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Abstract—An approach for robustness analysis of non-
dominated solutions to a multi-objective optimization model of 
an energy management system aggregator (EMSA) in face of 
uncertainty is presented. The EMSA is an intermediary entity 
between households and the System Operator (SO), capable of 
contributing to balance load and supply, and therefore coping 
with the intermittency of renewable energy sources (RES) and 
facilitating a load follows supply strategy in a Smart Grid 
environment. Household clusters provide load flexibility to 
satisfy system services requested by the SO, involving decreasing 
or increasing load in specific time slots. The EMSA multi-
objective optimization model considers the maximization of 
profits and the minimization of the imbalance between the 
amounts of load flexibility provided by the end-user clusters to 
satisfy SO requests, taking into account revenues from the SO 
and payments to the clusters. A hybrid evolutionary approach 
combining Genetic Algorithms (GA) with Differential Evolution 
(DE) has been designed to deal with this model, and its behaviour 
subject to different scenarios of uncertainty is evaluated. The 
robustness analysis of non-dominated solutions produced by the 
hybrid evolutionary approach is based on the degree of 
robustness concept, taking into account the changes in the 
performance of the objective functions when small perturbations 
of the model nominal coefficients occur. 
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I. INTRODUCTION  
In a smart grid environment, in which the electricity 

delivery system is integrated with Information and 
Communication Technologies (ICT), it is expected that the 
end-user will become a prosumer (i.e., simultaneously 
producer and consumer of electricity) and dynamic (time-
differentiated) electricity tariffs will be applicable. In order to 
engage end-users into Demand Response (DR) programs, i.e. 
adjusting consumption patterns by reacting to price signals, 
households need to have home energy management systems 
(HEMS) based on ICT and endowed with intelligence to 
optimize the usage of loads without compromising comfort 

requirements, also allowing the two-way communication with 
the System Operator (SO) [1]. 

In this context, DR programs can contribute to delivery 
ancillary services, i.e., services provided by the SO to ensure 
reliable system operations, by exploiting the load flexibility 
displayed by end-users [2]. This role can be performed by an 
energy management system aggregator (EMSA), which an 
intermediary entity operating between household clusters and 
the SO, enabling the optimization and coordination of a large-
scale dissemination of HEMS. The EMSA uses the demand-
side flexibility offered by end-user clusters to provide system 
services requests, involving decreasing or increasing the power 
required in each time slot of a planning horizon.  

The EMSA multi-objective optimization model considers 
the maximization of profits and the minimization of the 
imbalance between the amounts of load flexibility provided by 
the end-user clusters to satisfy SO requests, taking into account 
revenues from the SO and payments to the clusters. However, 
several sources of uncertainty are at stake that should be 
incorporated into the EMSA decision-making process to obtain 
robust non-dominated solutions to the multi-objective model, 
i.e., solutions that are in some way “immune” to some degree 
of data uncertainty, having in mind their practical 
implementation. 

The purpose of this paper is to present an approach that 
analyzes whether the non-dominated solutions computed by a 
hybrid genetic/differential evolution algorithm are robust based 
on a degree of robustness concept. The assessment of solution 
robustness is done considering perturbations in the nominal 
coefficients of the model within a prespecified range and 
evaluating the corresponding changes in the objective function 
space for a given solution structure.  

This paper is structured as follows. Section II describes the 
methodological framework for the assessment of solution 
robustness in multi-objective optimization also presenting a 
brief literature review. Section III presents the EMSA multi-
objective model and the robustness analysis approach, as well 
as the case study. Section IV presents some illustrative results 
and the main conclusions are drawn in section V. 



II. ROBUSTNESS IN MULTIOBJECTIVE OPTIMIZATION 
Mathematical models for decision support in complex real-

world contexts should take into account multiple axes of 
evaluation of the merits of different courses of action 
(solutions), which are operationalized by conflicting and 
incommensurate objective functions instead of being combined 
in a single economic indicator. Multi-objective models allow 
exploring a larger set of diversified potential solutions and 
unveiling the trade-offs to identify satisfactory compromise 
solutions. A feasible solution is called non-dominated (also 
Pareto optimal, efficient or non-inferior) if no improvement in 
all objective functions is simultaneously possible, i.e. 
improving an objective function can be done only by 
deteriorating at least one of the other objective function values. 
These are the solutions that should be considered for selection 
and practical implementation according to the preferences of a 
decision maker (DM). 

The data used in mathematical models are generally 
uncertain, often resulting from assumptions done based on the 
context of the problem, prediction and forecast of occurrences, 
measurements subject to errors, etc. Multi-objective 
optimization in face of uncertainties is very relevant in 
practice, since slight difference in environmental conditions or 
variations in the solution structure after implementation can be 
crucial to overall operational success or failure. Since the data 
to be supplied to the model is subject to several sources of 
uncertainty, solutions should be assessed for robustness, i.e., 
their performance in the multiple objective functions in face of 
data perturbations should be analysed. Therefore, it is 
necessary to identify non-dominated solutions displaying not 
just satisfactory values for the multiple objective functions but 
also being somehow insensitive to slight variations in the 
model data coefficients. That is, the algorithm to solve the 
multi-objective optimization model should strive for robust 
solutions.  

The notion of robustness is not used uniformly in the 
literature, possibly due to the diversity of real-world problems 
in which uncertainty is an inherent feature. One of the first 
concepts of robustness in optimization problems was presented 
by Gupta and Rosenhead [3] and several meanings of 
robustness and ways to deal with uncertainty to derive robust 
solutions have been introduced by different authors. Hites et al. 
[4] distinguishes four different concepts of robustness: robust 
decision, robust solution, robust conclusion and robust method. 
Often robustness signifies that the solution is good in all or 
most scenarios, where a scenario is a group of possible values 
for the model data, and not bad in none. A common 
interpretation of robustness in the literature is that a solution is 
robust when it is immune to small perturbations; i.e., when 
exposed to different conditions comparatively to a nominal 
situation due to the uncertainty of some parameters (input data, 
decision variable value, DM’s preferences, etc.) the solution 
still performs well enough in terms of the objective function 
values.  

A survey of optimization in uncertain environments is 
presented in [5]. Studies focused on robustness in multi-
objective optimization models and a comprehensive overview 
of multi-objective evolutionary algorithms (EA) in uncertain 

environments is provided in [6], including design issues, 
namely regarding changes to standard EA to produce robust 
solutions, and applications. An extension to Pareto dominance 
considering the uncertainty of the multi-objective functions 
within intervals is presented in [7], deriving a theory of 
“probabilistic dominance” able to orient the selection operators 
to obtain the Pareto set. The Robust Multi-Objective Genetic 
Algorithmic (RMOGA) is proposed in [8] to optimize two 
objectives: a fitness value and a robustness index enabling to 
analyse the trade-offs among performance and robustness of 
solutions using distance metrics. Two robust multi-objective 
optimization procedures are presented in [9] with the aim of 
finding a robust frontier composed by robust solutions instead 
of the global Pareto optimal front, by extending the techniques 
used in single objective robust optimization, assuming that the 
DM is not interested in finding “global best” solutions which 
may be too sensitive to small environmental changes. The 
concept of degree of robustness of non-dominated solutions is 
incorporated into an EA by [10], which is based on the 
behaviour of the solution in its neighbourhood when subject to 
perturbations in the decision variable space and the objective 
function coefficients. An approach based on the classification 
of robustness regions of the Pareto front is proposed in [11], 
distributing the solutions along the most robust regions 
according to parameter values and degree of robustness with 
the aim of finding the most robust Pareto front.  

The next section presents an approach to evaluate non-
dominated solutions based on the degree of robustness pro-
posed in [10][12]. 

III. A MULTIOBJECTIVE OPTIMIZATION FOR AN EMS 
AGGREGATOR 

This section presents a framework for the EMSA role and a 
multi-objective optimization model considering two objective 
functions (maximizing the EMSA profits and minimizing the 
imbalance between the amounts of load flexibility provided by 
the end-user clusters to satisfy SO requests), comprising the 
information exchange between HEMS, EMSA and SO, as 
displayed in Figure 1. 
Fig. 1 – EMSA Global Architecture. 

 
A. Model 

The multi-objective optimization model includes two 
objective functions (for details see [13]): 

- F1 (economic function) - the aim is to maximize the 
EMSA profits, taking into account the remuneration for selling 



the load flexibility obtained from the end-user clusters to the 
SO, the rewards paid to each cluster, the penalties paid to the 
SO for not meeting the flexibility requests and the sanctions 
applied to each cluster for the amount of flexibility 
compromised with the cluster and not made available. 

The load flexibility provided by each cluster is considered 
as uncertain since the end-user may use loads that were 
previously committed as available (that is, the cluster response 
is not entirely reliable). To take this uncertain behaviour into 
account a degree of reliability associated with each cluster is 
generated within a certain pre-defined range (e.g., 90% and 
100%) for the entire planning period or a degree of reliability is 
associated with each cluster for each time slot.  

- F2 (fairness function) – the aim is to minimize the 
inequity (imbalance) among clusters, i.e., minimizing the 
maximum relative difference between the load flexibility 
offered by the clusters and the one actually used by the EMSA, 
as a surrogate for fairness in the usage of end-user load 
flexibility. 

The model is supplied with a representative sample of real 
data obtained through audits in 30 households, using the 
Cloogy device (www.cloogy.pt) during one year, January 2013 
to January 2014, of continuous (24/7) electricity consumption 
measurements with a time resolution of 15 minutes.   

The aim is to obtain non-dominated solutions displaying a 
good performance for various sets of plausible data, i.e. robust 
solutions for practical implementation. 

B. Algorithmic Approach 
The algorithmic approach has been designed to deal with 

the main characteristics of the EMSA model, namely its 
combinatorial nature, conflicting objective functions and 
uncertainty of the load flexibility provided by end-users. EA 
are stochastic search and optimization methods that have 
proved very efficient and effective in dealing with multi-
objective models of combinatorial nature. However, it cannot 
be assumed that EA are intrinsically robust to uncertainties and 
therefore specific analysis to identify robust solutions is 
necessary. An hybrid evolutionary approach has been 
developed combining GA (based on the non-dominated sorting 
genetic algorithm (NSGA-II) [14]) and differential evolution 
(DE) based on previous experience on solving problem with 
those characteristics and making the most of the advantages of 
both approaches to characterize the non-dominated front and 
explore the trade-offs among the conflicting objectives. 
NSGA-II ranks solutions in terms of non-dominance and 
assigns a crowding distance to each individual, which measures 
how much each individual contributes to diversity within a 
dominance rank [14]. A population of size N gives origin to an 
offspring population of the same size through crossover and 
mutation operators. Both populations are combined and the 
population of size 2N is sorted into non-dominance levels. 
Individuals are selected to be introduced into the new 
generation population using the non-dominance level and their 
proximity in the objective function space. If additional 
individuals in the last rank front exist with respect to slots 
remnant in the new population of size N, a diversity preserving 
mechanisms is used. Individuals from this last front are placed 

in the new population based on how much they contribute to 
diversity in that front. The algorithm iterates until a termination 
condition is met, such as attaining a pre-specified maximum 
number of generations or when no evolution of population is 
achieved after a certain number of generations. Parents are 
selected for mating using a tournament selection operator, 
which uses the rank and crowding distance of individuals 
within the NSGA-II framework. The DE variant is used to 
generate N offspring from the selected parents [15]. 

This hybrid GA/DE approach generally obtains non-
dominated fronts displaying a good spread of solutions and 
expected convergence to the Pareto-optimal front (which is 
unknown). 

C. Robusteness Analysis 
The aim of robustness analysis is to assess the quality of 

solutions for different plausible configurations of model data, 
changes in decision variable values and possibly also 
parameters controlling the algorithmic approach.  

The degree of robustness, as proposed in [10] [12], is based 
on assessing the effects of perturbations (δ) in the decision 
variables space and model coefficients regarding the objective 
function values. The parameter (δ) is associated with the 
amplitude of the perturbation applied to the non-dominated 
solution x, which is assessed by inspecting successively 
expanding neighbourhoods of possible values. This 
perturbation may be assigned to each time slot (δt) of the load 
flexibility aggregated from each cluster by the EMSA.  

Figure 2 (bottom) displays the maximum deviation of 
consumption regarding the daily baseline consumption. This 
maximum deviation may have positive values, which 
correspond to load flexibility representing the amount of load 
available to decrease consumption, and negative values, which 
correspond to load flexibility representing the amount of load 
available to increase consumption, in each time slot. The 
maximum deviation considered was [-5%; +5%] as a condition 
of feasibility, since it is a conservative deviation of 
consumption mentioned in the literature related to energy 
savings due to behavioural change influence [16]. 

After the execution of the hybrid evolutionary approach 
and the identification of the non-dominated front, solutions (x) 
dispersed along this front are randomly selected for robustness 
analysis in face of perturbations. These solutions are randomly 
perturbed in the range [-5%, +5%] in each time slot, thus 
originating neighbour (perturbed) solutions (xδt). 

The assessment of the degree of robustness of a solution is 
based on its behaviour around its nominal point, i.e., the 
position of the selected solution without perturbation and the 
perturbed solutions derived from the application of small 
perturbations in each time slot. The image of these solutions in 
the objective function space belong to a pre-specified η-
neighbourhood degree surrounding f(x), as can be seen in 
Figure 3 where η means the level of tolerance with respect to 
changes in the objective function values regarding to the 
nominal solution. 



Fig. 2 - Representation of a non-dominated solution - Load Flexibility gathered 
and the maximum admissible deviation [𝜹𝒕 =-5%, 𝜹𝒕 =+5%]. 

 
The displacement of the perturbed solutions is assessed 

according to the quadrant, which is centred on the selected 
solution. In the 1st quadrant (Q. I) and in the 3rd quadrant (Q. 
III) the solution presents better performance according to one 
objective function and worse performance for the other 
objective function; in the 2nd quadrant (Q. II) the solution 
presents worst performance for both objective functions; in the 
4th quadrant (Q. IV) the perturbed solution presents better 
performance for both objective functions. The level of the 
perturbation is progressively enlarged, starting with a random 
rate bounded in [δt =-1%; δt =+1%] until [δt =-5%; δt =+5%], 
with an increment of 1%. 

The degree of robustness of the selected solution x is a 
value k, k ∈{1, …, 5}, when at least 80% of the perturbed 
solutions belong to the ηk neighbourhood around f(x). 

TABLE I.  DEGREE OF ROBUSTNESS K 

k ηk - neighbourhood around f(x) 
1 η1∈]-0.05f(x); 0.05f(x)] 
2 η2∈]-0.10f(x); 0.10f(x)] 
3 η3∈]-0.15f(x); 0.15f(x)] 
4 η4∈]-0.20f(x); 0.20f(x)] 
5 η5∈]-0.25f(x); 0.25f(x)] 

 
The location of more robust solutions on the non-

dominated front is a relevant insight to aid the selection of a 
compromise solution.  

Fig. 3 - Representation of the selected solution x, η-neighborhood degree 
around the nominal solution f(x). 

 

IV. RESULTS AND DISCUSSION 
Illustrative results of the computational experiments are 

herein presented. The Pareto front is displayed in Figure 4 
identifying 6 compromise solutions to be subject to 
perturbations and study their behavior in the objective function 
space to evaluate robustness. 
Fig. 4 - Pareto front indicating the solutions that are subject to robustness 
analysis. 

 
Table 2 displays the maximum deviations (%) of the 

objective functions for each selected solution when subject to 
small perturbations in all time slots with respect to the nominal 
values, i.e., the maximum deviation (𝝶max) that will be possible 
to occur when the selected solution is subject to perturbations 
within the range [-5%, 5%] regarding the load flexibility 
indeed provided. 

The cells in grey indicate that the perturbations applied to 
the selected solution lead the derived perturbed solution to an 
inadmissible region (since η>25%). The most common 
perturbation range that keeps solution robustness is  [𝛿! =-3%, 
𝛿! =+3%]. 

 



TABLE II.  MAXIMUM DEVIATION 𝝶MAX  IN THE OBJECTIVE 
FUNCTIONS W.R.T. THE NOMINAL SITUATION (%) 

 
F1 F2*10

4	
(%) F1 F2*10

4	

(%) F1 F2*10
4	
(%) 

	 Solution	1 Solution	2 Solution	3 
δ
t
	=	-1% -6,08% -3,00E-05 -6,49% -4,26E-05 -6,78% -4,64E-05 

δ
t
	=	1% 6,08% 3,00E-05 6,49% 4,26E-05 6,78% 4,64E-05 

δ
t
	=	-2% -12,15% -9,00E-05 -12,99% -1,28E-04 -13,56% -1,39E-04 

δ
t
	=	2% 12,15% 9,00E-05 12,99% 1,28E-04 13,56% 1,39E-04 

δ
t
	=	-3% -18,23% -1,00E-04 -19,48% -1,42E-04 -20,34% -1,55E-04 

δ
t
	=	3% 18,23% 1,00E-04 19,48% 1,42E-04 20,34% 1,55E-04 

δ
t
	=	-4% -24,31% -1,20E-04 -25,98% -1,71E-04 -27,12% -1,86E-04 

δ
t
	=	4% 24,31% 1,20E-04 25,98% 1,71E-04 27,12% 1,86E-04 

δ
t
	=	-5% -30,38% -1,50E-04 -32,47% -2,13E-04 -33,90% -2,32E-04 

δ
t
	=	5% 30,38% 1,50E-04 32,47% 2,13E-04 33,90% 2,32E-04 

 Solution	4 Solution	5 Solution	6 
δ
t
	=	-1% -7,23% -5,08E-05 -7,86% -5,39E-05 -8,27% -5,59E-05 

δ
t
	=	1% 7,23% 5,08E-05 7,86% 5,39E-05 8,27% 5,59E-05 

δ
t
	=	-2% -14,45% -1,52E-04 -15,73% -1,62E-04 -16,54% -1,68E-04 

δ
t
	=	2% 14,45% 1,52E-04 15,73% 1,62E-04 16,54% 1,68E-04 

δ
t
	=	-3% -21,68% -1,69E-04 -23,59% -1,80E-04 -24,81% -1,86E-04 

δ
t
	=	3% 21,68% 1,69E-04 23,59% 1,80E-04 24,81% 1,86E-04 

δ
t
	=	-4% -28,90% -2,03E-04 -31,46% -2,16E-04 -33,08% -2,24E-04 

δ
t
	=	4% 28,90% 2,03E-04 31,46% 2,16E-04 33,08% 2,24E-04 

δ
t
	=	-5% -36,13% -2,54E-04 -39,32% -2,69E-04 -41,34% -2,79E-04 

δ
t
	=	5% 36,13% 2,54E-04 39,32% 2,69E-04 41,34% 2,79E-04 

 
The (nominal) solution selected suffers a random 

perturbation bounded by [𝛿! =-3%, 𝛿! =+3%] in the 96 time 
slots of the load flexibility diagram, in order to analyze the 
degree of robustness of each selected solution.  

Figures 5, 6, 7 and 8 present the results of the analysis done 
for four solutions (1, 3, 4, and 6), i.e., two extreme solutions 
(the individual optima of each objective function) and two 
intermediary solutions. The position of randomly perturbed 
solutions within the admissible perturbation range is displayed 
for comparison with the nominal solution (at the centre). The 
dispersion of solutions in each quadrant and the amount of 
solutions in each ηk neighbourhood around f(x), which 
determine the degree of robustness, offer information about the 
expected behaviour of the solution when subject to changes. 

Fig. 5 – Robustness information of solution 1. 

 
Fig. 6 - Robustness information of solution 3. 

 
 

 
 
 
 



Fig. 7 - Robustness information of solution 4. 
 

 
 
Fig. 8- Robustness information of solution 6 

 
 

Based on this analysis it may be concluded that solution 1, 
3, 4 and 6 present a degree of robustness of 3, 4, 4 and 3, 
respectively, when subject to small random perturbations 
around the nominal values. The extreme solutions (i.e. the non-
dominated solutions that individually optimize each objective 
function) present a better degree of robustness in comparison to 
the intermediate solutions. 

V. CONCLUSION 
This paper presents a methodology for robustness analysis 

of non-dominated solutions, which have been obtained by a 
hybrid evolutionary approach coupling NSGA-II and DE to 
solve a multi-objective optimization problem of the EMSA 

considering maximizing the EMSA profits and minimizing the 
inequity between the amounts of load flexibility provided by 
the end-user clusters to satisfy SO requests.  

The non-dominated solutions were considered robust until 
certain level of perturbation, i.e., until a perturbation [-3%, 3%] 
is applied in the coefficients of the nominal solutions. In this 
range the derived perturbed solutions are considered admissible 
whenever they lie in the interval [-0.25 f(x); 0.25 f(x)] in the 
objective function space. Solutions out of this interval are 
considered non-robust. This scenario only happens when the 
perturbation is higher than ±3% in all solutions obtained in the 
(nominal) Pareto front. 
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