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Abstract— Bilevel programming deals with hierarchical 
decision processes with two decision levels, in which the upper 
level (leader) and the lower level (follower) decision makers 
control different sets of variables and pursue different objective 
functions. The problem is even more complicated when multiple 
objective functions are considered in the lower level 
(semivectorial bilevel problem) since a set of efficient solutions 
for each upper level decision exists. This paper presents and 
illustrates two novel types of solutions (deceiving and rewarding) 
in addition to the optimistic and pessimistic solutions to the 
semivectorial bilevel problem. These four solutions represent 
possible “extreme” outcomes of the decision process, capturing 
distinct leader’s stances and follower’s reactions. 

Keywords— semivectorial bilevel programming; optimistic 
solution; pessimistic solution; deceiving solution; rewarding 
solution 

I. INTRODUCTION 
Bilevel programming problems enable to model 

hierarchical decision processes with two decision levels. The 
leader (upper level decision maker) and the follower (lower 
level decision maker) control different sets of variables and 
pursue different objective functions in a non-cooperative 
manner subject to constraints involving both sets of variables. 
The leader makes his decision first by setting the values of his 
variables, but he must integrate into his optimization problem 
the reaction of the follower because it affects the leader´s 
objective value and even the feasibility of the solution. For a 
given leader’s decision, the follower chooses an optimal 
candidate for his objective function within the feasible choices 
restricted by the leader.  

A semivectorial bilevel problem (SVBP) is a bilevel 
problem with a single objective at the upper level and multiple 
objectives at the lower level. The existence of multiple 
objective functions at the lower level gives rise to a set of 
lower level efficient solutions for each leader’s decision, which 
causes additional difficulties for the leader in anticipating the 
follower’s reaction. Therefore, to provide decision aid to the 
leader in SVBP, different types of solutions should be 
computed that offer further information about possible 
outcomes and ranges of objective values resulting from 
different decisions. 

This paper presents and illustrates using graphical examples 
four types of solutions: optimistic, pessimistic, deceiving and 
rewarding. These solutions represent possible “extreme” 
outcomes of the decision process based on SVBP, capturing 
distinct leader’s stances and follower’s reactions. This 
information offers the leader relevant insights about the ranges 
of possible values for his objective function hedging against 
the follower’s decision resulting from trading-off his objective 
function values. 

In section II the bilevel programming problem is presented. 
Semivectorial bilevel programming is introduced in section III 
discussing why the optimistic solution may not be  
representative of most practical decision situations and 
defining the optimistic, pessimistic, deceiving and rewarding 
solutions. These solutions are illustrated using graphical 
displays in section IV. Concluding remarks are presented in 
section V. 

II. BILEVEL PROGRAMMING 
A general bilevel programming problem with a single 

objective function at each decision level can be defined as 
follows: 
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where 1nx ℜ∈ is  the vector of the upper level decision 

variables and 2ny ℜ∈  is  the vector of the lower level 
decision variables; F(x, y) and f(x, y) represent the leader’s and 
the follower’s objective functions, respectively.  

The follower’s rational reaction set to a given 'x  is:  
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The feasible region for the bilevel problem (BP) is called 
the induced region (IR): 
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The bilevel problem is the problem seen by the leader. 

Quotation marks in ),(max"" yxF  express the undecided 
definition of the objective function value F(x, y) from the 



leader’s perspective (since he has control only over x) if the 
set of optimal solutions to the lower level problem is not 
singleton [1]. Even in the case where the lower level problem 
is a scalar optimization problem, more than one possible 
response of the follower may exist resulting from alternative 
optimal solutions to the follower’s objective function. This 
poses a problem to the leader because the follower’s choice 
may affect significantly the leader’s decision. Most of the 
work on bilevel programming circumvents this difficulty by 
supposing that there is a single optimal solution to the lower 
level problem or adopting an optimistic approach. The 
optimistic approach presumes that the follower’s response is 
always the one most convenient for the leader. Under this 
assumption, the upper level optimization is executed with 
respect to x and y, which means that the leader can influence 
the decision of the follower [1]. But, if the leader is risk-
averse and wishes to limit the harm resulting from an 
undesirable option of the follower, a pessimistic approach may 
be considered. In this case the leader hedges against the worst 
case. Therefore, he chooses values for his variables that 
perform ‘best’ in view of the ‘worst’ follower’s response for 
the leader [2]. The pessimistic bilevel problem is even more 
difficult to solve than the optimistic one. 

III. SEMIVECTORIAL BILEVEL PROGRAMMING 
A general semivectorial bilevel problem (SVBP) with m 

objective functions at the lower level can be formulated as 
follows: 
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Without loss of generality, the SVBP has been defined with 
maximizing upper level and lower level objective functions. 
Below we present examples with maximizing and minimizing 
functions. 

Since multiple objective functions are considered at the 
lower level, a set of efficient solutions for each leader’s 
decision exists. This creates further difficulties for the leader 
regarding the anticipation of the follower’s reaction within his 
efficient solutions. 

Only efficient (Pareto optimal or nondominated) solutions 
to the lower level problem for each x-vector are feasible to the 
SVBP. Let { }0),(:)( 2 ≤ℜ∈= yxgyxY n . For a given 'x , a 
solution )'(' xYy ∈  is efficient to the lower level problem if and 
only if there is no other )'(xYy∈  that dominates 'y , i.e. such 

that )','(),'( yxfyxf jj ≥  for all j=1,…,m, and 

)','(),'( yxfyxf jj >  for at least one j. 

Therefore, the set of efficient solutions to the lower level 
problem of the SVBP for a given 'x  can be defined as: 

)'(Ef xΨ ={ :)'(' xYy∈ there is no )'(xYy∈  such that 
)}','(),'( yxfyxf ≻ , where ≻  denotes the dominance 

relation.  

The induced region of the SVBP is 
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The SVBP was firstly addressed by Bonnel [3] who 
developed first-order necessary optimality conditions for the 
solution of an optimistic formulation. The optimistic 
formulation of a SVBP assumes that the solution to the lower 
level problem is the efficient solution with highest value 
according to the upper level objective function F(x,y). Bonnel 
and Morgan [4] proposed an approach based on a penalty 
method dealing with weakly efficient solutions to the lower 
level problem. 

Ankhili and Mansouri [5] developed an exact penalty 
method for the SVBP with a linear multiobjective lower level 
problem. Following the work in [5], Zheng and Wan [6] 
proposed a new penalty function method with two penalty 
parameters for the same problem. Calvete and Galé [7] also 
focused on bilevel problems with a linear multiobjective lower 
level problem (with all constraints linear and the upper level 
objective function being quasiconcave). The problem is 
reformulated as an optimization model with a nonconvex 
feasible region given by the union of faces of the polyhedron 
defined by all constraints, so that an extreme point of the 
polyhedron solves the problem. An enumerative exact 
algorithm and a genetic-based algorithm are proposed. 

More recently, and still considering the optimistic 
formulation of a SVBP (like all the studies mentioned above), 
Dempe et al. [8] derived necessary optimality conditions for 
the problem using the classical scalarization technique to 
convert the lower level multiobjective problem into a 
parameterized single objective program. Following a related 
approach but considering the pessimistic formulation, Liu et al. 
[9] developed necessary optimality conditions for the 
pessimistic SVBP by transforming the problem into a single-
level generalized minimax optimization problem with 
constraints.   

As can be seen in the previous references, theoretical and 
algorithmic contributions made thus far to solve the SVBP 
have generally adopted an optimistic approach. The optimistic 
approach disregards the follower’s preferences, assuming that 
the leader is able to freely select the more convenient solution 
among the set of efficient solutions to the follower. However, 
this may not be a reasonable assumption because it barely 
occurs in most practical decision-making problems with 
multiple objective functions. Alves et al. [10] pointed out and 
discussed the issues associated with assuming an optimistic 
approach in actual decision situations. These authors also 
introduced a new solution concept called deceiving solution 
(the worst outcome of a failed optimistic approach) and 
developed an algorithm based on particle swarm optimization 
to approximate the optimistic, pessimistic, and deceiving 
solutions to general SVBP. 

To provide decision aid to the leader in SVBP, different 
types of solutions could be computed to give further 
information about possible outcomes and ranges of objective 
values resulting from different decisions. 



The optimistic solution indicates the leader his maximum 
objective value when the follower’s decision for each x setting 
is the best for the leader. Associated with the optimistic 
approach the deceiving solution can also be defined, which is 
obtained if the leader makes an optimistic decision and the 
follower’s reaction is against the interests of the leader, i.e., a 
solution resulting from a failed optimistic approach. The 
deceiving solution can be worse (and is never better) than the 
pessimistic solution. 

On the other hand, the pessimistic solution is the one that 
gives the maximum objective value for the leader when the 
follower’s decision for each x setting is the worst for the leader. 
In this paper we further introduce a new type of solution in 
SVBP. It represents the best outcome of a pessimistic 
approach, which we call the rewarding solution. This solution 
is obtained whenever the leader takes a pessimistic approach 
and the follower’s reaction is the most favorable to the leader. 

Regarding the formulation above of the SVBP (where the 
upper level objective function is to be maximized), the four 
different types of solutions can be defined as: 

• the optimistic solution, O = (xo, yo), is given by  
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• given the optimistic upper level decision xo, the 
deceiving solution is D = (xd,yd) = (xo,yd) where yd is 
given by { })(:),(min Ef

oo
y

xyyxF Ψ∈ . 

• the pessimistic solution, P = (xp, yp), is given by 
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• given the pessimistic upper level decision xp, the 
rewarding solution is R = (xr,yr) = (xp,yr) where yr is 
given by { })(:),(max Ef

pp
y

xyyxF Ψ∈ . 

These four solutions represent “extreme” outcomes that can 
provide the leader important insights about the ranges of 
possible values for his objective function. This information 
may be particularly interesting if the leader has poor 
information about the tradeoffs the follower is willing to make 
concerning his multiple objective functions after knowing the 
decision made by the leader. 

IV. ILLUSTRATION OF THE OPTIMISTIC, PESSIMISTIC, DECEIVING 
AND REWARDING SOLUTIONS IN SVBP 

In this section we present three examples each one 
illustrating these four “extreme” solutions. 

A. Example 1 
Consider the following SVBP in which all objective 

functions are to be minimized. This problem is an adaptation of 
Problem 3 in [11] and was presented in [10]. 

 

2,,1      

)(),(min        

),(min..
)1(),(min

21

2
2

2
12

2
2

2
11

22
2

2
1

≤≤−

+−=

+=

++−=

xyys.t. 

yxyyxf

yyyxfts
xyyyxF

y

y  

where x is the only upper level variable and y = (y1, y2) is the 
vector of the lower level variables. 

For a given value of x, the efficient solutions to the lower 
level problem are given as follows: 
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ΨEf(x) denotes the set of efficient solutions to the lower 
level problem for a given x and let ΨEf  denote the union of 
ΨEf(x) for all x. ΨEf  ≡ IR (induced region) is represented by the 
shaded area in Fig. 1, which also shows the level curves of 
F(x,y) – circles centered at the point (y1, x) = (1,0). In Fig. 1 
only y1 and x are represented because y2 is 0 in all efficient 
solutions to the lower level problem.  

For the optimistic approach, the solution to the SVBP is the 
one that optimizes the leader’s objective function over the set 
of efficient solutions to the follower, i.e., ΨEf . The optimistic 
solution is the point O in Fig. 1, where (x, y1, y2) = (0.5, 0.5, 0), 
(f1, f2) = (0.25, 0) and F = 0.5. 

For the pessimistic approach, the solution to the SVBP is 
the one that optimizes the leader’s objective function within the 
subset of the follower’s efficient solutions that are “worst for 
the leader”, which is denoted by ΨP-Ef  in Fig. 1 and  depicted 
by a thick line (left boundary of ΨEf). The solution minimizing 
F over ΨP-Ef , i.e. the pessimistic solution, is point P in Fig. 1, 
where (x, y1, y2) = (0, 0, 0), (f1, f2) = (0, 0) and F = 1. Whenever 
the leader cannot anticipate the follower’s reaction, the leader’s 
pessimistic decision is the most conservative decision, whilst 
the optimistic decision could offer a better outcome but has a 
higher risk. 

Another solution that can be interesting to analyze is the 
worst outcome of a “failed optimistic” approach, i.e. the 
deceiving solution. This solution indicates the maximum risk 
the leader incurs if he adopts an optimistic approach. The 
deceiving solution to this problem is the point D with (x, y1, y2) 
= (0.5, 0, 0), (f1, f2) = (0, 0.25) and F = 1.25. 

On the other hand, if the leader takes a pessimistic 
approach (i.e. he chooses x=0), the only efficient solution to the 
follower is solution P. Therefore, in this example the leader has 
no chance of obtaining a better value of F if a pessimistic 
approach is adopted, which means that the rewarding solution 
coincides with the pessimistic solution. Table 1 summarizes the 
F values obtained in these four solutions for Example 1. 

 



Fig. 1. Example 1 - Efficient solutions to the lower level problem for each 
x and level curves of F. 

 

In this problem, adopting an optimistic approach may be 
considered an interesting option if the leader is willing to take 
some risk because the worst outcome of the optimistic 
approach, given by the deceiving solution (F=1.25), is not far 
from the pessimistic solution (F=1.0); on the other hand, the 
optimistic solution provides a considerable improvement to the 
leader’s objective with respect to the pessimistic one (F=0.5 vs. 
1.0 – recall that F is a minimizing function). Moreover, if the 
leader adopts a pessimistic approach, there will be no 
opportunity in this problem to obtain a solution better than the 
pessimistic one because there is only one efficient solution to 
the follower (P≡R). 

 

B. Example 2 
Consider the following semivectorial linear bilevel problem 

with maximizing objective functions at both levels. 
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x is the upper level variable and y1, y2 are the lower level 
variables. 

TABLE I.  LEADER’S OBJECTIVE VALUES FOR EXAMPLE 1 

F (min) Optimistic 
approach 

Pessimistic 
approach 

optimistic / rewarding solutions FO = 0.5 FR = 1.0 

deceiving / pessimistic solutions FD = 1.25 FP = 1.0 

 
Fig. 2 (a-d) illustrates the set of efficient solutions to the 

lower level problem for different values of x: integer x values 
from 2 to 5, respectively in (a) to (d). In each graph for a given 
x, Fp represents the worst value and Fo represents the best value 
for F within the lower level efficient solution set for that value 
of x. 

Analytically, the lower level efficient solutions for each x 
can be defined as follows: 
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The optimistic solution is (x, y1, y2) = (4, 6, 0), 

(f1, f2) = (6, 6) and F = 16 – Fig. 2(c).  

The deceiving solution is the worst solution for the leader 
among )4(Ef =Ψ x , i.e., (x, y1, y2) = (4, 2, 4), (f1, f2) = (10, -2) 
and F = 4. 

The pessimistic solution is (x, y1, y2) = (2, 6, 2), 
(f1, f2) = (10, 4) and F = 12 – Fig. 2(a).  

The rewarding solution is the best solution for the leader 
among )2(Ef =Ψ x , i.e., (x, y1, y2) = (2, 6, 0), (f1, f2) = (6, 6) 
and F = 14. 

Fig. 3 highlights the complete induced region IR of the 
problem (in dark gray), the subset of efficient solutions “best 
for the leader”, where the optimistic and rewarding solutions 
are located, and the subset of efficient solutions “worst for the 
leader”, where the pessimistic and deceiving solutions are 
located (in solid thick lines). 

Table 2 summarizes the F values obtained in these four 
solutions for Example 2. 

In this example we observe a large difference in the 
leader’s outcome between the optimistic and the deceiving 
solutions, which means that the leader may take a high risk if 
he adopts an optimistic approach. On the other hand, the 
leader’s objective value in the rewarding solution is not very 
far from the optimistic solution (F=14 vs. 16) and the 
pessimistic F value is significantly higher than the deceiving 
one (F=12 vs. 4). 

TABLE II.  LEADER’S OBJECTIVE VALUES FOR EXAMPLE 2 

F (min) Optimistic 
approach 

Pessimistic 
approach 

optimistic / rewarding solutions FO = 16 FR = 14 

deceiving / pessimistic solutions FD = 4 FP = 12 

 



 

 

 

 
Fig. 2.  Example 2 - Efficient solutions to the lower level problem for different values of x. 
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Fig. 3.  Example 2 – Induced Region and the optimistic (O), deceiving (D), pessimistic (P) and rewarding (R) solutions. 

 
 



C. Example 3 
Consider the problem of Example 2 where only the upper 

level objective function changes:  

 2122max yyxF −+=   

The induced region and the pessimistic and rewarding 
solutions are the same as in Example 2 (shown in Fig. 3 and 
Fig. 4). The pessimistic solution is (x, y1, y2) = (2, 6, 2), 
(f1, f2) = (10, 4), F = 14 and the rewarding solution is (x, y1, y2) 
= (2, 6, 0), (f1, f2) = (6, 6), F = 16. 

However, this problem admits alternative optimistic 
solutions. The vertices (x, y1, y2) = (4, 6, 0) and (5, 5, 0) and all 
solutions in the edge between these two vertices present the 
maximum leader’s objective value, F = 20. But, if the 
optimistic approach fails due to a follower’s reaction different 
from the one expected in the optimistic approach, the worst 
outcomes for the leader are different for the x values from 4 to 
5 leading to different ‘deceiving’ solutions: F(4, 6, 4)=12 and 
F(5,0,5)=5. These solutions are shown in Fig. 4. 

This example brings attention to the importance of 
exploring alternative optimal solutions for the optimistic 
approach (and similar cases may occur for the pessimistic 
approach). Although all 4 ≤ x ≤ 5 lead to an equal value 
(maximum) for the leader in an optimistic assumption, the 
choice x=4 is less risky as it leads to a better deceiving 
solution. 
Fig. 4. Example 3 – Illustrating alternative optimistic solutions with 
different corresponding deceiving outcomes. 

 

V. CONCLUSION 
The existence of multiple objective functions at the lower 

level of a SVBP leads to a set of efficient solutions for the 
follower for each leader’s decision. This poses additional 
difficulties for the leader to anticipate the follower’s reaction to 
the underlying trade-offs between the lower level competing 
objectives. Therefore, different types of solutions should be 
computed, which provide broader information about the ranges 
of objective function values resulting from decisions associated 
with different trade-offs. 

In addition to the optimistic and pessimistic solutions to the 
SVBP, this paper presents and illustrates two novel concepts: 
deceiving and rewarding solutions. The deceiving solution 
results from a failed optimistic approach, in the sense that the 
leader makes an optimistic decision and the follower’s reaction 
is against the interests of the leader. The rewarding solution 
results if the follower’s reaction is the most favorable to the 
leader when the leader takes a pessimistic approach. These four 
solutions characterize distinct attitudes from the leader and the 
follower, delimiting the ranges of possible optimal values for 
the leader taking into account the follower’s decision. 

The computation and exploration of these solutions is 
underway in a SVBP to model the interaction between 
electricity retailers and consumers. Dynamic tariffs, i.e. 
electricity prices varying in short periods of time, are expected 
to offer consumers the incentives to adopt different 
consumption patterns by using the flexibility in the operation 
of some end-use loads. The retailer (upper level decision 
maker) establishes dynamic electricity prices to maximize 
profits. The consumer (lower level decision maker) responds 
by selecting, under that price setting, an efficient solution 
establishing a trade-off between minimizing the electricity bill 
and the dissatisfaction associated with the corresponding load 
scheduling in face of his preferences and comfort requirements. 
The lower level optimization problem is formulated as a bi-
objective mixed-integer linear programming (MILP) problem. 
An evolutionary algorithm approach and a hybrid approach, 
which consists of an evolutionary algorithm for the upper level 
problem and an exact MILP solver to solve scalarization 
problems at the lower level, are being developed to compute 
the four types of solutions illustrated in this paper, which are 
relevant for decision support purposes. 
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