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Abstract—The paper concerns the problem of reaching consensus
among agents in group decision making. A popular framework of
individual preferences expressed as (fuzzy) preference relations
is adopted. The consensus reaching process is assumed to be
based on a discussion in the group of agents, which is expected
to make the initially expressed preferences closer one to another.
We present a novel approach to the modeling of the consensus
reaching process as a game, in the sense of game playing. We
use the Monte Carlo Tree Search (MCTS) algorithm with the
Upper Confidence Bounds Applied for Trees selection formula,
which is a state of the art solution algorithm in that area. The
consensus reaching process is modeled as a sequence of actions,
referred to as moves, of the individual agents involved. A model
of the assessment of a configuration of the individual preference
relations is proposed. A decision support system that implements
the approach proposed is developed, which provides the agents
with an easy to read evaluation of the expected outcome of each
move. The approach constitutes a new paradigm in the modeling
of a consensus reaching process, and then its support.

Keywords–group decision making, consensus reaching process
support, game playing, rationality criteria

I. INTRODUCTION

The problem of consensus reaching considered in this paper
may be viewed as a follow up of the source problem of group
decision making the essence of which can be summarized
as follows. There is a (finite) group of agents (individuals,
decision makers, . . . ) and a (finite) set of options (alternatives,
variants, . . . ). Both these sets are assumed to be relatively
small. The agents provide their testimonies as to the options,
which are here assumed as the individual fuzzy (graded, with
values from [0, 1]) preferences as to the particular pairs of
options. The problem is to find a group decision solution
(cf. Nurmi [1], [2]) meant as an option or a (maybe fuzzy)
set of options that best represents the preferences of the
whole group of agents. Such a solution, in the setting of
fuzzy preferences, may be determined in various ways, notably
by some dominance analyses (cf. Kacprzyk [3] or choice
function analyses (cf., e.g. Kacprzyk and Zadrożny [4], [5],
[6] and Świtalski [7]). Usually, these preferences differ in the
beginning to a large extent and it is obvious that in such a case
the group decision determined may be not meaningful enough.

Therefore, it may often have much sense to first perform
the consensus reaching process to make the individual fuzzy
preferences of the agents closer, and then to determine a group
decision making solution. Of course, the precondition is that
the agents are rationally committed to consensus, i.e., are ready
to change their preferences.

We are concerned here with such a problem of consensus
reaching which is considered a step by step process. Often,

the moderator, a “superagent”, is assumed who is responsible
for running the consensus reaching session and for making
the agents appropriately change their preferences, by using
argumentation, suggesting mutual concessions, etc., to possibly
increase the degree of consensus. The motivation of such a
moderator driven consensus reaching process, and the architec-
ture for its implementation through a computer based decision
support system, is given, for instance, in Fedrizzi, Kacprzyk
and Zadrożny [8]. The underlying concept of a soft degree of
consensus due to Kacprzyk and Fedrizzi [9], [10], [11] is there
employed in which a degree of consensus is basically meant as
a degree to which, e.g., “most of the relevant (knowledgeable,
expert, . . . ) agents agree as to almost all of the important
options”.

A number of approaches has been proposed to support such
a consensus reaching process [8], [12], [13], [14], [15], [16].
They can be termed data driven in the sense that they only
use data on agents and their preferences for deriving some
additional information given as linguistic summaries.

In this paper, we pursue a novel approach. Namely, to
derive an additional information on agents and their fuzzy
preferences, we assume first that we employ a model of
behavior of the group of agents (of course, in our case in the
sense of changes of their preferences). More specifically, we
assume that our consensus reaching session is represented as
a game but not, as it is common in broadly perceived decision
sciences, bargaining, negotiations, as a game in the sense of
game theory, but in the sense of the so-called general game
playing (GGP) [17] which basically boils down to the design
of some tools and techniques that use elements of artificial
intelligence to develop programs that can play various games
which are represented by a set of logical expressions and
rules. The game is then represented as a game tree and a
sophisticated simulation framework is employed using the so-
called Monte Carlo Tree Search (MCTS) algorithm. In such
a way, we can find a rational way to determine the best
sequence of changes of preferences. Therefore, since the game
constitutes here a model of a rational behavior of the agents,
its use implies a qualitatively new approach to the support
of consensus reaching which can be termed a model driven
approach.

We assume that the agents are rationally committed to the
reaching of the consensus, i.e., they are ready to change their
original preferences. On the other hand, they are assumed to
also observe some other criteria. For example, it is reasonable
to expect that while aiming at contributing to the consensus
and being ready to change their preferences they would still
like to preserve their original original preferences as much as



possible. Moreover, they are also assumed to opt for a fair
treatment of preference of all involved agents, i.e., that all
agents would divert from their original preferences to a more
or less the same extent.

Our goal in this paper is to propose a new general approach
to modeling, and then supporting, the consensus reaching
process based on a new model of a reasonable behavior of
agents involved, in the sense of some well specified criteria
for rational acts of the agents.

The model of an individual agent proposed comprises his
or her appropriate multicriteria assessment of the quality of a
given set of preference relations. The model of the consensus
reaching process starts with our earlier model [14] and extends
it with a new concept of a protocol (or, more generally, a
family of protocols) defining some rules for some part of the
discussion in the group. The latter concept is related to the
(generalized) game playing and, accordingly, we propose to
employ one of the most effective and efficient algorithms in
this area, the MCTS, to carry out simulations of the discussion
in the group of agents. The idea is to use its basic version as a
generic platform for the simulations and then to model some
approaches to the moderator driven discussion by using some
specific variant of the generic implementation.

Section II briefly reminds a flexible measure of consensus
proposed by Fedrizzi and Kacprzyk [9], [10] which is a
core component of the proposed model of an agent involved.
Then, other components/criteria of this model are introduced.
In Section III, we formally introduce a novel model of the
consensus reaching process and its support. In Section IV, the
use of a chosen game-playing algorithm, called Monte Carlo
Tree-Search, is discussed, which is the backbone of the support
system. In the next section, we present the experimental setting
and results. The last section is devoted to conclusions.

II. MEASURING OF A DEGREE OF CONSENSUS AND A
MODEL OF AN INDIVIDUAL

Formally, we consider the following setting for the core
group decision making process. There is a set of N ≥ 2
options, S = {s1, s2, ..., sN}, and a set of M ≥ 2 agents
E = {e1, e2, ..., eM}. This model may be further extended
considering, e.g., relevance degrees of the options and im-
portance weights of the agents. In the simplest case, each
agent em ∈ E expresses his or her preferences in the form
of an individual fuzzy preference relation Rm in S × S.
Thus Rm is a fuzzy set in S × S and its membership
function µRm

(si, sj) may be given such an interpretation that
µRm

(si, sj) > 0.5 denotes the preference degree of option si
over option sj as expressed by agent em, and it is understood
that the higher this degree the stronger this preference. On
the other hand, µRm

(si, sj) < 0.5 denotes the preference
degree of option sj over option si and it is understood that
the lower this degree the stronger this preference. Finally,
µRm(si, sj) = 0.5 denotes the indifference between options si
and sj . Usually, the reciprocity of the relation Rm is assumed,
i.e., µRm

(si, sj) + µRm
(sj , si) = 1 and thus, the membership

function µRm
(si, sj) has to be specified for i < j only.

A. Measuring the degree of consensus
The traditional understanding of the consensus as an unani-

mous agreement is not applicable for this scenario: one cannot
expect the total agreement regarding preferences on all pairs of

options under consideration, and by all agents. Moreover, such
a total agreement is usually not needed cf., e.g., Loewer and
Laddaga [18]. Therefore, a new definition of the consensus
was proposed [9], [8], [10] which is based on the concept
of fuzzy (soft) majority. A natural manifestations of such
a “soft” majority are the so-called linguistic quantifiers as,
e.g., “most”, “almost all”, “much more than a half”, etc.
Such linguistic quantifiers can be dealt with by, e.g., fuzzy
logic based calculi of linguistically quantified statements as
proposed by Zadeh [19].

The new degree of consensus proposed in [8] can be equal
to 1, which stands for full consensus, when, e.g., “most of the
agents agree as to almost all relevant options”. The particular
elements of this definition of consensus are modeled using
fuzzy logic concepts. The relevance of opitions is assumed
to be given as a fuzzy set B defined in the set of options S
such that µB(si) ∈ [0, 1] is a degree of relevance of option
si, from 0 for fully irrelevant to 1 for fully relevant, through
all intermediate values. The relevance bij of a pair of options,
(si, sj) ∈ S × S, may be defined as:

bBij =
1

2
[µB(si) + µB(sj)] (1)

which is clearly the most straightforward option; evidently,
bBij = bBji, and bBii do not matter; for each i, j.

Then, the degree of consensus is derived as follows:

First, for each pair of agents (em, en) and each pair of
options (si, sj) a degree of agreement νij(m,n) is derived;
it is, in general, computed as a function Aggrm of two
arguments (µRm

(si, sj), µRn
(si, sj)) and can take different

forms provided that Aggrm(x, x) = 1 and Aggrm(0, 1) =
Aggrm(1, 0) = 0 and the monotonicity of Aggrm(x, y) with
respect to |x− y| is preserved. For example,

νij(m,n) =

{
1 if µRm

(si, sj) = µRn
(si, sj)

0 otherwise

Second, for each pair of agents (em, en) a degree of
agreement νBQ1

(m,n) as to their preferences between Q1 (a
linguistic quantifier as, e.g., “most”, “almost all”, “much more
than 50%”, etc.) pairs of relevant options is derived as:

νBQ1
(m,n) = µQ1

(∑N−1
i=1

∑N
j=i+1[νij(m,n) ∧ bBij ]∑N−1
i=1

∑N
j=i+1 b

B
ij

)
(2)

where ∧ is a t-norm operator, e.g., the minimum.

Third, these degrees are aggregated to obtain a degree
of agreement con(Q1, Q1, I, B) of Q2 (a linguistic quantifier
similar to Q1) pairs of important agents as to their preferences
between Q1 pairs of relevant options, and this is meant to be
the degree of consensus sought:

consensus = µQ2

(∑M−1
m=1

∑M
n=m+1[ν

B
Q1

(m,n) ∧ bImn]∑M−1
m=1

∑M
n=m+1 b

I
mn

)
(3)



B. A model of an individual agent rationally committed to
consensus

We assume that the agents are rationally committed to
reaching the consensus. Hence, they are assumed to discuss
various aspects of the decision problem under consideration
and then are willing and ready to change their initially ex-
pressed preferences so as to get closer to the opinions of
the other members of the group. Thus, in order to model
their behavior we assume that their decision with this respect
are guided by their assessment of the quality of the current
state (form) of the preference relations of all involved agents.
A crucial component of such a quality assessment (via an
objective function) is a measure of the degree of consensus,
such as the one given by (3). However, an individual may be
assumed to take into account also other aspects of the current
state of the preferences and in the new model proposed in this
paper we include the following aspects:

• the consensus degree (3),
• the cost; the difference (distance) between the initial

preferences of an agent and those at a current state of
the process,

• the fairness of the current state meant as the similarity
of the distances of the initial preferences of all agents
to their preferences at the current state

• the bias towards the initial opinions (preferences) of
the majority of agents meant as tendency to limit the
changes in preferences to a small number of agents.

We introduce the objective function, meant as a crucial el-
ement of our model of the rationally committed (to consensus)
agent, as a linear combination of these objectives:

objective = w1 ∗ consensus+ w2 ∗ (1− cost)+ (4)

+w3 ∗ fairness+ w4 ∗ bias

The degree of consensus component is calculated as previ-
ously shown in (3).

The cost (of change) component is defined as a degree
measuring how much the preferences of agent em in the state
for which the objective function is calculated differ from the
desired preferences. There can be various realizations of this
concept. In this paper, we define the cost as:

cost = 1−
∑N−1

i=1

∑N
j=i+1

(∣∣µRm
(si, sj)− µ′Rm

(si, sj)
∣∣ ∧ bBij)∑N−1

i=1

∑N
j=i+1 b

B
ij

(5)
where:

• µRm(si, sj) - is the current (possibly changed in the
process) preference degree regarding a pair of options
(si, sj) as expressed by the individual em;

• µ′Rm
(si, sj) - is the initial value of this preference

degree

The value of fairness is calculated as:

fairness = 1− σ(costi) (6)

where: σ(costsi) is the standard deviation of the agents’s costs.
The higher the value of fairness, the more similar is the extent

to which all agents have to revise their initial preferences to
reach the current state. Thus, all agents may be expected to be
equally committed to the emerging group solution.

The bias is calculated as:

bias = median{1− costi}i=1,...,M (7)

If, for example, the value of bias is equal to 0.8, then it means
that at least a half of agents have diverted only at most to the
extent 0.2 from their initial preferences to reach the current
state. The maximization of this bias measure, combined with
the maximization of the consensus degree, results in preferring
such situations, in which if there is initially a high degree of
consensus among a half of more agents, then they should not
be forced to change their preferences to a large extent to reach
consensus in the group.

It is worth noting that the degrees of consensus, fairness
and bias are global quality indicators in the sense that they take
the same value for all agents at a given state. On the other hand,
the cost component takes different values for different agents.
Moreover, there is obviously an interplay between components
of the objective function (4). For example, the fairness and bias
may be viewed to be in conflict but the idea of introducing the
bias is the following. If in the initial state of the preferences
there is a relatively high degree of consensus in the group,
then we would prefer it to be a seed for a further steps of
the consensus reaching process, i.e., we would like not to
force those agents who lag “behind” the consensus to change
their opinions, even at the expense of the value of the fairness
indicator. On the other, if the degree of consensus is low at
the initial state, then this component will not play an important
role in guiding the behavior of an individual agent.

The weights in (4) may be set separately for each individual
or may be set globally for all of them. A variety of ways to
set the weights of the function gives us a testing framework
for various models of the rational behavior. For example, we
can verify the impact of particular settings of weights on the
final outcome of the consensus reaching process.

The objective function implicitly models the rational be-
havior of the individual agents, i.e., we assume that they will
generally try to change their preferences in such a way that
maximizes the objective function. Moreover, we propose to
use this model to support the consensus reaching process and
suggest to the agents to change their opinions according to this
model, as it is described in the next section.

III. A NEW APPROACH FOR THE SUPPORT OF CONSENSUS
REACHING

Now, we will elaborate on details of a novel model of the
consensus reaching process in our setting. The most important
element of the model is the concept of a move of an agent. A
move of an individual agent consists in choosing by him or
her a pair of options and a degree of preference for them, and
inviting other agents to accept such a degree of preference.
In the basic setting to be assumed in this paper, this degree
will be identical with the degree of preference for this pair
of options originally revealed by a given agent. It may be
assumed that particular agents, in the course of the discussion
in the group, will propose those pairs of options which are the
most important for them. In a more general setting, each agent
may propose all pairs of options for consideration.



Formally, each move is a 3-tuple: (si, sj , µRm
(si, sj)),

where the respective parameters are the two options being
compared and a preference degree stating how much option
si is preferred to sj

The process starts with the preparation of the collection
of moves from each agent. The moves are submitted to
the system, i.e., the algorithms employed in the supporting
computer program have access to all of them. The way and
moment of process initialization, as well as the choice of the
sequence of agents whose moves are subsequently considered,
depend on a particular scenario and agenda adopted. The
approach proposed is however general and can be tuned to
a particular case.

The consensus reaching process is iterative, and in each
iteration after some discussion, an agent, who is currently
active, may play, i.e., make a move. The other agents may
then accept or reject it. The acceptance implies changes
in the current preference of the agent who has accepted a
move regarding the particular pair of options that move has
concerned. Then, the next agent (player) becomes active in a
round robin fashion. The process ends when a desired degree
of consensus, set in advance, has been reached or all agents
have used all their possible moves.

As stated above, the agents (players) have two types of
decisions to make:

• Play (make one move) from the set of all moves. The
action is available to the currently active agent.

• Accept or Reject a move made by the active player.

Before making each decision, the support system, which is
based on computer simulations, will evaluate each option in
terms of its expected quality. The expected quality is calculated
according to the objective function which has been introduced
and discussed in Section II-A. This function assigns to each
state of the game, i.e., the set of preference relations of all
agents, a number from [0, 1] where 0 and 1 denote the
lowest and the highest outcomes, respectively. The outcome
is calculated for each agent individually just like the scores in
games. The idea is to simulate lots of possible future scenarios,
in an intelligent way, similarly to how it is performed for the
game tree search in games in order to suggest the best move
to an agent. The details of the simulation based algorithm to
be employed in this work will be presented in Section IV.

The underlying idea is based on the following facts:

• Some aspects of the problem can be modeled as a
game so that we claim that game playing algorithms
may provide strong tools and techniques to find the
best decision in the current state of the game.

• We present a new paradigm, which is suitable for
situations where the agents would prefer to check
first “what can happen” if they propose a certain
preference to others for acceptance/rejection or if they
accept/reject a preference proposed by another agent.

• The approach is based on the rationale that the par-
ticipating agents will gain trust [20] in the computer
system and its supporting evaluation.

• There is no in depth analysis of moves by the sys-
tem such as the breaking them down into arguments
and hence using elements of argumentation theory.

Therefore, the approach is conceptually clear and yet
relatively general and flexible. For example, one could
construct a setup with a different set of possible moves
and the rest of the process could remain the same.

A general architecture of the consensus reaching process is
illustrated in Figure 1. The process is gamified, i.e., represented
as a game. However, we have to distinguish between the
current game running through discussion and the simulated
games performed by computer simulation. The current game
is only just one in the process considered (because it is the
process itself), whereas there are lots of simulated games in
each iteration. In Figure 1, the steps present only in the current
game are highlighted in a light blue color. All other steps are
common for both types of games.

Figure 1. The overall structure of the consensus reaching support system

Below we will comment on the steps shown in Figure 1:

1) Initialize - the agents submit their moves to the
system. For each agent, the system will manage a
dynamic collection of his or her moves.

2) STOP? - the meeting is over if one of the following
events occurs: (1) a desired threshold of a consensus
degree is reached, (2) the session exceeds a certain
allotted time slot, or (3) the agents have no more yet
unpresented moves left.

3) Set next agent as active - the next agent (player)
becomes active to openly make a move. Assuming
that the agents’ indices are kept from 1 to M , such
a circular loop can be attained by the following
updating:

ActiveP layer := [(ActiveP layer+1)%(M+1)]+1

where M is the total number of agents.
4) Discussion - the discussion is held according to the

agenda adopted.
5) New moves can be added - after the discussion,

the agents can submit new moves to the system or
override the previous ones. If they do, the MCTS
module will reset the construction of the game tree
to take all the changes into account.



6) MCTS (advisory simulation module) - the sim-
ulation based advisory module is realized by the
Monte Carlo Tree Search (MCTS) algorithm. The
input to the algorithm is the complete current state
(the preference matrices as well as the active agent’s
index). Section IV is solely devoted to the algorithm,
so we will not go into details here.

7) ActivePlayer PLAY - this is the active agent’s
(player’s) turn to make a move (“play”). He or she
can choose a move from their earlier submitted set
of moves or pass if they do not have any one left.

8) ResponsePlayer PLAY - if the active agent (player)
has made (played) a move, then each other player can
make a move (“play”) by accepting or rejecting it. If
the active agent quits, then this step is skipped.

9) Update Step - a move made is then considered
as being used and it is removed from the set
of agent’s moves. If an agent accepts a move
(si, sj , µRm

(si, sj)), then an update of other agents’
current preferences to the pair of options si, sj to
the value of µRm

(si, sj) occurs. Such an action also
removes all moves the agent had regarding the same
pair of options.

10) Calculate Group Preference - the current degree of
consensus is calculated.

IV. MCTS BASED DECISION SUPPORT

Let P be an iterative decision problem in which each
decision may lead to a different state (problem configuration).
The Monte Carlo Tree Search (MCTS) [21] is an algorithm
of searching a tree composed of states that represent the
nodes and decisions that represent the edges. The most notable
application of the MCTS is in the game playing domain [22],
[23], [24], [25], where the problem configurations are game
states while the decisions are actions in the game which players
can make.

The MCTS works by performing massive amounts of
computer simulations of the problem and gather statistical
evidence about the available actions by growing a tree of
the game. A single iteration of the algorithm consists of four
phases as depicted in Figure 2.

Figure 2. Four phases which comprise the MCTS algorithm.

1) Selection. In this phase, the algorithm starts from the
root node and traverses down the tree by choosing

subsequent children nodes. The child node at each
node down the path is chosen according to the so-
called selection policy. The selection phase ends
when there is no child node to choose, i.e., a leaf
node has been reached.

2) Expansion. One of the possible actions is applied
to a node reached in the previous step and the tree
is grown by adding a child node representing the
resulting state.

3) Simulation. The algorithm starts from the new node
and performs a complete game simulation, i.e., reach-
ing a terminal state. This phase is done outside
the game tree and no nodes are added. Once the
simulation reaches the terminal state, the obtained
goals (outcomes) of each player are checked. In this
work, the goals are calculated using the objective
function (c.f. Section II-A and Equation 4). The
terminal state is defined as having at least one of the
two properties: (1) a desired threshold of a consensus
degree is reached, (2) the agents have no more yet
unpresented moves left.

4) Back-propagation. Here, the statistics are recalcu-
lated inside all nodes along the path from the root
to the leaf (containing the starting state for the
simulation) in the game tree. The statistics include
the average scores of each player and the number of
visits to a node. An average score is computed as the
total score attained in the iterations going through a
particular node divided by the number of visits to that
node.

If a terminal node is added in the current iteration then the
current iteration of the MCTS algorithm proceeds directly to
the back propagation phase.

In the classic implementation, the simulation phase is
performed randomly. However, the selection phase, which
searches over the already constructed part of the tree, is
based on a more informed search that balances the exploration
(of less explored branches) and exploitation (of the most
promising moves done so far). The widely used algorithm to
implement this idea, which we adopt in the paper, is called the
Upper Confidence Bounds applied for Trees (UCT) [26], [27].

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a)

}
(8)

where A(s) is a set of actions available in state s, Q(s, a)
denotes the average result of playing action a in state s in the
simulations performed so far, N(s) is the number of times the
state s has been visited in previous simulations and N(s, a)
is the number of times the action a has been sampled in this
state in previous simulations. Constant C controls the balance
between exploration and exploitation. In this paper, the set
A(s) depends on the fact whether the current player is the
active player to make a move or not. In the former case, the
available actions are moves which have not yet been played by
the player. In the latter case, the available actions are accept
and reject the move.

In this work, we use the most common value of C =
√
2,

suggested in the literature [28], which makes the second term
in (8) equal to the size of the one-sided confidence interval for
the average reward using the Chernoff-Hoeffding bounds. The



MCTS algorithm equipped with the UCT formula is proven
to converge to the game theoretic optimum given sufficient
time [26]. The authors of [26] also show that the failure
probability of selecting a suboptimal action at the root of
the tree (where the current decision is to be made) converges
to zero at a polynomial rate with respect to the number of
simulations.

If the theoretical convergence is not required, the UCT
formula can be replaced by the so-called UCB-1-Tuned for-
mula [29] which often performs more efficiently in practice.

In summary, the input to the algorithm is the current
state of the problem. This state is stored in the root in the
tree searched. The state in our problem contains: the list of
options (alternatives) as to which the consensus is sought,
the preferences of each player (agent) with respect to these
options, the moves of the players and who is the active
player. Then, the method will gradually search the tree, i.e.,
the space of possible options, through many iterations. Each
iteration will add a node to the tree. Actions within the tree are
chosen according to (8) whereas actions outside the tree (in
the simulation phase) are chosen randomly. The participants
assisted by the MCTS are presented with the expected scores
Q for each action available to them at the moment.

V. EMPIRICAL RESULTS

In general, in order to evaluate the efficacy of a consensus-
reaching support software, it is required to ask human experts
to carry out a discussion while using this software to enrich
the process. However, such an experiment has several flaws,
e.g., it is not very repeatable under the same conditions and
also human decisions can be affected by their current mood or
disposition. The system proposed in this paper has a unique
feature that it advises to take actions based on the results
coming from the MCTS algorithm, therefore, just for the
purpose of testing, the human participants are not required.
We decided to perform a lot of automated experiments using
three test scenarios with the assumption that an action which
is advised by the system is always chosen (hence, no human
intervention is required). The biggest disadvantage of having
no participants is that no new moves will be made on the fly
during the experiments. We only provide the machine agents
with the initial set of moves and they can propose them as well
as accept or reject moves made by other agents. The process
is illustrated in Figure 1 with the blue steps excluded, because
they require human involvement. The experiments are aimed
at revealing the emerging nature of the system, in particular,
the way in which the MCTS-based advisor suggests actions
and the consequences of following these advises. Naturally,
in a real-world setting, the participants do not need to agree
with the advisor, but this is always the case when people and
not automated systems are responsible for making the choice,
ultimately.

A. Experimental Setup
We have prepared base test scenarios of three decision

processes. The first one assumes that there are 3 participants
and 5 options. The preferences regarding each pair of options
greatly differ amongst the experts (all 0s vs. all 0.5s vs. all 1s),
so it is very difficult to reach a consensus in such a situation.
The next two setups employ 6 participants and 3 options. In
the former one, there is a majority group of 4 experts who have

common preferences, so there is a consensus within the group,
but they are vastly different than preferences of people outside
this group. In the latter case, the situation is flipped over, i.e.,
there is a minority group of 2 experts with a consensus on start
and the preferences of the 4 remaining ones differ significantly.

For each test scenario, we have conducted 81 experiments
varying over the parameter settings. The following values
of the objective function parameters (i.e., weights w1-w4

in Equation 4) were tested: consensus ∈ {0.8, 0.6, 0.4},
cost ∈ {0.6, 0.4, 0.2}, fairness ∈ {0.6, 0.3, 0.0}, bias ∈
{0.6, 0.3, 0.0}. The consensus range contains slightly higher
values, because this is the main objective in the problem, so
more often than not it should have the biggest weight assigned.
The fairness and bias ranges include zero, because these
two measures are not as natural as the previous two and can
be regarded as optional. Our aim was to test how the system
behaves with and without them.

For the clarity sake, we present only selected, more inter-
esting, results of the 81 experiments per each test.

We will provide some comments to Table I, which contains
weights for the respective measures and their values after ex-
ecuting the consensus-reaching process. Row 1 has the lowest
consensus value for all experiments with consensus weight
equal to 0.8. Rows 1-3 present how significantly, the weight
of bias affects the resulting consensus degree. Rows 4-5 show
how setting a lesser weight for fairness slightly increases the
consensus value in this setting. Row 6 compared to rows 7-9
shows that in this test, higher fairness prevents reaching a full
(1.00) consensus. Rows 7-9 are examples of a full consensus.
However, rows 10 shows that setting each weight to 0.6 results
in a total conservative situation, where players do not change
their preferences at all. Indeed, the weight set to reaching the
consensus is outweighed by the remaining criteria. Rows 11-
15 show how lowering certain weights increases the consensus
value. However, a significant increase is observed only starting
from Row 16 to Row 18. We can also see in rows 16-18 that
the second expert can retain their intial preferences the most,
because they were inbetween the preferences of the other two
experts. Then, lowering the consensus weight in Rows 19-22
leads to a complete disagreement (Consensus = 0.00). This can
again be mitigated by lowering the Cost weight as shown in
Rows 22-25, but the maximum value of consensus reachable
with these weight is only 0.73. In general, we observe that:

• The ulility function is the most efficiently maximized
for the weights of consensus, cost, fairness and bias
equal to 0.8, 0.2, 0 and 0, respectively.

• The higher the weight of consensus, the higher the
value of consensus.

• The higher the weight of cost, the lower the value of
consensus.

• Combination of both high cost and bias prevents the
system from reaching a consensus

• Each parameter has an impact on the results and the
dependence does not have a simple linear nature.

The second test with results shown in Table II is relatively
easy for reaching the consensus. In most of the cases, the
preferences of the majority group of experts who agree with
themselves are retained. However, it is worth taking a closer
look at rows 24 and 27. Here, the combination of bias weight



TABLE I. This table contains results of the experiment conducted for the
first test scenario. The first column shows an ordinal numbers of experiments

with particular parameters setting. The next four columns show weights
assigned to respective criteria: consensus, cost, fairness and bias. The bolded
column shows the final consensus value obtained after running the program,
and two subsequent columns show the same for for fairness and bias, while
the next one shows individual costs values for each player. The cost value of
1.00 means that the player did not change their preferences at all. The last

column denotes the final value of the objective function, cf. (4)
.

Row Weights: Values:
cons cost fair. bias cons fair. bias costs objective

1 0.8 0.6 0.3 0.6 0.53 0.98 0.80 0.75, 0.80, 0.80 0.73
2 0.8 0.6 0.3 0.3 0.80 0.82 0.70 0.45, 0.90, 0.70 0.75
3 0.8 0.6 0.3 0.0 1.00 0.78 0.55 0.45, 0.95, 0.55 0.84
4 0.8 0.4 0.3 0.3 0.67 1.00 0.75 0.75, 0.75, 0.75 0.76
5 0.8 0.4 0.0 0.3 0.73 0.95 0.75 0.75, 0.75, 0.65 0.73
6 0.8 0.2 0.6 0.3 0.93 0.92 0.60 0.60, 0.70, 0.50 0.84
7 0.8 0.2 0.3 0.3 1.00 0.86 0.65 0.65, 0.65, 0.35 0.85
8 0.8 0.2 0.0 0.6 1.00 0.76 0.75 0.25, 0.75, 0.75 0.85
9 0.8 0.2 0.0 0.0 1.00 0.91 0.50 0.50, 0.70, 0.50 0.91

10 0.6 0.6 0.6 0.6 0.00 1.00 1.00 1.00, 1.00, 1.00 0.75
11 0.6 0.6 0.3 0.3 0.13 1.00 0.95 0.95, 0.95, 0.95 0.69
12 0.6 0.6 0.0 0.0 0.50 0.85 0.85 0.60, 0.95, 0.85 0.65
13 0.6 0.4 0.6 0.6 0.57 0.98 0.80 0.75, 0.80, 0.80 0.78
14 0.6 0.4 0.6 0.0 0.73 1.00 0.70 0.70, 0.70, 0.70 0.82
15 0.6 0.4 0.0 0.6 0.57 0.76 0.90 0.40, 0.90, 0.90 0.73
16 0.6 0.4 0.0 0.0 1.00 0.76 0.50 0.50, 1.00, 0.50 0.87
17 0.6 0.2 0.3 0.0 1.00 0.92 0.55 0.45, 0.65, 0.55 0.90
18 0.6 0.2 0.0 0.0 1.00 0.88 0.60 0.60, 0.70, 0.40 0.89
19 0.4 0.6 0.6 0.6 0.00 1.00 1.00 1.00, 1.00, 1.00 0.82
20 0.4 0.6 0.0 0.0 0.00 1.00 1.00 1.00, 1.00, 1.00 0.60
21 0.4 0.4 0.6 0.3 0.00 1.00 1.00 1.00, 1.00, 1.00 0.76
22 0.4 0.4 0.3 0.3 0.00 1.00 1.00 1.00, 1.00, 1.00 0.71
23 0.4 0.2 0.6 0.0 0.73 1.00 0.70 0.70, 0.70, 0.70 0.86
24 0.4 0.2 0.0 0.6 0.73 0.86 0.80 0.80, 0.80, 0.50 0.76
25 0.4 0.2 0.0 0.0 0.67 1.00 0.75 0.75, 0.75, 0.75 0.70

equal to 0 and fairness weight equal to 0.6 was enough to
“break” the majority group at least a bit. These two examples
are settings for which the consensus was reached in a more
fair way regarding the minority group.

Finally, Table III presents the results for the experiment
that involved two experts with the same preferences and four
with significantly different ones. Depending on the weights
assigned, a full consensus may be found when the other four
experts adjust their preferences to be the same as the first
two experts’ preferences (rows 9 or 17). However, it can
also be reached when the first pair of experts changes their
preferences to some extent (e.g. row 7). The lowest value of
consensus is achieved when both cost and fairness weights are
set high, so the players refrain from changing their preferences
as possible (row 20). However, a non-zero weight of consensus
also induces some changes, what can been seen by looking at
costs of experts 4 and 6 in row 20.

VI. CONCLUSIONS

We have proposed a new paradigm of the consensus
reaching process support system. Its main feature is the
submit-and-test nature. The participants in the process first
submit their testimonies to the system. In the background,
a machine-learning-based module performs simulations and
evaluates the efficacy of available actions by means of their
expected outcome at the end of the process. The outcome is
calculated according to the objective (goal) function based on
four components: consensus, cost, fairness and majority-cost-
based (bias) degrees. The function is our attempt to provide

TABLE II. This table contains results of the experiment conducted for the
second test scenario. Please refer to Table I for the interpretation of the

values.

Row Weights: Values:
cons cost fair. bias cons fair. bias costs objective

1 0.8 0.6 0.6 0.6 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.92
2 0.8 0.6 0.3 0.6 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.95
3 0.8 0.6 0.3 0.3 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.90
4 0.8 0.6 0.0 0.6 0.89 0.90 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.77 0.94
5 0.8 0.6 0.0 0.0 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.87
6 0.8 0.4 0.6 0.6 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.94
7 0.8 0.4 0.6 0.0 1.00 0.95 0.83 1.00, 1.00, 1.00, 1.00, 0.75, 0.93 0.95
8 0.8 0.4 0.3 0.6 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.96
9 0.8 0.4 0.3 0.3 0.89 0.90 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.77 0.92

10 0.8 0.2 0.6 0.6 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.95
11 0.8 0.2 0.6 0.3 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.94
12 0.8 0.2 0.6 0.0 1.00 0.96 0.75 1.00, 1.00, 1.00, 1.00, 0.83, 0.85 0.96
13 0.8 0.2 0.0 0.0 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.98
14 0.6 0.6 0.6 0.6 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.93
15 0.6 0.6 0.6 0.0 1.00 0.95 0.83 1.00, 1.00, 1.00, 1.00, 0.75, 0.93 0.93
16 0.6 0.4 0.6 0.6 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.92
17 0.6 0.4 0.6 0.3 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.91
18 0.6 0.4 0.6 0.0 1.00 0.95 0.83 1.00, 1.00, 1.00, 1.00, 0.75, 0.93 0.94
19 0.6 0.4 0.3 0.0 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.93
20 0.6 0.4 0.0 0.0 0.89 0.90 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.77 0.91
21 0.6 0.2 0.6 0.6 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.94
22 0.6 0.2 0.0 0.0 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.97
23 0.4 0.6 0.6 0.6 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.94
24 0.4 0.4 0.6 0.0 1.00 0.95 0.83 0.83, 0.83, 0.83, 0.83, 0.75, 0.93 0.93
25 0.4 0.4 0.3 0.6 0.82 0.93 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.85 0.93
26 0.4 0.4 0.3 0.3 0.80 0.94 1.00 1.00, 1.00, 1.00, 1.00, 0.83, 0.93 0.92
27 0.4 0.2 0.6 0.0 1.00 0.98 0.75 0.75, 0.75, 0.75, 0.75, 0.83, 0.85 0.94
28 0.4 0.2 0.0 0.0 1.00 0.84 1.00 1.00, 1.00, 1.00, 1.00, 0.58, 0.77 0.96

TABLE III. This table contains results of the experiment conducted for the
third test scenario. Please refer to Table I for the interpretation of the values.

Row Weights: Values:
cons cost fair. bias cons fair. bias costs objective

1 0.8 0.6 0.6 0.6 1.00 0.87 0.83 0.83, 0.83, 0.53, 0.75, 0.93, 0.68 0.88
2 0.8 0.6 0.6 0.3 0.89 0.90 0.85 0.92, 0.92, 0.7, 0.67, 0.85, 0.77 0.87
3 0.8 0.6 0.6 0.0 0.89 0.89 0.85 0.92, 0.92, 0.65, 0.67, 0.85, 0.77 0.86
4 0.8 0.6 0.0 0.0 0.89 0.84 0.77 1.00, 1.00, 0.7, 0.58, 0.77, 0.68 0.85
5 0.8 0.4 0.0 0.6 0.89 0.90 0.85 0.92, 0.92, 0.7, 0.67, 0.85, 0.77 0.86
6 0.8 0.4 0.0 0.3 1.00 0.84 0.85 0.92, 0.92, 0.45, 0.67, 0.85, 0.77 0.91
7 0.8 0.2 0.3 0.0 1.00 0.90 0.75 0.75, 0.75, 0.62, 0.83, 0.85, 0.6 0.94
8 0.8 0.2 0.0 0.6 1.00 0.76 0.82 0.87, 0.87, 0.23, 0.45, 0.63, 0.82 0.89
9 0.8 0.2 0.0 0.0 1.00 0.78 0.77 1.00, 1.00, 0.37, 0.58, 0.77, 0.68 0.95

10 0.6 0.6 0.6 0.6 0.69 0.89 0.93 1.00, 1.00, 0.7, 0.83, 0.93, 0.77 0.85
11 0.6 0.6 0.6 0.0 0.89 0.89 0.85 0.92, 0.92, 0.65, 0.67, 0.85, 0.77 0.86
12 0.6 0.6 0.3 0.6 0.58 0.92 0.93 1.00, 1.00, 0.9, 0.83, 0.93, 0.77 0.82
13 0.6 0.4 0.3 0.0 1.00 0.84 0.85 0.92, 0.92, 0.45, 0.67, 0.85, 0.77 0.89
14 0.6 0.3 0.0 0.6 0.80 0.83 0.93 1.00, 1.00, 0.7, 0.58, 0.93, 0.68 0.85
15 0.6 0.4 0.0 0.0 0.89 0.90 0.85 0.92, 0.92, 0.7, 0.67, 0.85, 0.77 0.86
16 0.6 0.2 0.6 0.6 1.00 0.87 0.83 0.83, 0.83, 0.53, 0.75, 0.93, 0.68 0.89
17 0.6 0.2 0.0 0.0 1.00 0.78 0.77 1.00, 1.00, 0.37, 0.58, 0.77, 0.68 0.93
18 0.4 0.6 0.6 0.6 0.60 0.91 0.93 1.00, 1.00, 0.82, 0.83, 0.93, 0.77 0.85
19 0.4 0.6 0.6 0.3 0.64 0.88 0.93 1.00, 1.00, 0.9, 0.75, 0.93, 0.68 0.84
20 0.4 0.6 0.6 0.0 0.56 0.90 0.93 1.00, 1.00, 0.9, 0.75, 0.93, 0.78 0.81
21 0.4 0.4 0.6 0.6 0.62 0.94 0.92 0.92, 0.92, 0.9, 0.83, 0.93, 0.77 0.86
22 0.4 0.4 0.6 0.3 0.71 0.93 0.90 0.92, 0.92, 0.9, 0.75, 0.85, 0.77 0.85
23 0.4 0.4 0.6 0.0 0.89 0.92 0.93 0.83, 0.83, 0.73, 0.75, 0.93, 0.68 0.87
24 0.4 0.4 0.0 0.6 0.58 0.92 0.93 1.00, 1.00, 0.9, 0.83, 0.93, 0.77 0.82
25 0.4 0.4 0.0 0.3 0.71 0.93 0.90 0.92, 0.92, 0.9, 0.75, 0.85, 0.77 0.81
26 0.4 0.4 0.0 0.0 0.71 0.93 0.90 0.92, 0.92, 0.9, 0.75, 0.85, 0.77 0.78
27 0.4 0.2 0.0 0.6 0.80 0.89 0.92 0.92, 0.92, 0.7, 0.67, 0.93, 0.77 0.86
28 0.4 0.2 0.0 0.3 1.00 0.84 0.85 0.92, 0.92, 0.45, 0.67, 0.85, 0.77 0.90
29 0.4 0.2 0.0 0.0 1.00 0.84 0.85 0.92, 0.92, 0.45, 0.67, 0.85, 0.77 0.92

a set of criteria modelling relatively rational agents’ behavior
when it is simulated by the machine.

The objective value is calculated as a linear combination
of those criteria and the weights can be manipulated to better
suit a particular problem. The function is approximated with
the help of the Monte Carlo Tree Search (MCTS) algorithm,
which has proven itself to be very succesful in predicting the
outcome in games. The participants actually play a “virtual



game of consensus”. They can play their testimonies, which
other players may in turn accept or reject.

The help of the machine advisor, running in the back-
ground, may be used in a variety of ways. The most natural is
to increase the confidence of participants of proposing certain
testimonies and arguments related to them. It is always a
human who is responsible for making the choice, but they
may take advantage of the machine suggestion. The system
can also help to determine which preferences are the most
imporant from the perspective of reaching the consensus.

Another way to use the system is to use it as a platform for
the simulation of the group of agents involved in the consensus
reaching process. Assuming that the agents behavior is guided
by the maximization of (4), this behavior may be simulated
using the MCTS machinery and on top of that some other
algorithms to suggest the actions to an individual agent may
be tested.

In order to evaluate the system, we prepared three distinct
scenarios in which a consensus is sought. Then, we assumed
that each participant will agree with the machine advisor to
show the consequences of this behaviour. The results show
that the system will try to fulfill each expert’s individual goal
within the constraints imposed by the given objective function.
The objective function can be fine-tuned to meet specific needs.
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