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Abstract—Astronomy is producing the largest “Big Data”
sets today and in the near future, with instruments such
as the Atacama Large Millimeter and sub-millimeter Array
(ALMA), the Large Synoptic Survey Telescope (LSST), and the
Square Kilometer Array (SKA). These observations afford a
deeper, wider, and more dynamic glimpse into the structure
and composition of the universe than ever before. However, in
addition to unprecedented volume, the data also exhibit unprece-
dented complexity, mandating new approaches for extracting
and summarizing relevant information. ALMA data, in partic-
ular, challenges with very high dimensionality (measurements
in a large number of spectral channels) where the dimensions
represent both compositional information and velocities, and
the high spectral resolution allows detailed interpretation of
the kinematic structure of sources such as molecular clouds or
protoplanetary disks. Traditional tools like moment maps can no
longer fully exploit and visualize the rich information in these
data. We present a neural map-based clustering approach that
can utilize all spectral channels simultaneously and is capable
of finding clusters of widely varying statistical properties, which
are expected in these complex data sets. Many clustering meth-
ods, including modern graph segmentation algorithms, run into
limitations when encountering such data. We demonstrate our
tools, collectively named “NeuroScope”, through structure mining
from an ALMA image of the protoplanetary disk HD142527.
We highlight the advantages for both the emerging details and
visualization. In addition, we explore an augmentation of leading
graph segmentation algorithms with NeuroScope products, which
can lead to efficient full automation of our clustering process for
fast distillation of large data sets on-board or in archives.

I. BACKGROUND ON DATA CHALLENGE

Next-generation telescopes such as the Large Synoptic sur-
vey Telescope (LSST) and the Square Kilometer Array (SKA),
along with the currently most advanced radio telescope, the
Atacama Large Millimeter and sub-millimeter Array (ALMA),
produce the largest “Big Data” in the early decades of the 21st
century [1]. ALMA, in particular, opened an era of a new
level of data complexity in radio and millimeter observations.
Hyperspectral data cubes are becoming the norm, with simulta-
neously recorded, spatially resolved and co-registered images
of a target in many different molecular lines. Each line is
resolved by dozens to hundreds of spectral (velocity) channels
providing detailed information about the kinematic behavior of
multiple molecular species in objects such as protoplanetary
disks, molecular clouds, interstellar medium, nearby galaxies,

and more. Figure 1 shows spectral responses in two molecular
lines, C18O J=3-2 and 13CO J=3-2 each comprising 100 chan-
nels, which are concatenated (or stacked) along the spectral
axis. This example is from a high-resolution ALMA data
cube of the protoplanetary disk HD142527 observed by [2].
The lines have a width of about 6 MHz and are observed
with a spectral resolution of about 65 KHz per channel
(corresponding to 0.11 km/sec velocity resolution). Spectra
from two different spatial locations are shown in Figure 1.
The peaks within each molecular line appear shifted relative to
the rest frequency (green vertical line), the frequency at which
the observed source emits radiation at rest in the observer’s
reference frame. The rest frequencies of the C18O J=3-2
and 13CO J=3-2 lines are 329.33055 GHz and 330.58797
GHz, respectively. The shift from the rest frequency indicates
the relative velocity of the source, which can vary across
spatial locations. The radiation intensity — the height of the
peaks — is typically different for different molecules, as it
depends on the temperature and density of the emitting gas.
Furthermore, the relative intensity difference between species
can also vary by spatial location as illustrated in Figure 1. The
stacked spectral signatures capture the complex variations of
the combined compositional and kinematic properties within a
spatially resolved source. The challenge is to extract and map
these variations, and to produce results efficiently enough for
on-board analyses or for discovery in large archives.

A. Traditional Methods of Structure Discovery in Radio As-
tronomy

Before ALMA, the previous generation of radio telescopes
had more limited spectral and spatial resolution due to smaller
bandwidth and lower sensitivity. The resulting observations
were relatively simple, containing a few spectral lines with
a dozen or so channels each. In ALMA observations the
number of spectral lines can be dozens to hundreds, at greatly
increased velocity resolution, easily amounting to thousands
of channels per image cube. This greatly increased spectral
coverage and resolution offers a magnifying lens for our
understanding of the kinematics of atomic and molecular gas,
as well as of the distribution of solid particles. However,
current techniques seem inadequate for visualization, analysis,



Fig. 1. Sample spectral signatures (means of spectra from small areas) from
a data cube that comprises all channels of two molecular lines stacked in the
order of increasing frequency. Each line is resolved in 100 channels (a total of
200 channels) in this example. The red dotted line shows where the two lines
were concatenated. The green vertical lines indicate the channel of the rest
frequency for each of the molecular species. The shift of the peaks relative
to the rest frequency expresses a velocity difference — the Doppler shift —
between observer and source. The Doppler shift is different in the two spectral
samples, which are from two different spatial locaions of the protoplanetary
disk HD142527. The radiation intensity (height of the peaks) as well as the
relative difference in the peak intensities between the two species is also
different at the two locations, adding to the complexity of the structure of
gas across the disk. Data from [2]. The 200-element stacked spectra from
individual pixels are the 200-D input vectors to our clusterings.

and interpretation of these enormous and complex data sets,
which limits the full realization of the sensor potential.

Traditionally, two approaches have been used for the extrac-
tion of physical (velocity) structure from 3-D (3-dimensional)
data cubes generated by radio and millimeter telescopes like
ALMA. One is to visually inspect simultaneously displayed
images of each spectral channel (a “channel map”) within a
spectral line. A second technique is to project, or integrate, the
data along one dimension. A commonly adopted procedure
is to integrate along the spectral dimension of a single line
to calculate the so-called “intensity moments”, at all pixel
locations. The first three intensity moments correspond to
the spectrally integrated intensity (moment 0), the velocity
corresponding to the center of the line (moment 1), and the
width of the line emission assumed to have Gaussian shape
(moment 2). The moment 0 image maps the spatial distribution
of the emitting gas, the moment 1 image informs about the
motion of the gas on spatial scales larger than the spatial
resolution of the observations, and the moment 2 informs
about the motion of the gas on spatial scales smaller than the
resolution of the observations. Alternatively, 3-D data cubes
can be integrated along one spatial dimension. This leads to the
so-called “position-velocity” diagrams, which are sensitive to
kinematical properties of the gas such as inflows or outflows.
Figure 2 shows the moment maps of two molecular lines of
the protoplanetary disk HD142527, while Figure 3 shows the
position-velocity diagram for the 13CO line. This object is
particularly interesting because the bright red and yellow ring
in the moment 0 maps is thought to have been formed by a
newborn planetary system inside the dark blue center of about
100 AU diameter, comparable to that of our Solar System [3].

Fig. 2. From [2]. Traditional moment maps generated separately from two
molecular lines, 13CO J=3-2 at left, and C18O J=3-2 at right, from high-
resolution observations of the protoplanetary disk HD142527. The Moment 0
map shows the intensity of the line emission, expressed in units of brightness
temperature defined as the temperature of a black body with an energy
density equal to that observed in the emission line. The brightness temperature
corresponds to the gas kinetic temperature if the line emission is optically
thick, as in the case of HD142527. The moment 1 map shows the velocity
of the emitting gas relative to the observer. The dot-dashed line indicates the
rotation axis of the disk, and the dashed line shows the apparent major axis
of the disk. The moment 2 map shows the width of the line emission.

For precursors of ALMA, moment maps and position-
velocity diagrams were suitable tools to visualize in two
dimensions the main characteristics of the molecular line
emission, at least for simple objects such as protoplanetary
disks. However, these traditional methods do not scale up well
to the much more complex ALMA cubes and, in particular,
they might lead to erroneous conclusions if the gas kinematics
along a line of sight cannot be represented as a Gaussian line,
as in the case of gas moving at different velocities. At the
same time, with potentially dozens of spectral lines consisting
of several thousand channels, visual analysis of channel maps
becomes unfeasible, especially comparing kinematics across
multiple spectral lines of many species.

B. Recent Structure Discovery Methods in Radio Astronomy

In recent years, a number of procedures were developed
to overcome the limitations of the moment analysis. They
include Clumpfind [4], Cloudprops [5], dendogram object
identification [6], [7], and Discrete Persistent Structures Ex-



Fig. 3. From [2]. Position-Velocity diagram for the 13CO J=3-2 line emission
measured toward HD142527. The x-axis shows the offset with respect to the
center of the disk measured along the major axis of the disk. The y-axis
shows the velocity along the line of sight of the emitting gas relative to
the observer. The white dotted curves indicate the expected velocity for gas
rotating at Keplerian velocity around the central star. The vertical line shows
the systemic velocity, i.e., the velocity along the line of sight of the star+disk
system relative to the observer.

tractor (DisPerSE), [8]. Some of these methods rely on fitting
2-D or 3-D Gaussian distributions (e.g., Clumpfind and its
kin) thus limiting the discovery to simple structures. Others
are well suited for identification of particular structures (e.g.,
filamentary structures in the case of DisPerSE) but do not
generalize to different ones. Or, some methods require the
noise across the image to be uniform and well characterized
(as for the dendogram analysis).

In this paper we aim to demonstrate a clustering approach
with NeuroScope, a set of neural machine learning tools whet-
ted in other domains, for the identification and visualization of
spatial regions with different/distinct patterns of motion and
display them in one integrated map. This approach also allows
characterization of the complex kinematics of multiple species
from their combined (stacked) spectral lines. The emerging
details indicate fuller exploitation of the rich ALMA data
than by the traditional methods. The NeuroScope approach is
insensitive to most of the limitations discussed above and it is
therefore a more robust and flexible tool of analysis of ALMA
data. We discuss some specific complementarities between the
above leading methods and NeuroScope after a brief technical
background below.

II. STRUCTURE DISCOVERY WITH NEUROSCOPE TOOLS

Our approach is based on clustering and pattern recognition,
therefore it returns regions of any shape that exhibit coherent
behavior in terms of the combined spectral signatures.

A. Cluster Discovery

Clustering with NeuroScope tools involves manifold learn-
ing with particular variants of Self-Organizing Maps (SOMs)
and a recent similarity measure that facilitates interpretation
of the SOM’s knowledge based on the connectivity properties

of the data manifold. As we explain below, this combination
allows deeper exploitation of relevant details than customary
uses of SOMs and common similarity metrics (e.g., Euclidean
distance or spectral angle), which in turn allows sensitive
distinction of clusters with subtle but consistent spectral prop-
erties. We briefly review these tools below.

The Self-Organizing Map (SOM) [9] is a popular unsu-
pervised neural network learning agorithm for discovery of
clusters (groups of similar patterns, e.g., similar spectra). It
mimics the information summarization and organization that
takes place in various cortical areas of natural brains (e.g.,
visual, auditory, somatosensory cortex). A SOM consists of
a rigid (usually 2-D) lattice of artificial neurons each of
which is connected to an input layer by an n-D weight
vector, also called a prototype vector. The prototypes are
typically initialized to random values. The SOM learns the
structure of the n-D input data space by cycling thorough
the following steps many times: i) a randomly selected input
vector is compared to the prototypes (weight vectors) of all
SOM neurons, and the neuron with the most similar prototype
“wins” the input. Then the winner neuron and — usually to
a lesser extent — neurons in its lattice neighborhood adapt
their prototypes to become more similar to the presented input
vector. The neighborhood can be defined by various functions.
Most frequently a 2-D Gaussian neighborhood is used, which
means that the prototypes of all neurons are updated in every
learning step but the extent of the update decreases with the
lattice distance from the winner. This iterative learning process
accomplishes two things. One is adaptive vector quantization
of the input data: the weight vectors of SOM neurons become
prototypes of similar input patterns. SOM learning moves
the prototypes in data space such that they follow the data
distribution (more prototypes are allocated to dense regions
than to sparse regions), therefore the data summarization by
the SOM prototypes captures the salient details of the data
distribution. Simultaneously, a topologically ordered map of
the prototypes is formed on the SOM lattice. As a result,
neurons neighboring in the lattice collectively represent groups
of similar data vectors after sufficient learning. The SOM
expresses an intelligent summarization of both the statistics
(the n-D density distribution) and the topology of the data
manifold. The learning does not require a pre-specified number
of clusters. Clusters can be extracted from a learned SOM by
evaluating the similarity relationships of prototypes neighbor-
ing in the SOM grid, and segmenting the SOM into groups of
similar prototypes. For capturing complex cluster structure we
use a recently developed similarity measure, CONN (Figure
4), which is derived from the converged SOM and expresses
manifold connectivity rather than data space distances [10],
[11]. Using these tools, the main steps of finding clusters are

A) Learn the data manifold with a SOM. This is automatic,
and needs little parameter tuning. We use specific advanced
variants of SOMs for our goals as noted below.

B) Represent the knowledge of the SOM through its connec-
tivity graph (CONN), which is also automatic. Default param-
eters for filtering unimportant connections (inconsequential



Fig. 4. Left: SOM lattice of 20 x 20 neurons (black dots), with CONN graph
representation of the learned manifold structure of the protoplanetary disk
HD142527 using 200-D input vectors stacked from two molecular lines as
in Figure 1. A cell with no dot has no data vectors mapped to it (has an
empty prototype). The thickness of the line segments between two prototypes
signifies the absolute strength of their connection. Connection strength is
measured, during a full recall on the data set after the SOM has converged,
as the number of data vectors that choose one prototype as the SOM winner
and the other as second winner. Colors indicate the relative importance of the
connections to other prototypes. Red is most-connected, blue is second most-
connected, followed by green, yellow, and grey shades (not present for this
data). The combination of global connection strengths and their local ranking
provides rich information about where the manifold is strongly woven and
where it is disconnected or thin. Cluster boundaries are found between regions
that are strongly connected inside and have thin or no connections to other
regions. A threshold to automatically cut “unimportant connections is also
computed from CONN statistics and applied. For visualization, a non-linear
binning is applied to aid the human eye where the bin boundaries are derived
from the connectivity statistics. Details on this and the cluster extraction
procedure are given in [10]. Right: SOM lattice with clusters of similar
prototypes extracted interactively from the CONN graph representation. Each
color represents a different similarity group of prototypes. The largest and
also strongest-connected cluster (dark blue) comprises the sky background.
While visually overwhelming in the CONN graph at left, it does not affect
the extraction of smaller clusters with more subtle differences, by analysis of
the local relations.

for clustering) are automatically computed based on the data
statistics, as described in [10], [12].

C) Segment the SOM, i.e., cluster the prototypes based on
their similarities. (Data points mapped to a prototype cluster
make up a data cluster.) This is the most challenging step for
data with complex structure.

Figure 4 illustrates steps B) and C). Figure 5 shows the
cluster structure found in the protoplanetary disk HD142527,
using the combined (stacked) molecular lines C18O and 13CO
(as in Figure 1) as input data vectors. The data have undergone
the standard ALMA data reduction to correct for atmospheric
and instrumental effects [2] but no other preprocessing. The
relatively simple kinematical structure of this object enables
us to validate our technique and appreciate its potential for
radio astronomy data.

The first thing to notice is that the cluster map shows
structures similar to that shown in the moment 1 map. In
particular, the clusters reveal regions of the disk moving at
similar velocities. Since the gas kinematics is dominated by
rotation around the star, the cluster map is roughly symmetric
with respect to the axis of rotation of the disk (the dot-dashed
line on the moment 1 image). Looking more carefully, clusters
at two symmetric positions with respect to the minor axis (see,
e.g., those indicated by the arrows in the top panel of Figure

Fig. 5. Top panel: The clusters shown in the disk of HD142527, where each
pixel is colored as its prototype in the SOM lattice in Figure 4. The colors are
chosen for contrast and do not express relative grades of similarity. (This is
not a heat map.) The mean spectra of two selected clusters (labeled W and N,
two different brown shades in the map) at symmetric locations along the major
(NW-SE) axis are also shown at right. These illustrate an example of the lack
of expected symmetry captured by this clustering. Red and green lines as in
Figure 1. Bottom panel: The magnified center region surrounded by the mean
signatures of three interesting clusters. Cluster u, and the tiny whisker-like
clusters v and t flanking the arch-shaped clusters g (hot pink, North of the
center) and j (turquoise, South of the center), respectively, exhibit double or
widened peaks in the 13CO line (approx. between channels 140 - 175 for
u and v; channels 101 - 150 for t). These can indicate deviation from the
Keplerian motion.

5) show an asymmetry in intensities, which agrees with the
intensity differences in the moment 0 map. The cluster means
additionally reveal that the relative intensity change for the two
gas species is also different at the two symmetric locations.

The neural map-based clustering is superior to the moments
visualization in identifying kinematical deviations from Kep-
lerian rotation. For example, Figure 5 shows clusters (u, and t)
of pixels characterized by a double peak profile, or a widened
peak (cluster v) in the 13CO line. The main peak in cluster
u ( at approximately channel 153) arises from gas moving at
a velocity of 2.2 km/sec relative to the star in the direction
of the observer, and traces gas orbiting the central star at
Keplerian velocity. The second, minor peak (at channel 165)
arises from gas moving at 3.5 km/sec relative to the star in



the direction of the observer, and might arise from gas blown
away by a stellar wind. Although low-intensity, the second
peak emerges cleanly in the average cluster signature with
very small standard deviations. Similarly for cluster t (the pair
of small downward pointing whisker-like dark green features
marked by arrows at either sides of the arch-shaped turquoise
cluster), where the main and minor peaks (at channels 120 and
148, respectively) are more distinct and have larger velocity
difference (-1.43 km/sec vs 1.7 km/sec) than in cluster u. Here
the two velocities have opposite signs, which may be caused
by two gas components moving in opposite directions. While
the moment 2 map indicates a widening of the line at the
location of clusters u and v, it does not provide information
of the shape of the line. Furthermore, the moment 2 fails
to highlight the location of cluster t. This example shows
how NeuroScope clustering can enlarge the discovery space
by fully exploiting the transformational imaging capabilities
provided by current telescopes.

There are important advantages of clustering analysis com-
pared to the traditional moment visualization. First, the ca-
pability of combining multiple lines at once allows one to
identify correlation and anticorrelation between different gas
tracers. Second, clustering analysis naturally combines signals
from similar regions augmenting the capabilities to see faint
structures. Third, the proposed — data-driven — technique
does not assume priors for the line emission and therefore
deliver an unbiased interpretation of the observations.

For successful clustering and interpretation of the data, the
correctness of the manifold learning (the placement of the
SOM prototypes according to the data distribution, and the
preservation of the data topology in the SOM lattice), and the
quality of cluster extraction from a learned SOM are of crucial
importance. This can be challenging to ascertain for compli-
cated large data such as noisy spectral imagery with many
inherent clusters. Many of these issues have been addressed
by [12], [11], and references therein. This includes measures of
topology preservation, to separate serious topology violations
from those that are inconsequential for cluster detection and
can be ignored.

In NeuroScope we use Conscience Self-Organizing Maps
(CSOM; [13]), which achieve better data density matching
(more faithful representation of the data distribution) than
the original Kohonen SOM. For high-dimensional input data
this was verified by [14]. The CSOM, at the same time, is
computationally less expensive because it only has to update
the immediate lattice neighbors in each learning step, in
contrast to updating all SOM prototypes in the Kohonen SOM.

SOM learning is robust, partly because the summarization
of data by the prototypes greatly reduces noise, and partly
because the topological ordering of the prototypes facilitates
the preservation of subtle differences despite possibly small
vector distances between spectra. SOM learning is not directly
limited by the dimensionality of the data. We can use the full
spectral information (all channels) as input to clustering. There
is no need for prior noise reduction, dimensionality reduction,
or prior assessment of statistical properties of emission lines.

We can use the spectral cubes coming straight out of the
ALMA data reduction pipeline (like in this study) without
needing additional preprocessing.

B. Relationship to the State-of-the-Art

The dendogram object classification has similarities with
NeuroScope clustering in that both cluster the spectral sig-
natures. The original application of the dendrogram method
(to structure finding in molecular clouds) in 2-D provides
the lineage of spectral relations (velocity) but loses the size
and shape information of the component clouds [6]. The
subsequent extension to a 3-D dendrogram method recovers
the size and shape information by displaying the iso-surfaces,
identified by the dendrogram, on the channel map that is
closest to the velocity of the particular cloud component [7].
This, however, can be challenging to synthesize and interpret
for a large number of channels. More importantly, since the
dendogram analysis relies on identifying iso-surfaces, it is not
well suited to low signal-to-noise data and it does not naturally
extend to the simultaneous analysis of data cubes containing
multiple lines.

NeuroScope clustering produces a map of distinct homo-
geneous source regions in terms of spectral properties. For
example, three different cloud components traced by the same
molecule and having different velocities would appear as three
distinct clusters (differently colored regions) on a single 2-
D view of the cloud system, outlining the shape and size
of the sources while indicating that they differ in velocity.
This result is similar to that delivered by dendogram analysis.
However, NeuroScope can naturally use multiple molecular
tracers by stacking the spectral signatures, in which case
the cluster map would show distinct homogeneous regions
based on both velocity and composition as in in Figure
5. Furthermore, differently from the dendrogram algorithm,
NeuroScope clustering does not require any prior knowledge
of the noise and it does not require specification of intensity
thresholds for the identification of clusters. The integrated
yet detailed view provided by the NeuroScope cluster map
facilitates (at least alerts to) discovery at-a-glance.

Clustering with NeuroScope tools can make a significant
difference for structure discovery in high-dimensional, com-
plex data. While comparison with other clustering methods is
outside the scope of this paper, we point to a comparison
with K-means clustering for multi- and hyperspectral data
containing many clusters in [15]. For the relatively low-
dimensional and less complex multi-spectral data K-means
produces reasonable clustering. However, for the hyperpsectral
data, which also discriminates more clusters, the study shows
confusion and missing of many relevant material clusters by
K-means while the SOM-based approach delineates the known
materials with an accuracy and sensitivity that allows direct
match with field spectra for material identification.

C. Efficiency for Large Data

SOM learning is efficient for large data sets because it
provides intelligent summarization, shrinking the data volume



by a large factor spatially while retaining the manifold charac-
teristics relevant for cluster discovery and keeping the spectral
resolution in the prototypes. As an example, the protoplanetary
disk and immediate surroundings in Figure 5 comprise approx.
56,000 pixels. These are represented and characterized by
400 SOM prototypes (a factor of 140 down-sizing) without
loss of relevant knowledge of the compositional and structural
distinctions. We can further compress the data for certain uses
by only storing the cluster means and a few additional vectors
such as the minimum, maximum, and standard deviation
across the pixels in a cluster. This is a significant advantage
for large data sets. SOMs are inherently parallel algorithms.
Parallel (FPGA, ASIC, GPU) implementation of the learning
process can provide magnitudes faster speed than sequential
implementations. A specialized large-scale SOM accelerator
capable of handling hyperspectral data cubes has been tested
and is being considered for use in NeuroScope [16].

III. AUTOMATION APPROACH

While SOM-based clustering using our tools can result
in excellent structure discovery, full automation is needed
for processing vast archives or for near-real time on-board
analyses. However, SOM segmentation (step C in Section II.A)
is currently generally more successful when done interactively,
from expressive visualizations of the SOM’s knowledge such
as in Figure 4. Existing automated methods work well for
some type of data and low cluster complexity while under-
performing for other types of data. For example, our function
SOMcluster (under development) produced clean cluster maps
for Mars Exploration Rover imagery (similar to that shown in
[17]) but poor segmentation of SOMs of functional Magnetic
Resonance Images for brain mapping [18]. The reasons include
the substantial difference in the general characteristics of these
two types of data including the noise, the great difference in
the number of inherent clusters (approx. 20 vs 70) and the level
of the average similarity (variance) of the data vectors. Such
differences are expected between different domains, especially
for large and complex data. Characterization of the data and
using that to inform tools can help achieve domain-specific
acuity for the automation of SOM segmentation.

Here we explore an approach based on informing leading
graph segmentation algorithms with the SOM’s knowledge of
the data. Graph segmentation algorithms have been proposed
for automated clustering of “Big Data”, but their use for large
data sets requires huge computational resources since they start
with a graph with N2 edges for N data points (representing
the pairwise distances of all data points). Instead, we give
the SOM prototypes to the graph segmentation algorithms
(approximately

√
N data vectors, generating N graph edges),

and provide the CONN similarity values as “distances” for
the algorithms. We show that this combination significantly
enhances the graph segmentation algorithms’ ability to find
relevant clusters, and the computing time is very small. We
compare the resulting clusterings of the HD142527 data cube
with the cluster map in Figure 5.

A. Graph Segmentation Overview

Graph segmentation (also called graph partitioning, commu-
nity detection or graph clustering) aims to identify a subgraph
structure such that each subgraph is densely connected within
itself and sparsely connected to other subgraphs, where the
concept of vertex connectivity (binary) is replaced by vertex
similarity (graded) for weighted graphs. Decades of research in
this area have resulted in many different classes of algorithms.
The so-called cut methods (mininum cut, normalized cut, ratio
cut) attempt a recursive bipartitioning (a cut) of the graph
driven by minimizing an objective function which represents
the similarity between the two resulting sub-clusters. Spectral
methods aim to approximately minimize this same cost func-
tion via eigenspace decompositions of the graph Laplacian
matrix. Modularity based methods maximize the “quality” of
a partition as measured by the modularity function, which
compares a given graph partition to a distribution of random
graphs with the same structure (number of edges and vertex
degrees), favoring cluster structure that occurs from more
than “chance” alone. Many other partitioning schemes have
been adapted from other domains such as agglomerative and
partitive data clustering from statistics, Markov chain formu-
lations from probability theory and equilibrium models from
statistical physics. See [19] for a more complete overview.

We experimented with a number of leading algorithms with
mixed results. The greedy agglomerative modularity algorithm
of [20], the Multilevel algorithm of [21] and the eigenspace
modularity approximation of [22] produced clusterings of gen-
erally poor quality while the Walktrap [23] and Infomap
[24] algorithms identified more meaningful cluster structure
of the ALMA data. We assess an algorithm’s suitability for
automated cluster detection by comparing its clustering with
default parameters to the interactive clustering in Figure 5
based on a) visual inspection; b) the percentage of matching
pixels; c) cluster size distribution; and d) the Jaccard similarity
coefficient (JSC) and the Jensen-Shannon divergence. The
JSC between two clusterings C1 and C2 is the proportion
of pixel pairs which are assigned to the same cluster in both
C1 and C2. Thus JSC = 1 indicates complete agreement
between clusterings while JSC = 0 indicates complete
discord. The Jensen-Shannon (J-S) divergence measures the
similarity between two distributions relative to their mean
(and consequently is a symmetrized version of the Kullback-
Leibler divergence). All algorithms we experimented with
require few (1 or 2) parameters, which is important for
automation. Both highlighted methods are freely distributed
in the igraph package [25] and require negligible runtimes
(≈ 1 second on an ordinary MacBook Pro for the SOM-based
graphs described in section III-B) in our experiments.

The Walktrap algorithm utilizes the method of random
walks on graphs to create a unique distance measure that is
then used in conjunction with Ward’s classical agglomerative
clustering scheme. In this case, the random walk on the graph
is represented by a Markov chain whose state space is initially
equal to the set of all vertices and transition probability matrix



P is equal to the matrix of vertex similarities (edge weights)
with row-sums normalized to 1. Thus the probability of transi-
tioning from vertex i to vertex j in a walk of length t is P t

ij . If
vertex i and vertex j belong to the same cluster we expect P t

ij

to be relatively high, at least for short walks (with the converse
also expected). Note, however, that this formulation alone
does not produce a clustering of the vertices. To accomplish
this, a probability based distance between vertices i and j

is defined from P as dij =

√
N∑

k=1

(P t
ik−P t

jk)
2

deg(k) where N is

the total number of vertices in the graph and deg(k) gives
the degree (sum of edge weights with one endpoint in vertex
k) of its argument. Since the rows of P t specify probability
distributions, this can be thought of as the “L2” distance
between the distributions describing the movement from vertex
i and vertex j. Put simply, if a walk transiting from i has
roughly the same distribution of destination states as a walk
transiting from j, vertices i and j are considered similar in
terms of this metric. Ward’s algorithm [26] is then used to
choose two vertices to merge into one cluster. P is recalculated
to represent the Markov chain on this reduced state space,
with transition probabilities between the merged community
and other vertices inherited from its members. This process
is repeated N − 1 times, with the terminal result the final
partitioning of the graph. The default walk length parameter
t = 4 was used to obtain our results.

Information theory guides the clustering of the Infomap
algorithm, which is also based on random walks on graphs.
Instead of directly analyzing transition probabilities, P (same
as Walktrap) motivates an entropy-based cost function L
which, given any partitioning C of the graph into c clusters,
describes the total entropy of movement both between and

within clusters: L(C) = qyH(Q) +
c∑

r=1
pr�H(Pr), where

qy is the probability of moving between clusters and pr�
is the probability of movement within cluster r, H(Q) is
the entropy of between-cluster movement and H(Pr) is the
entropy of movement within cluster r. These quantities can
all be derived directly from the entries of P . Since minimum
entropy corresponds to the most information about a stochastic
system, the goal is thus to minimize L with respect to C.
Direct minimization of L is in most cases computationally
intractable so a greedy agglomerative partitioning scheme is
devised. Initially, each vertex comprises its own cluster. A
cluster is picked at random and merged with its neighbor (i.e.,
a cluster with which it shares an edge) to produce the largest
overall decrease in L. After all clusters have been considered,
a new graph is constructed comprising only one vertex per
merged cluster (and, as in Walktrap, parent clusters inherit
their transition probabilities from their children). The process
begins anew and is repeated until no further decrease in L is
possible. The final clustering, an approximate minimizer of L,
is then the one describing the structure inherent to the graph
with most information. Since neighbor evaluation is initiated
randomly, the algorithm likely produces a local minimizer
of L. To account for this, the entire process is repeated

num.trials times (which is the only parameter required) and
an approximate global minimizer of L is selected from the
num.trials candidates. We used num.trials = 10.

B. The SOM as a Graph

Positing the SOM as a graph is natural and straightforward
but a distinction must be made between the SOM output
space, which is traditionally visualized on a two-dimensional
lattice, and the weighted graphs we derive as inputs to graph
segmentation algorithms. In both, vertices represent data pro-
totype vectors but the latter is not a lattice; its connectivity
structure is dictated by the function we choose to represent
similarities between prototypes. For comparison, we consider
both the CONN values and the (inverse) Euclidean distance
between prototype vectors (IEDP) as similarity measures.
Since CONN is an asymmetric measure (unlike Euclidean
distance), it additionally admits the formulation of directed
graphs. (This is not revealed in Figure 4, see [10] for details.)
Both directed and undirected variations of the CONN-based
graph are considered where appropriate.

Graphs based on prototype representations of the data, as
opposed to graphs based on individual data points (in our
case, the spectral signatures of the pixels of the HD142527
data cube), offer three benefits for automated segmentation
algorithms. From a computational standpoint, it is intractable
to compute and store the similarity measure between all pixel
pairs of a large cube emanating from real world spectral
imaging. For example, our focus area of the HD142527 data
cube is 236× 236 pixels (requiring ≈ 56,000 vertices and on
the order of 109 edge weights if using a symmetric similarity
measure such as Euclidean distance). Storage for even this
small region exceeded the capacity of a 3GHz dual core
processor with 16GB of RAM. Edge sparsity, if available, can
lower this demand somewhat but that typically requires some
a priori knowledge or preprocessing of the data. In contrast,
processing the graph of the 400 SOM prototypes in Figure 4
takes less than 1 sec. Practical constraints aside, prototype-
based neural learning schemes have the added benefit of noise
reduction, boosting the signal-to-noise ratio in their represen-
tation of the underlying data distribution. Most importantly,
such schemes permit the introduction of new similarity mea-
sures (i.e., CONN) which are unavailable in the data domain
itself. Of course, individual similarity measures tailored to
a particular task may be available through consultation with
domain experts, but then we are no longer in the realm of
automated data analysis. We outline below the marked benefit
of the CONN similarity measure over traditional choices.

C. Results

Figure 6 displays the clusterings by the Walktrap (6a,6c)
and Infomap (6b,6d) algorithms applied to graph repre-
sentations of the SOM prototypes. We note first that all
algorithms we considered perform extremely poorly when
inverse Euclidean distance (IEDP) is used as a similarity
(i.e., edge weight) between graph vertices. This is evident for
the two algorithms highlighted here when comparing 6c and



(a) Walktrap-CONN (b) Infomap-CONN

(c) Walktrap-IEDP (d) Infomap-IEDP

(e) Walktrap-CONN (Agreement) (f) Infomap-CONN (Agreement)

Fig. 6. Automated clusterings from the SOM prototypes of the HD142527
data cube by the (column 1) Walktrap and (column 2) Infomap algorithms
using CONN values (row 1) and the inverse Euclidean distance (IEDP, row
2) between prototypes as similarity measure. The agreement images in row 3
are relative to Figure 5, with mismatching pixels masked in black.

6d to Figure 5, where little more than the general shape of
the protoplanetary disk is identified. The CONN similarity
measure, on the other hand, helps these algorithms discern
clusterings (6a,6b) which are much more similar to Figure
5. One possible explanation as to why is the edge sparsity
induced by CONN when compared to IEDP. To control for
sparsity effects, we allowed each algorithm to attempt a
clustering of a graph whose edge weights are specified by
IEDP, but edge existence is specified by CONN. These results
(not shown) generally produce only very modest improvement,
indicating CONN’s superiority in this case is due to more than
sparsity. The rest of the discussion will focus on CONN-based
clustering results.

Fig. 7. Distribution of cluster sizes by segmentation method

Statistical assessments also support the visual compar-
isons. First, Walktrap-CONN clustering matches 60% and
Infomap matches 44% of the pixels in Figure 5 (ap-
proximately). Second, Walktrap-CONN produces more
clusters, and the clusters they both produce are generally
tighter (have smaller envelope), with smaller standard devi-
ation in the Walktrap-CONN clustering than in that from
Infomap-CONN. The envelope and standard deviation of the
Walktrap-CONN clusters are close to those of the reference
clusters (not shown here). Measured by the Jaccard index,
the clustering produced by Walktrap (JSC = .29) shows
greater fidelity to Figure 5 than does the clustering produced
by Infomap (JSC = 0.25). Indeed, the distribution of
cluster sizes (i.e., number of pixels in each cluster) from the
Walktrap clustering more closely matches that of Figure 5
as seen in the left panel of Figure 7. The Jensen-Shannon (J-
S) divergence of the Infomap and Walktrap cluster size
distributions are 0.19 and 0.04, respectively, confirming that, of
the two, Walktrap produces a clustering with distributional
characteristics more faithful to Figure 5.

The agreement images from Walktrap and Infomap
(Figures 6e and 6f, respectively) facilitate a visual assessment
of the cluster structures relative to Figure 5 by showing
only the regions where each clustering algorithm agrees with
Figure 5. Walktrap appears as the most similar of the
two, especially in the center of the image. In fact, the small,
and perhaps most interesting kinematic details we discussed
in Figure 5 are matched remarkably by Walktrap-CONN,
whereas Infomap-CONN misses most of that fine structure.
Both algorithms are able to discern the radial structure em-
anating from the center, but Infomap does so with less
granularity. Walktrap, on the other hand, appears to favor
more sub-clustering of the radial arcs. This can be explained
by the fact that (as also seen from the moment 0 maps)
the gas intensity drops at the radius where the “breaks” are
seen in the automated clustering results. These algorithms
are apparently more influenced by the intensities than by the
velocity differences.

Despite their differences, the Walktrap and Infomap
segmentations generally capture at least the high level structure
in Figure 5 fairly well, and we stress again that we used off-
the-shelf default parameters with no further tuning. The quality



of clusters can be evaluated more rigorously — with and
without a reference — and this is planned for a more involved
study, but the simple comparison above provides promising
initial results from these automated clustering procedures. In
our experiments, however, this success is wholly dependent
on the combination of a prototype-based representation of the
data and the CONN similarity measure.

IV. DISCUSSION, CONCLUSION AND OUTLOOK

We demonstrated on a relatively simple astronomical object
the advantages of neural map-based clustering over traditional
moment maps for finding structure. Our tools can highlight
regions of distinct combinations of kinematics and gas den-
sities for multiple molecular species in a single integrated
map, alerting to potential discoveries. More exhaustive val-
idation and interpretation of our clustering results in Figure
5 is an ongoing effort and will be presented in a follow-
up paper. We showed that using the learned SOM prototypes
and CONN similarity measure (manifold connectivity derived
from the learned SOM) as input to leading graph segmentation
algorithms Walktrap and Infomap we can dramatically
enhance their ability to produce automated cluster extraction
results comparable to our interactive clustering in negligible
processing time, while relying on their default parameters
with no further tuning. While these clusterings are not yet
good enough to replace our interactive process, we expect
to improve the results from Walktrap and Infomap in
subsequent work by studying their parameters and exploiting
the directional edge weighting afforded by CONN. The goal
is to achieve full automation with the same or very close
quality to that of the interactive processing. Follow-up work
will also target more complex astronomical objects (such as
molecular clouds) where the kinematics are not dominated
by a regular motion, and signatures of multiple sources may
be superimposed. This will be the next level of challenge
for our tools. In conclusion and based on the study we
presented, we anticipate that clustering methods that can deal
with the complexity and richness of the data involved in next-
generation radio astronomy observations, as well as keep up
with the data volume, will play an essential role in uncovering
the intricate processes of the universe.
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