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Abstract—Multi-cloud systems have been gaining popularity
due to the several benefits of the multi-cloud infrastructure
such as lower level of vendor lock-in and minimize the risk
of widespread data loss or downtime. Thus, the multi-cloud
infrastructure enhances the dependability of the cloud-based
system. However, it also poses many challenges such as non-
standard and inherent complexity due to different technologies,
interfaces, and services. Consequently, it is a challenging task to
design multi-cloud dependable systems. Virtualization is the key
technology employed in the development of cloud-based systems.
Docker has recently introduced its container-based virtualization
technology for the development of software systems. It has newly
launched a distributed system development tool called Swarm,
which allows the development of a cluster of multiple Swarm
nodes on multiple clouds. Docker Swarm has also incorporated
several dependability attributes to support the development of a
multi-cloud dependable system. However, making Swarm cluster
always available requires minimum three active manager nodes
which can safeguard one failure. This essential condition for
the dependability is one of the main limitations because if two
manager nodes fail suddenly due to the failure of their hosts, then
Swarm cluster cannot be made available for routine operations.
Therefore, this paper proposes an intuitive approach based on
Computational Intelligence (CI) for enhancing its dependability.
The proposed CI-based approach predicts the possible failure of
the host of a manager node by observing its abnormal behaviour.
Thus, this indication can automatically trigger the process of
creating a new manager node or promoting an existing node as
a manager for enhancing the dependability of Docker Swarm.
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I. INTRODUCTION

Cloud computing is one of the biggest boons for small
businesses and ordinary users to cope with their growing or
fluctuating demands for the IT infrastructure by driving down
their cost. Multi-cloud infrastructure is another facet of the
cloud computing, which extends its benefits and resolves some
of the early issues [1], [2]. One of the greatest benefits of the
multi-cloud infrastructure is the enhancement of dependability
of the cloud-based system. Dependability is a collective term
which includes several attributes such as availability, reliability,
maintainability, safety, integrity and confidentiality. Depending
on the system, different emphasis may be given to the different
attributes of the dependability [3]. The dependability of a
cloud-based system is mostly dependent on the technology

employed in the design [4]. Virtualization is the key tech-
nology employed in the development of cloud-based systems.
However, the requirement of significant resources and issues
of interoperability and deployment across multiple clouds are
major concerns for system developers [5], [6].

Docker container-based virtualization has recently emerged
as an alternate lightweight technology for the development of
cloud-based systems and gaining popularity in the cloud indus-
try [7], [8]. Docker offers the ability to package applications
and their dependencies into lightweight containers that move
easily between different distros, start up quickly and are iso-
lated from each other [8], [9]. It aims to address the challenges
of resource, speed and performance of virtualization in the sys-
tem development process [1], [10], [11]. In addition to all these
facilities, its greatest advantage is that it provides developer’s
workflow [12]. Thus, Docker Containers-as-a-Service (CaaS)
platform empowers developers and sysadmins to build, ship
and run distributed applications anywhere [13]. Docker has
newly launched a distributed system development tool called
Swarm, which allows the development of a cluster of multiple
Swarm nodes on multiple clouds [14]. Docker Swarm has
also incorporated several dependability attributes to support
the development of a multi-cloud dependable system. However,
Docker Swarm-based dependable system development is a new
approach for the cloud industry, and making Swarm cluster
always available requires minimum three active manager nodes
which can safeguard one failure. This essential condition for
the dependability is one of the main limitations because if
two manager nodes fail suddenly due to the failure of their
hosts, then Swarm cluster cannot be made available for routine
operations.

All the Swarm nodes (managers and workers) are created
on lightweight Virtual Machines (VMs). VMs may compete
for resources, or their behaviour may change drastically due
to an unexpected failure of the host machine. Therefore,
the manager’s availability issue can be resolved externally
by observing the behaviour of lightweight VMs used by
all Swarm manager nodes. This can be done by designing
a Cl-based intelligent system. Therefore, firstly, this paper
presents the simulation of a multi-cloud system using Docker
Swarm for evaluating its dependability feature. This simula-
tion and evaluation of the dependable system are based on
Docker Swarm, VirtualBox and Mac OS X. However, the
same dependable system can be easily created on any of
the Docker supported cloud by just selecting the appropriate



driver name such as Amazon Web Services, Microsoft Azure,
Digital Ocean, Google Compute Engine, Exoscale, Generic,
OpenStack, Rackspace, IBM Softlayer, VMware vCloud Air
[15]. This multi-cloud dependable system can be created on
the above clouds, but it must require a valid subscription
account on those clouds. Finally, this paper proposes an in-
tuitive approach based on Computational Intelligence (CI) for
enhancing its dependability. The proposed Cl-based approach
predicts the possible failure of the host of a manager node
by observing its abnormal behaviour. Thus, this indication can
automatically trigger the process of creating a new manager
node or promoting an existing node as a manager for enhancing
the dependability of Docker Swarm.

The remainder of this paper is organised as follows: Section
II explains the theoretical background of Docker Containers,
Docker Swarm, fuzzy reasoning and R software; Section III il-
lustrates the architecture of a multi-cloud system using Docker
Swarm; Section IV presents an experimental simulation of a
multi-cloud system using Docker Swarm; Section V presents
an experimental evaluation of dependability (in particular
availability) of a multi-cloud system using Docker Swarm;
Section VI proposes a Cl-based solution for enhancing the
dependability of a multi-cloud system using Docker Swarm;
Section VII concludes the paper and suggests some future areas
of extension.

II. THEORETICAL BACKGROUND
A. Docker Containers

Containers provide an isolated environment akin to virtual-
ization but without virtual hardware emulation [1]. The concept
of a container is quite old in computing; however, they never
employed at large-scale. Containers run in user space on top of
an operating system’s kernel; therefore, container virtualization
is known as OS-level virtualization [16]. Container technology
allows multiple isolated user space instances to be run on a
single host [16]. Containers can also be classified into two
categories: system containers and application containers. A
system container is similar to a full OS and runs all process
such as init, inetd, sshd, syslogd, and cron. Whereas, an
application container only runs an application. Both types of
container are useful in different circumstances [17]. There
are so many popular container technologies available such
as OpenVZ, LXC, Solaris Zones, systemd-nspawn, Imctfy
and Warden [16], [17]. Docker technology is an example of
container virtualization.

Docker is an open-source engine that automates the deploy-
ment of applications into containers [16]. Docker is developed
by Docker, Inc., which was previously known as dotCloud,
Inc. that was one of the pioneering company in Platform-
as-a-service market. Docker provides an isolated container
(see Fig. 1) based on a major Linux kernel feature known
as cgroups and namespace. Consequently, each container can
have strong isolation, own network stack, storage stack, file
system and resource management capabilities to allow friendly
co-existence of multiple containers on a single host [16]. A
container does not have its own operating system as it shares
the same kernel; however, it contains all binaries and libraries
to run an application inside it as shown in Fig. 1.
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Fig. 1. Docker Containers on Linux Host

B. Docker Swarm

Distributed applications need distributed system with pre-
dictable dependability. Docker Swarm is a clustering tool,
which offers functionalities to turn a group of Docker Nodes
into a single dependable system [18]. It builds a cooperative
group of systems that can provide redundancy if one or more
nodes fail for high availability and reliability. Swarm also
provides workload balancing and maintainability for containers
and their services. It assigns containers to underlying nodes
and optimizes resources by the automatically scheduling of
container workloads to run on the most appropriate host with
adequate resources while maintaining necessary performance
levels [19]. Thus, the Docker Swarm-based dependable system
is a fault tolerant, highly available and reliable system.

C. Docker Containers on Non-Linux Host

Docker is originally designed for Linux-based machines,
where the host Linux OS also plays a part of Docker Host. The
implementation of Docker containers on a non-Linux host is
different from the Linux-based implementation. In non-Linux
OS-based systems, Docker needs an additional component
called Docker Host as shown in Fig. 2. Docker Host is
a lightweight VM, which requires very few resources and
operational overheads. The Docker Engine runs inside this
Linux VM called “default” as shown in Fig. 3. The great
success of Docker is this small VM, which runs completely in
RAM and loads only in few seconds. This is largely due to its
minuscule size (i.e., 35 MB in this implementation).

D. Fuzzy Reasoning

Fuzzy reasoning is the process of deriving logical conclu-
sions from an existing fuzzy rule base [20]. It mimics the
ability of the human mind to summarize data and focus on
decision-relevant information [21]. Fuzzy reasoning is more
effective and useful for those systems where a system cannot
be defined in precise mathematical terms or models due
to uncertainties, unpredicted dynamics and other unknown
phenomena [22]. In many computing applications when data
is incomplete and imprecise in nature; fuzzy reasoning is
comparatively more suitable than other types of reasoning
approaches [23], [24], [25], [26]. Fuzzy reasoning is based on a
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Fig. 2. Docker Containers on Non-Linux Host

e O 6
A K g A S
New  Settings  Discard  Show

default
L %> Running

Oracle VM VirtualBox Manager

‘ =l General
Name: default

Operating System: Linux 2.6 / 3.x
/ 4.x (64-bit)

Fig. 3. Docker Engine running in “default” Virtual Machine

fuzzy rule base, and it can be derived by subject matter experts
or extracted from data through a rule induction process. If the
fuzzy rule base is a dense rule base then, any rule inference
method such as Mamdani inference [27] or Takagi-Sugeno
inference [28] can be used.

E. R Software

R is an open-source statistical computation and data vi-
sualisation software. It is a creation of the huge team of
developers, researchers, statisticians and data scientists from
around the world. R is available for all the main operating
systems such as UNIX, Windows and MacOS platforms. R
comprises data handling facilities, a superior mechanism for
matrix computations, a plethora of data analysis and graphical
packages, and a simple programming language [29]. The most
powerful feature of R is subsumption i.e. its support to external
packages. Currently, R has incorporated around 5000 packages
through the CRAN family of Internet sites [30]. R also
hosts several CI packages related to artificial neural networks,
evolutionary algorithms, fuzzy systems and hybrid intelligent
systems for designing intelligent systems. It is also used in
many other sectors such as finance, retail, manufacturing,
science, and academic research, which is making it a popular
tool among statisticians and researchers [29].

III. ARCHITECTURE OF A MULTI-CLOUD SYSTEM USING
DOCKER SWARM

Fig. 4 shows the architecture of a multi-cloud (only Docker
supported clouds) system using Docker Swarm. This Docker
Swarm cluster has 3 manager and 2 worker nodes. In Docker
Swarm, the manager is responsible for the entire cluster and
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Fig. 4. Architecture of a Multi-Cloud System using Docker Swarm
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Fig. 5. Docker Swarm node breakdown and workflow [32]

manages the resources of multiple Docker hosts at scale [31].
Managers are responsible for orchestrating the cluster, serving
the Service API, scheduling tasks (containers) and addressing
containers that have failed health checks [32]. A primary
manager (leader) is the main point of contact within the
Docker Swarm cluster. In Docker Swarm, there could be one
primary manager (leader) and multiple secondary managers
(reachable managers) in case the primary manager fails [31].
Primary manager works as a leader of the system and all
the secondary managers contact with it regarding services and
information. It is also possible to talk to secondary managers
(replica instances) that will act as backups. However, all
requests issued on a secondary manager are automatically
proxied to the primary manager. If the primary manager fails, a
secondary manager takes away the lead. Therefore, it facilitates
a highly available and reliable cluster [31]. Worker nodes
serve only simpler functions such as executing the tasks to
spawn containers and routing data traffic intended for specific
containers [32]. The complete breakdown and workflow of
Docker Swarm node are shown in Fig. 5.



Nitins-MacBook-Pro:~ nitinnaik$ docker-machine create —-driver virtualbox domain-1
Nitins-MacBook-Pro:~ nitinnaik$ docker-machine create —-driver virtualbox domain-2
Nitins-MacBook-Pro:~ nitinnaik$ docker-machine create —-driver virtualbox domain-3
Nitins-MacBook-Pro:~ nitinnaik$ docker-machine create —-driver virtualbox domain-4
Nitins-MacBook-Pro:~ nitinnaik$ docker-machine create —-driver virtualbox domain-5

Fig. 6. Creating Docker lightweight Virtual Machines (VMs)

Nitins-MacBook-Pro:~ nitinnaik$ docker-machine 1ls

NAME ACTIVE  DRIVER STATE URL SWARM  DOCKER

RS

default - virtualbox Running  tcp://192.168.99.100:2376 v1.12.0-rc5
domain-1 - virtualbox Running  tcp://192.168.99.101:2376 v1.12.0-rc5
domain-2 - virtualbox Running  tcp://192.168.99.102:2376 v1.12.0-rc5
domain-3 - virtualbox Running  tcp://192.168.99.103:2376 v1.12.0-rc5
domain-4 - virtualbox Running  tcp://192.168.99.104:2376 v1.12.0-rc5
domain-5 - virtualbox Running  tcp://192.168.99.105:2376 v1.12.0-rc5
Fig. 7. Cluster of five running domains (lightweight VMs) with different

private IP addresses and standard Docker Port 2376

IV. EXPERIMENTAL SIMULATION OF A MULTI-CLOUD
SYSTEM USING DOCKER SWARM

This experimental simulation of the multi-cloud system is
based on Docker Swarm, VirtualBox and Mac OS X. Here, this
system is implemented as a cluster of five Swarm Nodes/VMs
(3 managers and 2 workers) in VirtualBox on the same host
computer (Mac OS X) as shown in Fig. 6. However, all
these lightweight VMs and, subsequently, Swarm nodes can
be created on different clouds (shown in Fig. 4) by just
changing the driver name from —driver virtualbox to —driver
amazonec2/azure/google/digitalocean/exoscale in Fig 6. The
only requirement before doing this is to have a valid subscrip-
tion account on the desired cloud. Fig. 7 shows a cluster of five
running domains (lightweight VMs) with different private 1P
addresses and standard Docker Port 2376 using the most recent
version vI1.12.0-rc5 of Docker. In Docker Swarm cluster, all
the commands should be run on the manager’s node.

Later, 3 manager nodes are created on domain-1, domain-
2 and domain-3 and 2 worker nodes are created on domain-
4 and domain-5, which are shown in Fig. 8. The domain-1
is the primary manager (leader) as it is created first but this
may be changed in due course. When the node is assigned the
responsibility of a manager, it joins a RAFT Consensus group
to share information and perform leadership election. The
leader is the primary manager that maintains the state, which
includes lists of nodes, services and tasks across the swarm
in addition to making scheduling decisions [32]. This state
is circulated across the each manager node through a built-in
RAFT store. Consequently, managers have no dependency on
an external key-value store such as efcd or Consul. Non-leader
managers function as hot spares and forward API requests to
the current elected leader [32].

The experimental simulation and evaluation are focused
on Docker Swarm only; therefore, the study is limited to
the evaluation of the dependability of Docker Swarm and it
does not cover the cloud and its characteristics. However, the

docker@domain-1:~$ docker node 1s
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

0idmd3oydx4j5iaualcil3046 x domain-1 Ready Active Leader
480i2mtgpld7kkdzcsgtwyrz3 domain-4 Ready Active
9wu@Paewtyquéceclgxejd8ua domain-5 Ready Active
bj@3eudqjhwyd2edxjztmudwa domain-3 Ready Active Reachable
e7s1lqfoiamug2gh@scxvpah8m domain-2 Ready Active Reachable

Fig. 8. Docker Swarm cluster with 3 managers (with domain-1 as a leader)
and 2 workers

Nitins-MacBook-Pro:~ nitinnaik$ docker-machine stop domain-1
Stopping "domain-1"...

Machine "domain-1" was stopped.

Nitins-MacBook-Pro:~ nitinnaik$ docker-machine 1s

NAME ACTIVE  DRIVER STATE URL SWARM  DOCKER

RS

default - virtualbox Running  tcp://192.168.99.100:2376 v1.12.0-rc5
domain-1 - virtualbox Stopped Unknown
domain-2 - virtualbox Running tcp://192.168.99.102:2376 v1.12.0-rc5
domain-3 - virtualbox Running tcp://192.168.99.103:2376 v1.12.0-rc5
domain-4 - virtualbox Running  tcp://192.168.99.104:2376 v1.12.0-rc5
domain-5 - virtualbox Running tcp://192.168.99.105:2376 v1.12.0-rc5

Fig. 9. Failover procedure of a manager (leader) on the domain-1 when the
domain-1 is failed

docker@domain-3:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

0idmd3oydx4j5iaualcil3046 domain-1 Down Active Unreachable
480i2mtgpld7kkdzcsgtwyrz3 domain-4 Ready Active
9wu@0aewtyquéceclgxejd8ua domain-5 Ready Active
bj@3eudqjhwyd2edxjztmudwa * domain-3 Ready Active Leader
e7slqfoiamug2gh@scxvpah8m domain-2 Ready Active Reachable

Fig. 10. Successful failover procedure of a manager (leader) on the domain-1
when it is automatically taken over by the domain-3 as a new manager (leader)

additional advantage of using multiple cloud infrastructures is
the enhanced dependability, which makes this Swarm-based
system a highly dependable system by protecting the system
failure due to the failure of an individual cloud infrastructure.

V. EXPERIMENTAL EVALUATION OF THE DEPENDABILITY
OF A MULTI-CLOUD SYSTEM USING DOCKER SWARM

The dependability of a Docker Swarm-based system is one
of the most important features which guarantees the avail-
ability, reliability and maintainability of the system. Amongst
all, availability is the most important feature because if the
Docker Swarm-based system is available, then it has built-
in mechanisms to offer reliability and maintainability. Conse-
quently, its availability is the most important characteristic for
making it dependable. Therefore, this experimental evaluation
will be focused on the availability feature only. Availability
feature allows Docker Swarm to gracefully handle the failover
of a primary manager (leader) instance. For evaluating the
availability feature of Docker Swarm, the primary manager
(leader) on the domain-1 is abruptly stopped (see Fig. 9)
because this primary manager (leader) is responsible for the
successful running of Swarm cluster.

However, this failure of the primary manager (leader) on
the domain-1 could not stop the normal working of Docker
Swarm and could not affect its availability because Swarm
has immediately promoted the domain-3 as a primary manager
(leader) as shown in Fig. 10. This demonstrates the first success
of Swarm cluster and its availability of a primary manager
(leader) to support the reliability and maintainability of desired
operations.

This Docker-based dependable system has been designed
with three managers and for further rigorous testing of high
availability feature. Therefore, it can be tested for another
failure of the new primary manager (leader) on the domain-3,
and now the domain-3 is also stopped abruptly as shown in
Fig. 11.

At this stage, two manager nodes domain-1 and domain-
3 are stopped, however, the manager on domain-2 is still
alive. Unfortunately, this time, failure of the primary manager
(leader) on domain-3 could not facilitate the availability of



Nitins-MacBook-Pro:~ nitinnaik$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL SWARM  DOCKER

RS

default - virtualbox Running  tcp://192.168.99.100:2376 v1.12.0-rc5
domain-1 - virtualbox Stopped Unknown
domain-2 - virtualbox Running  tcp://192.168.99.102:2376 v1.12.0-rc5
domain-3 - virtualbox Stopped Unknown
domain-4 - virtualbox Running  tcp://192.168.99.104:2376 v1.12.0-rc5
domain-5 - virtualbox Running  tcp://192.168.99.105:2376 v1.12.0-rc5

Fig. 11. Failover procedure of a manager (leader) on the domain-3 when the
domain-3 is failed

docker@domain-2:~$ docker node ls
Error response from daemon: rpc error: code = 2 desc = raft: no elected cluster leader
docker@domain-2:~%

Fig. 12. Unsuccessful failover procedure of a manager (leader) on the domain-
3 by the domain-2 manager when the domain-3 is failed

Swarm cluster for normal working as shown in Fig. 12. This
failure has left Swarm cluster without a primary manager
(leader) as shown in Fig. 12, because it could not promote
its third manager on Domain-2 as a new primary manager
(leader). Therefore, it is not available in this simulated situa-
tion.

This failure test is further extended for an in-depth evalu-
ation of the nature of availability of Swarm cluster. It is now
obvious that one alive manager can not be promoted as a
primary manager (leader) to run Swarm cluster successfully.
Thus, the manager on the domain-1 is started again (see Fig.
13) to check the availability of this Docker-based dependable
system. After making the domain-1 and its manager up and
running, this Swarm-based dependable system is now available
again and has promoted a new primary manager (leader) on
the domain-2 as shown in Fig. 14.

This illustrates that Swarm can only offer high availability
with at least three managers and can only protect one failure.
This is because of the employment of RAFT Consensus algo-
rithm for the management and controlling of managers. The
latest version of Docker Swarm 1.12 handles controller node
failures by adding additional (3-7) replica manager nodes to
the cluster as per given in Table I [33]. Thus, Swarm cluster
can protect maximum three failures when it must have seven
managers.

Alongside the assurance of availability of a primary man-
ager (leader) for the management and controlling of a cluster,

Nitins-MacBook-Pro:~ nitinnaik$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL SWARM  DOCKER

RS

default - virtualbox Running  tcp://192.168.99.100:2376 v1.12.0-rc5
domain-1 - virtualbox Running  tcp://192.168.99.101:2376 v1.12.0-rc5
domain-2 - virtualbox Running tcp://192.168.99.102:2376 v1.12.0-rc5
domain-3 - virtualbox Stopped Unknown
domain-4 - virtualbox Running tcp://192.168.99.104:2376 v1.12.0-rc5
domain-5 - virtualbox Running tcp://192.168.99.105:2376 v1.12.0-rc5

Fig. 13. Failover procedure of a manager (leader) on the domain-3 when the
domain-1 is again up and running

docker@domain-2:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

0idmd3oydx4j5iaualcil3046 domain-1 Ready Active Reachable
480i2mtgpld7kkdzcsgtwyrz3 domain-4 Ready Active
9wu@0aewtyquiceclgxejd8ua domain-5 Ready Active
bj@3eudqjhwyd2edxjztmudwa domain-3 Down Active Unreachable
e7slqfoiamug2gh@scxvpah8m x domain-2 Ready Active Leader

Fig. 14. Successful failover procedure of a manager (leader) on the domain-3
by the domain-2 manager when the domain-3 is failed but the domain-1 is
again up and running

TABLE 1. FAILURE TOLERATION CAPABILITY OF DOCKER

SWARM-BASED DEPENDABLE SYSTEMS

Controller and Replicas Number of Failures
of Manager/Leader Tolerated
1 0
3 1
5 2
7 3

the availability of a worker node is equally important. The
failure of a worker can be easily and frequently checked for
the progress and successful completion of the assigned task
on that node. For this, workers send managers the status of
their assigned tasks in their assignment set and a heartbeat;
therefore, the managers can confirm that the worker is still
alive. Heartbeats of workers can be checked by using the flag
—dispatcher-heartbeat duration. This flags sets the frequency
with which worker nodes are told to use as a period to
report their health. The default dispatcher heartbeat period is
5 seconds. In summary, workers failure can be easily managed
by the manager.

VI. PROPOSED CI-BASED SOLUTION FOR ENHANCING
THE DEPENDABILITY OF A MULTI-CLOUD SYSTEM USING
DOCKER SWARM

As previously mentioned that Docker Swarm uses RAFT
Consensus algorithm for the management and controlling of
managers. Based on the RAFT Consensus strategy, decisions
can only be made if the majority of managers reach consensus.
In the Swarm cluster of 3 manger nodes, RAFT majority is 2/3;
therefore, if two managers are down, a majority can never be
reached, and a primary manager (leader) cannot be selected.
This is one of the design issues of Docker Swarm and its
employed algorithm. In the previous section, all the Swarm
nodes are created on lightweight VMs and VMs compete
for resources or their behaviour may change drastically due
to an unexpected failure of the host machine. Therefore, the
manager’s availability issue can also be resolved externally
by observing the behaviour of lightweight VMs used by all
Swarm manager nodes. This can be done by designing a CI-
based intelligent system. If the VM of a manager node starts
behaving abnormally, then, this would be an early indication
of the failure of that manager node. In this situation, a new
manager node can be created, or an existing worker node can
be promoted as a manager. It should be noted that this issue
arises when the Swarm cluster is designed with 3 manager
nodes. If it has 5 or 7 manger nodes, then this would not be
an issue and a new primary manager (leader) can be selected
from the group of existing secondary managers. However, the
operational overheads for running a cluster of 5 or 7 managers
is much higher than the cluster of 3 managers.

There are several CI techniques available to design an
intelligent system to observe the behaviour of VMs of man-
ager nodes. This paper is proposing a Cl-based approach to
resolving this problem, where a fuzzy inference system is
developed to observe the behaviour of VMs of manager nodes



Process Name % CPU  CPUTimev Threads Idle Wake Ups PID  User

VBoxHeadless 4.7 1:05.61 25 341 668 nitinnaik
VBoxHeadless 10.6 53.86 24 387 771 nitinnaik
VBoxHeadless 4.2 50.00 25 354 818 nitinnaik
VBoxHeadless 3.2 30.94 25 288 867 nitinnaik
VBoxHeadless 1.6 29.34 24 286 906 nitinnaik

Fig. 15. CUP usage of Headless (lightweight) VMs used for Docker Swarm
nodes

Process Name Memory Compressed M... Threads Ports PID v User

VBoxHeadless 561.7 MB 0 bytes 24 85 906 nitinnaik
VBoxHeadless 561.6 MB 0 bytes 25 86 867 nitinnaik
VBoxHeadless 562.1 MB 0 bytes 25 86 818 nitinnaik
VBoxHeadless 561.9 MB 0 bytes 24 85 771 nitinnaik
VBoxHeadless 561.8 MB 0 bytes 25 86 668 nitinnaik

Fig. 16.
nodes

Memory usage of Headless (lightweight) VMs of Docker Swarm

and predict the possible failure. This is a preliminary model,
therefore, only two important parameters CPU usage and
Memory usage are chosen as important criteria to check the
health of all VMs. Docker implementation based on VirtualBox
runs Docker Host as a Headless VM (i.e., lightweight VM) as
shown in Figs. 15 and 16. Fig. 15 shows the CPU usage of all
running Headless (lightweight) VMs of Docker Swarm nodes
at a particular moment. Similarly, Fig. 16 shows the Memory
usage of all running Headless (lightweight) VMs of Docker
Swarm nodes at a particular moment. These two parameters
and their ranges are carefully chosen based on the prolonged
observation and analysis of all Docker VMs in VirtualBox.
Later, they are used to derive two fuzzy input variables called
cpuu (CPU Usage) and memu (MEMory Usage). The range
of cpuu was determined based on the minimum value O and
maximum value 100; and, the range of memu was determined
based on the minimum value 0 and maximum value 2048. It
should be noted that the CPU usage and memory requirement
for Headless (lightweight) VMs of Docker Swarm nodes are
machine specific and may vary depending on the hardware
configuration of the host. However, this approach can be easily
adapted for several other parameters and their system specific
values.

The complete fuzzy inference system is designed using
software R. The main reason for choosing R is that it is
supported by Docker, and its image can be run in containers.
Based on these two fuzzy input variables, the fuzzy output
variable called vmavail (VM AVAlLability) is determined
which inform the availability level of VMs of manager nodes
in percentage (0-100). All the input and output fuzzy variables
are divided into three fuzzy range under, low and normal as
shown in Fig. 17. Afterwards, a sample fuzzy rule base (see
Fig. 18) is designed for the fuzzy inference system (see Fig.
19) to inform only the unavailability of the VM of a Swarm
manager. This intelligent system can observe the health of
all VMs of manager nodes and inform their availability level.
Consequently, the failure of a manager due to the failure of its
VM can be managed if the VM starts behaving abnormally.
Thus, this indication can automatically trigger the command or
process to create a new manager node or promote an existing
worker node as a manager to maintain the minimum number
of required manager nodes. The command or process should
be similar that is explained in the Sections IV and V.

> variables <-

set(
cpuu =
fuzzy_variable(under =
fuzzy_triangular(corners = c(@, 2.5, 5)),
Tow =
fuzzy_triangular(corners = c(4, 7, 10)),
normal =
fuzzy_triangular(corners = c(8, 54, 100))),
memu =
fuzzy_variable(under =
fuzzy_triangular(corners = c(@, 281, 562)),
Tow =
fuzzy_triangular(corners = c(562, 768, 1024)),
normal =
fuzzy_triangular(corners = c(768, 1024, 2048))),
vmavail =
fuzzy_variable(under =
fuzzy_triangular(corners = c(@, 20, 40)),
Tow =
fuzzy_triangular(corners = c(30, 50, 70),
normal =
fuzzy_triangular(corners = c(60, 80, 100)))
D)
Fig. 17. Defining linguistic fuzzy variables in R
> rules <-
set(
fuzzy_rule(cpuu %is% under &% memu %is% under,
vmavail %is% under),
fuzzy_rule(cpuu %is¥% under 8% memu %is% low,
vmavail %is¥ under),
fuzzy_rule(cpuu %is% under &% memu %is¥% normal,
vmavail %is¥ under),
fuzzy_rule(cpuu %is¥% low &% memu %is¥% under,
vmavail %is¥% under),
fuzzy_rule(cpuu %is¥% normal && memu %is% under,
vmavail %is% under)
D)
Fig. 18. Designing fuzzy rule base in R

VII. CONCLUSION

This paper presented the simulation of a multi-cloud system
using Docker Swarm for evaluating its dependability feature.
Subsequently, it proposed an intuitive approach based on Com-
putational Intelligence (CI) for enhancing its dependability.
The proposed Cl-based approach predicts the possible failure
of the host of a manager node by observing its abnormal
behaviour. Thus, this indication can automatically trigger the
process of creating a new manager node or promoting an
existing worker node as a manager. This simulation and
evaluation of the dependable system are based on Docker
Swarm, VirtualBox, and Mac OS X. However, the same multi-
cloud dependable system can be easily created on any of
the Docker supported cloud. Docker Swarm-based dependable
system development is a new approach for the cloud industry
and supported by only a few selected cloud service providers.
Also, the proposed CI-based approach is a promising to assess
and control the external failure and maintain the availability of
Docker Swarm cluster. However, it is a preliminary model and
needs further expansion and testing to determine the effective-

> system <- fuzzy_system(variables, rules)
> print(system)

Fig. 19. Resultant fuzzy inference system in R



ness of this approach. In the future, it may be worthwhile to
develop the real multi-cloud Docker Swarm system and apply
this CI-based approach on that system.
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