let Q[i](y(k), c(k)) and c[i](y(k)) be updat-
ed by the policy iteration Q-learning algorithm, for i =
0, 1, 2, . . . (11)–(14). Then for ∀i = 0, 1, . . ., the iterative
tracking error control c[i](y(k)) makes the tracking error
system (5) stable.

Proof: Define Lyapunov candidate as follows

V [i](y(k)) = Q[i](y(k), c[i](y(k))). (15)

Then we have

V [i](y(k + 1))− V [i](y(k))

= Q[i](y(k + 1), c[i](y(k + 1)))−Q[i](y(k), c[i](y(k)))

= −U(y(k), c[i](y(k)))

< 0. (16)

Then c[i](y(k))) can make the tracking error system (5)
stable.

In the following theorems, the convergence property of the
policy iteration Q-learning algorithm will be proven.

Theorem 2: For i = 0, 1, . . ., let Q[i](y(k), c(k))
and c[i](y(k)) be updated by the policy iteration Q-
learning algorithm (11)–(14). Then the iterative Q function
Q[i](y(k), c(k)) is monotonically non-increasing, i.e.,

Q[i+1](y(k), c(k)) ≤ Q[i](y(k), c(k)). (17)

Proof: According to (14), we have

Q[i](y(k), c[i+1](y(k))) = min
c(k)

Q[i](y(k), c(k))

≤ Q[i](y(k), c[i](y(k))). (18)

For i = 0, 1, . . ., define a new iterative Q function
Q[i+1](y(k), c(k)) as

Q[i+1](y(k), c(k)) =U(y(k), c(k))

+Q[i](y(k + 1), c[i+1](y(k + 1))),
(19)



where c[i+1](y(k)) is obtained by (14). According to (18) for
∀y(k), c(k), we can obtain

Q[i+1](y(k), c(k))

= U(y(k), c(k)) +Q[i](y(k + 1), c[i+1](y(k + 1)))

= U(y(k), c(k)) + min
c(k+1)

Q[i](y(k + 1), c(k + 1))

≤ U(y(k), c(k)) +Q[i](y(k + 1), c[i](y(k + 1)))

= Q[i](y(k), c(k)). (20)

Now we prove inequality (17) by mathematical induction.
For i = 0, 1, . . ., we have that c[i+1](y(k)) is a stable control
input. Then, we have y(k) → 0, for ∀k → ∞. Without
loss of generality, let y(N) = 0, where N → ∞. We have
c[i+1](y(N)) = c[i](y(N)) = 0, which obtains

Q[i+1](y(N), c[i+1](y(N))) = Q[i+1](y(N), c[i+1](y(N)))

= Q[i](y(N), c[i](y(N)))

= 0 (21)

and

Q[i+1](y(N − 1), c(N − 1)) = Q[i+1](y(N − 1), c(N − 1))

= Q[i](y(N − 1), c(N − 1))

= U(y(N − 1), c(N − 1)).
(22)

Let k = N − 2, we have

Q[i+1](y(N − 2), c(N − 2)) = U(y(N − 2), c(N − 2))

+Q[i+1](y(N − 1), c[i+1](y(N − 1)))

=U(y(N − 2), c(N − 2))

+Q[i](y(N − 1), c[i+1](y(N − 1)))

=Q[i+1](y(N − 2), c(N − 2))

≤Q[i](y(N − 2), c(N − 2)). (23)

So, the conclusion holds for k = N − 2. Assume that the
conclusion holds for k = L + 1, L = 0, 1, . . .. For k = L,
we can get

Q[i+1](y(L), c(L))

= U(y(L), c(L)) +Q[i+1](y(L+ 1), c[i+1](y(L+ 1)))

≤ U(y(L), c(L)) +Q[i](y(L+ 1), c[i+1](y(L+ 1)))

= Q[i+1](y(L), c(L))

≤ Q[i](y(L), c(L)). (24)

Hence, we can obtain that for i = 0, 1, . . ., the inequality
(17) holds for ∀y(k), c(k). The proof is completed.

Theorem 3: For i = 0, 1, . . ., let Q[i](y(k), c(k)) and
c[i](y(k)) be updated by the policy iteration Q-learning
algorithm (11)–(14). Let

Q∞(y(k), c(k)) = lim
i→∞

Q[i](y(k), c(k)). (25)

Then Q∞(y(k), c(k)) satisfies the optimal Q-Bellman equa-
tion, as i → ∞, i.e.,

Q∞(y(k), c(k)) = U(y(k), c(k)) + min
c(k+1)

Q∞(y(k + 1), c(k + 1))

(26)

Proof: According to (24), we can obtain

Q∞(y(k), c(k))

= lim
i→∞

Q[i+1](y(k), c(k)) ≤ Q[i+1](y(k), c(k))

≤ Q[i+1](y(k))

= U(y(k), c(k)) +Q[i](y(k + 1), c[i+1](y(k + 1)))

= U(y(k), c(k)) + min
c(k+1)

Q[i](y(k + 1), c(k + 1))

(27)

Letting i → ∞, we can obtain

Q∞(y(k), c(k)) ≤U(y(k), c(k))

+ min
c(k+1)

Q∞(y(k + 1), c(k + 1)) (28)

Letting ζ > 0 be an absolute arbitrary positive number, a
positive integer p must exist such that

Q[p](y(k), c(k))− ε ≤ Q∞(y(k), c(k)) ≤ Q[p](y(k), c(k)).
(29)

Hence, we can get

Q∞(y(k), c(k))

≥ Q[p](y(k), c(k))− ζ

= U(y(k), c(k)) +Q[p](y(k + 1), v[p](y(k + 1)))− ζ

≥ U(y(k), c(k)) +Q∞(y(k + 1), v[p](y(k + 1)))− ζ

≥ U(y(k), c(k)) + min
c(k+1)

Q∞(y(k + 1), c(k + 1))− ζ

(30)

Since ζ is arbitrary, we have

Q∞(y(k), c(k)) ≥U(y(k), c(k))

+ min
c(k+1)

Q∞(y(k + 1), c(k + 1)) (31)

Combining (28) and (31), we can obtain

Q∞(y(k), c(k)) =U(y(k), c(k))

+ min
c(k+1)

Q∞(y(k + 1), c(k + 1)) (32)

V. SIMULATION STUDY

In the simulation study section, it is the performance of the
developed algorithm in a inverted pendulum system [36] with
modifications which need to be examined. The dynamics of
the pendulum is expressed as[

ẋ1(k)
ẋ2(k)

]
=

[
x1(k) + 0.1x2(k)

0.1
g

ℓ
sin(x1(k)) + (1− 0.1κℓ)x2(k)

]

+
0.1

mℓ2

[
1 0
0 1

]
u(k). (33)



where m = 1/2 kg and ℓ = 1/3m are the mass and
length of the pendulum bar, respectively. Let κ = 0.2 and
g = 9.8m/s2 be the frictional factor and the gravitational ac-
celeration, respectively. Discretization of the system function
with the sampling interval ∆t = 0.025s, and let the desired
state trajectory be expressed as

xr(k) =
[
sin(k ·∆t), cos(k ·∆t)

]
. (34)

Let the initial state be x0 = [1,−1]T . Neural networks
are widely applied for the developed iterative Q-learning
algorithm. The critic network and the action network are
chosen as three-layer-BP NNs with the structures of 4–12–
1 and 2–12–2, respectively. We choose 500 states and 500
controls in Ωx and Ωu, respectively, to train the action and
critic networks. Implement the developed policy iteration Q-
learning algorithm for 30 iterations. The critic network and
the action network have to be trained for 3000 steps with
the learning rate of αc = βa = 0.01 inside each iteration
step, therefore the training error of the neural network
becomes less than 10−5. The plots of the iterative Q function
Q[i](y(k), c[i](y(k))) are presented in Fig. 1.

Fig. 1. The iterative Q function

From Fig. 1 we can see that given an arbitrary track-
ing error admissible control law c̃[0](y(k)), the iterative Q
function is monotonically non-increasing and converges to
the optimum. Thus the monotonicity and optimality of the
iterative Q function can be justified for nonlinear systems.
In Fig. 2, the trajectories of the iterative control laws are
shown. In Fig. 3, the tracking errors of the system under the
corresponding tracking control law can be seen. Besides, in
Fig. 4, the trajectories of the system states are shown. From
Figs. 2–4, we can see that for ∀ i = 0, 1, . . ., the tracking
error can be stabilized and the system states can track the
desired trajectories. Hence, the admissibility property of the
developed algorithm can be justified.
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