
Big Data Security Analysis Approach Using
Computational Intelligence Techniques in R for

Desktop Users

Nitin Naik1, Paul Jenkins1, Nick Savage2 and Vasilios Katos3

1Defence School of Communications and Information Systems, Ministry of Defence, United Kingdom
2School of Computing, University of Portsmouth, United Kingdom

3Department of Computing and Informatics, Bournemouth University, United Kingdom
Email: {nitin.naik100, paul.jenkins683}@mod.uk, nick.savage@port.ac.uk, vkatos@bournemouth.ac.uk

Abstract—Big Data security analysis is commonly used for the
analysis of large volume security data from an organisational per-
spective, requiring powerful IT infrastructure and expensive data
analysis tools. Therefore, it can be considered to be inaccessible
to the vast majority of desktop users and is difficult to apply to
their rapidly growing data sets for security analysis. A number of
commercial companies offer a desktop-oriented big data security
analysis solution; however, most of them are prohibitive to
ordinary desktop users with respect to cost and IT processing
power. This paper presents an intuitive and inexpensive big data
security analysis approach using Computational Intelligence (CI)
techniques for Windows desktop users, where the combination of
Windows batch programming, EmEditor and R are used for the
security analysis. The simulation is performed on a real dataset
with more than 10 million observations, which are collected from
Windows Firewall logs to demonstrate how a desktop user can
gain insight into their abundant and untouched data and extract
useful information to prevent their system from current and
future security threats. This CI-based big data security analysis
approach can also be extended to other types of security logs
such as event logs, application logs and web logs.

Keywords—Big Data, Security Analysis, Computational Intel-
ligence Techniques, CI, R, Desktop User, Windows Firewall Logs

I. INTRODUCTION

Security analysis is becoming an increasingly complex task
for desktop users due to the high volume of data generated
from different security tools in the form of firewall logs, event
logs, application logs, web logs and many other security logs.
The efficient handling and processing of this collected data
requires high system resources and powerful analysis tools.
However, traditional systems and tools are not capable of
handling and analysing these large unstructured datasets. In
the absence of appropriate processing mechanism for these
large datasets, these valuable datasets may become useless
and a resource overhead for the other important applications.
Therefore, desktop users require an easy to implement and
inexpensive big data security analysis approach that meets their
data processing requirements within their limitations. However,
most of the security analysis solutions are not affordable to the
ordinary desktop user due to their costs and the requirement
for powerful systems. Another issue is the sophisticated use
of these complex tools, whereas, many ordinary users are

untrained IT users or reluctant to receive long and complex IT
applications training. Therefore, desktop users require a rela-
tively simple, economical and resource efficient data analysis
approach. R is an open-source data analysis tool consisting of
various CI packages for advanced data analysis. However, it
requires a basic understanding of statistics which is desirable
for any data analysis. R may not be suitable for the data
collection or cleaning functions but it could be used for various
analyses with some additional supporting tools.

This paper presents an intuitive and inexpensive security
analysis approach using CI techniques in R for Windows
desktop users. The choice of Windows desktop was as result of
its popularity, where the Microsoft Windows operating system,
has approximately 70% of the computer operating system
market [1]. Therefore, there are large populations of Windows
desktop users. If Windows desktop users can find or design an
easy to implement and inexpensive big data security analysis
solution supported by their system, then they can analyse very
large security logs to extract meaningful security information
to improve their systems security, making it more robust [2],
[3]. In this proposed security analysis approach, the combina-
tion of Windows batch programming, EmEditor (which can be
replaced with any powerful editor) and R are used for analysis
purposes. R hosts several CI packages related to artificial
neural networks, evolutionary algorithms, fuzzy systems and
hybrid intelligent systems for designing intelligent systems.
This security analysis approach involves several stages, where
data collection and merging are performed by using a Windows
batch script; data cleaning and editing are carried out by
using EmEditor; and finally, R is used for structuring the
data, performing analysis using CI techniques, visualising and
interpreting the results. The experimental simulation is based
on a real dataset of 1, 006, 889, 160 bytes (1.01 GB) with
more than 10 million observations, which are collected from
the Windows Firewall logs during the log recording process
for a 30 day period. Subsequently, security analysis is carried
out on the collected Windows Firewall logs to demonstrate
how a desktop user can gain insight into their abundant and
untouched data and extract useful information to prevent their
system from current and future security threats [2]. This CI-
based big data security analysis approach can also be extended
to other types of security logs such as event logs, application
logs and web logs.

The remainder of this paper is organised as follows: Section
II explains the theoretical background of data analysis tool R,
Windows Firewall and fuzzy reasoning; Section III illustrates
the design and implementation process of the proposed security
analysis approach including its various stages: collecting and
merging logs, cleaning and editing logs, converting text logs
into an R table structure, analysing R datasets using CI
techniques, and visualising and interpreting the results; Section
IV explains the big data scalability of this approach for desktop
users. Finally, Section V concludes the paper and suggests
some future areas of extension.

II. THEORETICAL BACKGROUND

This section presents the background information about the
data analysis tool R, Windows Firewall and fuzzy reasoning.

A. R

R is an open-source statistical computation and data visual-
isation software tool. It is the result of collaboration of a large
team of developers, researchers, statisticians and data scientists
from around the world. R is available for all the main operating
systems such as UNIX, Windows and MacOS platforms. R
comprises data handling facilities, a superior mechanism for
matrix computations, a plethora of data analysis and graphical
packages, and a simple programming language [4]. The most
powerful feature of R is subsumption i.e. its support to external
packages. Currently, R has incorporated around 5000 packages
through the CRAN family of Internet sites [5]. R also hosts
several CI packages related to artificial neural networks, evo-
lutionary algorithms, fuzzy systems and hybrid intelligent sys-
tems for designing intelligent systems. Therefore, combining R
with some data collecting and cleaning tools could facilitate a
potential data analysis solution for desktop users. R is used as
a computational tool for routine statistics production by many
official statistics agencies. Besides official statistics, it is used
in many other sectors such as finance, retail, manufacturing,
science, and academic research, which is making it a popular
tool among statisticians and researchers [4].

B. Windows Firewall

Microsoft embedded the firewall utility in Windows operat-
ing systems since Windows XP SP2 and is now available with
all versions of Windows. Windows Firewall with “advanced
security” features is a stateful firewall that examines and filters
all packets for IPv4 and IPv6 traffic. The packet filtering
process is based on the user or administrator-defined rules
and on that basis it allows or blocks the network traffic. The
firewall automatically blocks all incoming traffic unless it is a
response to a request by the host or it is specifically allowed
by writing a firewall rule. Windows Firewall can also be
configured with “advanced security” for a specific port number,
application name, service name, or other criteria based traffic;
then this traffic can be allowed explicitly [6]. These features
are designed for advanced users who need to manage network
security in an enterprise environment. It is not often intended
for the use in home networks.

C. Fuzzy Reasoning

Fuzzy reasoning is the process of deriving logical conclu-
sions from an existing fuzzy rule base [7]. It mimics the ability
of the human mind to summarize data and focus on decision-
relevant information [8]. Fuzzy reasoning is more effective and
useful for those systems where a system cannot be defined
in precise mathematical terms or models due to uncertainties,
unpredicted dynamics and other unknown phenomena [9]. In
network security, much of the information and traffic data is
incomplete and imprecise in nature. Therefore, fuzzy reasoning
is comparatively more suitable than other types of reasoning
approaches [10], [11], [12], [13]. Fuzzy reasoning is based on a
fuzzy rule base, and it can be derived by subject matter experts
or extracted from data through a rule induction process. If the
fuzzy rule base is a dense rule base then, any rule inference
method such as Mamdani inference [14] or Takagi-Sugeno
inference [15] can be used.

III. SECURITY ANALYSIS OF WINDOWS FIREWALL LOGS
USING COMPUTATIONAL INTELLIGENCE TECHNIQUES IN R

The security analysis for desktop users is a challenging
task due to the limitation of system resources and technical IT
skills. Therefore, this section presents the design and imple-
mentation of the proposed CI-based big data security analysis
approach for desktop users for performing security analysis
within their limitations. This security analysis only focuses on
Windows desktop users. The experiment is carried out on a
Windows 7 operating system and desktop with configuration
(Processor=Intel Core i7 3.0 GHz (4 cores), RAM=16 GB,
L2 Cache=8 MB, Ethernet=100 Mbps). This security analysis
requires two software tools: any powerful text editor (such
as EmEditor in this implementation) and R (with RStudio
IDE). Unlike the other security analysis, where prior technical
training is necessary, here any user with basic knowledge of
statistics and elementary IT skills can conduct the security
analysis without any prior technical training. This desktop-
oriented security analysis approach has several stages as shown
in Fig. 1. The description of the various stages are as follows:

A. Collecting and Merging Windows Firewall Logs using
Windows Batch Script

The Windows Firewall logs are recorded in the “pfire-
wall.log” by default. The maximum size of the “pfirewall.log”
file is 4096 KB. After exceeding this limit, it saves the
logs in a backup file called “pfirewall.log.old” of 4096 KB.
Both log files do not grow beyond this size, and when the
“pfirewall.log” file exceeds the maximum limit again, the old
log entries are deleted to make room for the newly created
ones. In this security analysis of Windows Firewall logs,
a reasonable sized file was required to perform extensive
analysis and that was created in the simplest way by writing
a Windows batch script as shown in Fig. 2. This batch script
worked in the background during the period of the complete
experiment. Initially, the “mergedLog” file was created with
one line of a header containing all the 17 default variables
of the “pfirewall.log” file. Finally, the “mergedLog” file of
1, 006, 889, 160 bytes (1.01 GB) with more than 10 million
observations was obtained during the gradual log recording
process for 30 day period.

Fig. 1. Stages of big data security analysis approach for analysing Windows
Firewall logs

Fig. 2. Windows batch script for creating a mergedLog file of Windows
Firewall logs

B. Cleaning and Editing mergedLog Text File using EmEditor

Normally, the collected data may be incorrect, incomplete,
improperly formatted, or duplicated and require cleaning and
editing for removing these impurities [16], [17]. While the
log file was a simple text file with no major cleaning issues,
only a powerful data editor (EmEditor) was used rather than
a proper cleaning tool. Notepad++ and other desktop editors
were not capable of handling a very large text file, whereas

EmEditor could easily handle a file size up to 248 GB [18].
For this analysis, the “mergedLog” file (above 1 GB) was
cleaned and edited using EmEditor as shown in Fig. 3. The
“mergedLog” file was created in a way that the first five lines
of the “pfirewall.log.old” were removed every time, before
copying it to the “mergedLog” file. However, the “mergedLog”
file still needed to be checked manually for various purposes
and aligned with the format defined in the R table structure. If
the “mergedLog” file did not fit in the R format, then R could
generate an error message, and data could not be imported.
Therefore, the major cleaning and editing task in “mergedLog”
file was to check spaces between the two fields and align all
lines including the header and last line if required.

Fig. 3. Cleaning and editing mergedLog text file in EmEditor

C. Converting mergedLog Text File into R Table Structure

R supports a table-kind of data structure based on the R
data frame. Therefore, the data frames are the fundamental
data structure in R. The read.table() reads a file in table format
and creates a data frame from it. The syntax of this function
is shown in Equation 1.

data frame name =

read.table(file name, header = F/T, sep = “ ”) (1)

where the “header” is a logical value indicating whether the
file contains variable names as its first line and “sep” is the
field separator character. In this implementation, the merged
log file “mergedLog” was converted into a table-kind of data
structure using the read.table() function as shown in Fig. 4.

Fig. 4. Creation of mergedLogDataSet in R

If the structure, header and content of the merged log file
were accurate, then it created a dataset called “mergedLog-
DataSet” in R as shown in Fig. 5. This dataset was displayed
in the “Environment and History Pane” of RStudio IDE and
contained 10866240 observations and 17 variables similar to
the firewall header variables. The actual table structure of the
“mergedLogDataSet” (see Fig. 6) could be seen in the “Script
Editor Pane”, usually at the opposite side of the “Environment
and History Pane” in RStudio IDE.

Fig. 5. Created mergedLogDataSet with number of observations and variables

Fig. 6. Table structure of mergedLogDataSet in R

The structure-related information of this mergedLog-
DataSet could be seen by the “str” command as shown in
Fig. 7. This “mergedLogDataSet” was directly created from
the Windows Firewall merged log text file; therefore, the data
types of all the 17 variables were a “factor”. This data type
information was crucial for the statistical analysis because the
“factor” was categorical data in R and for many computing
models, it needed to be converted into numerical data.

Fig. 7. Created mergedLogDataSet with number of observations and variables

D. Security Analysis of mergedLogDataSet using CI Tech-
niques in R

The main aim of the security analysis could be different for
different users depending on their requirements. This particular
analysis focuses on summarising the “mergedLogDataSet” for
extracting vital information, deciding the security status of
the desktop using the null hypothesis and binomial analysis,
investigating the abnormalities in detail based on targeted
protocols and IP addresses, designing an intelligent system to
predict the risk of attack and finally, a graphical illustration of
the security analysis findings. The sequence and details of the
various analyses are as follows:

1) Windows Firewall Rules for Security Analysis: In this
simulation, a small number of firewall rules were created for
security analysis purpose. Subsequently, this rules-based traffic
data was collected in the “pfirewall.log” file. Two inbound
rules were created to block two particular computers for
specific traffic as shown in Fig. 8. The first rule was created
to block the computer with IP address 192.168.0.50 for only
ICMP packets, and the second rule for the computer with IP
address 192.168.0.51 for only TCP packets. Therefore, enough
dropped activities could be recorded during the log generation
period. Similarly, stopping some activities at the host end
(192.168.0.154), an outbound rule was also created to block
the outgoing ICMP packets to other computers as shown in
Fig. 9. These blocking rules generated enough “drop” traffic
in the firewall log for security analysis.

Fig. 8. Incoming ICMP and TCP Drop Rules for IP addresses 192.168.0.50
and 192.168.0.51 respectively

Fig. 9. Outgoing ICMP Drop Rule for the host IP address 192.168.0.154

2) Preliminary Statistical Analysis of Windows Firewall
Log: The simplest data analysis command in R is the “sum-
mary” command which gives reasonable statistics about the
given dataset. However, it may be insufficient for detailed
investigations or to predict future trends. Thus, some advanced
analysis packages may be needed depending on the nature of
the study. In Fig. 10, the summary command shows statistics
about the “mergedLog” file, which could be very useful
for further investigations. This summary includes information
related to the date, time, action, protocol, source address,
destination address, source port, and destination port, which
are quite clear and understandable.

Fig. 10. Summary analysis of mergedLogDataSet

3) Null Hypothesis and Binomial Exact Analysis: The sum-
mary analysis presented is only superficial data, however the
firewall log file was very large. Therefore, for ordinary users, it
is very difficult to extract meaningful security information from
this firewall log. The first step for a user would be to decide
whether the collected traffic data is close to the normal/ideal
traffic level or not. Thus, a different statistical analysis is
required to assess the current security status of the desktop.
The null hypothesis in R is the simplest analysis to compare
the statistical significance of the data without complicating
the analysis with further details. The central action of any
firewall is to allow or drop packets based on their rules.
For this, the “table()” function displays a table of the counts
at each combination of the factor levels. In Fig. 11, table()
function displays and simplifies the firewall actions against
all 10866240 packets, where 7952160 packets are “allowed”
and 2913840 packets are “dropped”. Therefore, based on the
number of packets allowed (successes), the null hypothesis is
constructed to determine the collected traffic status/level.

In the null hypothesis, the number of allowed packets

Fig. 11. Summary of allow, drop and lost packets

(7952160) was compared with the ideal traffic condition
when all the packets (10866240) could have been allowed
for checking the statistical similarity between the two sam-
ples, so the desktop security level could be assessed with
its ideal traffic condition. With the significance level = 0.05
and the level of confidence = 95%, the p-value given by
the prop.test() function was 2.2e − 16 (i.e., p-value < .Ma-
chine$double.eps in R) as shown in Fig. 12. This value
2.2 ∗ 10−16(0.00000000000000022) was effectively close to
zero (actually numerically indistinguishable from 0) and much
smaller than the value (0.05) of the significance level. Addi-
tionally, the value 0 did not lie within the confidence interval
(−0.2684409 and −0.2679139) as shown in Fig. 12. There-
fore, the correlation was statistically significant, and the null
hypothesis was rejected with the high degree of significance.
This result stated that the desktop’s current traffic condition
was not normal and, thus, there was a need for further detailed
investigation about the types of attacks/threats.

Fig. 12. Null hypothesis analysis to determine the desktop security status
based on the allowed traffic

The results of the null hypothesis test were also verified
precisely by the Binomial exact test in R. In Fig. 12, the
probability of successes (in this case allowed packets) is
0.7318226 ≈ 0.73. Therefore, the Binomial exact value was
calculated using the binom.test() function as shown in Fig.13.
However, the p-value was the same as the previous p-value
calculated by prop.test() function. Thus, both tests rejected the
null hypothesis with the significance level = 0.05 and the level
of confidence = 95%. Consequently, a further detailed analysis
was required to obtain the nature of the risks and attacks to
the desktop.

Fig. 13. Binomial exact analysis to determine the desktop security status
based on the allowed traffic

4) ICMP/TCP/UDP Packets and IP Address Analysis:
The null hypothesis and binomial analysis led to the further
investigation of the firewall log to identify the causes of
security breaches. In the summary analysis results shown in
Fig. 10, the protocols and IP address related information could
be easily observed and useful to analyse the causes. Fig. 14
shows the summary table of the total ICMP, TCP, and UDP
packets recorded in firewall logs over the simulation period.
In Windows Firewall, the protocol options available are TCP,
UDP, ICMP, and a protocol number for packets that are not
TCP, UDP, or ICMP. Therefore, “2” is a protocol number and
“-” is used for the lost packets (see Info-Events-Lost in Fig.
11).

Fig. 14. Summary of total ICMP, TCP, and UDP packets

Here, Figs. 15 and 16 show the detailed analysis of the two
protocols ICMP and TCP, and two computer systems with IP
addresses: 192.168.0.50 and 192.168.0.51. The system with IP
address 192.168.0.50 was blocked for only ICMP packets dur-
ing the experiment for the maximum period of time but not for
the entire duration. Therefore, Fig. 15 shows almost all ICMP
packets (350640) as the dropped packets where the source
IP address was 192.168.0.50. Another rule was written for
the host (192.168.0.154) to stop any outgoing ICMP packets;
consequently, all 532800 packets were dropped, which were
tried to send to the destination IP address 192.168.0.50. How-
ever, other TCP and UDP packets were allowed through the
firewall. The system with IP address 192.168.0.51 was blocked

Fig. 15. Summary of protocols for IP address 192.168.0.50

for only TCP packets during the experiment for the maximum
period of time but not for the entire duration. Therefore, Fig.
16 shows almost all TCP packets (1507680) as the dropped
packets where the source IP address was 192.168.0.51. The
previously written rule for the host (192.168.0.154) to stop
any outgoing ICMP packets also enforced here; consequently,
all 522720 packets were dropped, which were tried to send to
the destination IP address 192.168.0.51. However, other TCP
and UDP packets were allowed through the firewall.

5) Designing the Fuzzy Inference System for Predicting
Risk of Attack: An analysis often requires the modelling
and development of an intelligent system for future incident
response and prevention purposes [19]. R is a powerful anal-
ysis tool which hosts several CI packages related to artificial
neural networks, evolutionary algorithms, fuzzy systems and
hybrid intelligent systems for designing intelligent systems.

Fig. 16. Summary of protocols for IP address 192.168.0.51

Additionally, the use of all these CI techniques in R is
relatively easy as compared to several other analysis packages.
Here, a fuzzy inference system is designed using a sets package
(see Fig. 17) to predict the risk of attack based on the previous
analysis. This is a quite simple design accomplished in only
two stages as shown in Figs. 18 and 19.

Previous analyses revealed useful information about the
traffic data and security issues. However, it does not offer any
model to cope with future attacks, and the only way to protect
systems from future attacks is still the Firewall rules. Nonethe-
less, this information can be used to build an intelligent model
to monitor future attacks [10], [11], [12], [13]. The detailed
analysis of the “mergedLog” file and its dataset revealed that
the rate of ICMP and TCP packets may help system to predict
the future risk of the attack in addition to the Firewall rules.
Subsequently, for the baselining of this host, the range of
ICMP packets (0-2000 packets/second) and TCP packets (0-
8000 packets/second) were determined to decide the normal
and abnormal traffic conditions. The baseline information is
used to design two fuzzy input variables icmprate and tcprate;
further details can be found in [10], [11], [12], [13]. Based
on these two fuzzy input variables, the fuzzy output variable
attackrisk is determined which predicts the risk of an attack in
percentage (0-100). All the fuzzy input and output variables
are divided into three fuzzy range low, medium and high as
shown in Fig. 18. Afterwards, a sample fuzzy rule base (see
Fig. 19) is designed for the fuzzy inference system (see Fig.
20) to predict the risk of attack. This system can be employed
alongside Firewall rules to predict the possibility and level of
an attack which is not possible in Windows Firewall; further
details can be found in [10], [11], [12], [13].

Fig. 17. Installation of Sets package for designing a fuzzy inference system
in R

This simple and easy design of the fuzzy intelligent system
in R to monitor and predict the risk of an attack is only one
example of the strength of R and its support for CI techniques.
The other CI techniques such as artificial neural networks,
evolutionary algorithms and hybrid intelligent systems can also
be used in the same way to design various intelligent systems.
Additionally, the baseline analysis and range of parameters can
be adjusted and manipulated depending on the requirement of
a particular host/network.

Fig. 18. Defining linguistic fuzzy variables in R

Fig. 19. Designing fuzzy rule base in R

E. Visual Interpretation of Security Analysis Findings using
Graphs in R

The final step of this security analysis approach is to
present the findings in simple readable and visualised format.
R is a very powerful tool for data visualisation due to many
external packages such as lattice, ggplot2, vcd or hexbin for
the enhanced graphics presentation of information [20]. In this
security analysis, some of the main findings are presented
using the simple built-in graph function “plot”, however, the
advanced package “ggplot2” can also be used to give a more
informative and appealing presentation. Fig. 21 uses the plot
command and Fig. 22 depicts its resultant information about
all allowed, dropped and lost packets, showing that the desktop
allowed 73% of packets as compared to the dropped and lost
27% of packets. Fig. 23 uses the plot command to draw source
IP addresses and their corresponding actions. Fig. 24 shows
the resultant graph of the plot command indicating how many
packets were allowed or dropped from the particular source IP
address. The red and green colours shows allowed and dropped
packets repectively for that source IP address.

Similarly, Fig. 25 uses the plot command to draw desti-
nation IP addresses and their corresponding actions. Fig. 26
shows the resultant graph of the plot command indicating
how many packets were allowed or dropped for the particular
destination IP address. The red colour shows allowed packets
and cyan colour shows dropped packets for that destination IP

Fig. 20. Resultant fuzzy inference system in R

Fig. 21. Plot command to draw allowed and dropped packets

address. In all security analyses, the nature of the analysis and
its interpretations are determined by the user/analyst.

IV. BIG DATA SCALABILITY OF APPROACH FOR DESKTOP
USERS

Any big data analysis approach for desktop users should
be able to cope with the variety of data, increasing volume of
data, and velocity of data (real time processing) on their desk-
tops. Today’s desktops consist of multi-core processors and
increased memory. R is employed in the proposed approach
and it can achieve this goal; however, it requires the support
of additional packages to handle variety of data and make the
optimised use of memory and processor [21], [22], [23], [24].

R can handle a variety of data such as spreadsheet-like
data, relational databases, binary files: image files and XML
documents [21]. It can also import data from other statistical
systems such as EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata,

Fig. 22. Illustration of allowed and dropped packets

Fig. 23. Plot command to draw source IP address and corresponding actions

Fig. 24. Illustration of source IP address and corresponding actions

Fig. 25. Plot command to draw destination IP address and corresponding
actions

Systat [21]. However, it requires the support of some additional
packages to handle variety of data. The easiest form of data
to import into or export from R is a simple text file (log file).

R consists of several packages to deal with increasing
volume of data with limited memory. If the file size is quite
large as compared to the existing memory of the system, then
the “ff” package can be used to perform effective and fast
data processing. The “ff” package provides data structures that
are stored on disk but behave as if they were in RAM by
transparently mapping only a section (pages) in main memory,
the effective virtual memory consumption per “ff” object [25].
Another solution to the handling of increasing volume of data
is the “big” package family that consists of several packages
for performing tasks on large datasets such as bigmemory [26],
biganalytics, bigtabulate, synchronicity and bigalgebra [23].

Since its inception, R was designed to use only a single
thread (processor) at a time. Today, R operates the same way
unless linked with multi-core/multi-threaded libraries [22]. The
multi-core machines of today offer parallel processing power,
therefore, to make use of multiple cores, R requires the support
of add-on packages related to High-Performance and Parallel
Computing (HPPC) [27]. There are several packages available
for parallel processing in R such as parallel, multicore, snow,
snowfall, Rmpi, pbdMPI, Rborist, h2o, randomForestSRC,

Fig. 26. Illustration of destination IP address and corresponding actions

Rdsm, Rhpc. Package “parallel” is built on packages “mul-
ticore” and “snow” and provides replacements for most of
the functionality of these packages [28]. Package “parallel”
handles running much larger chunks of computations in par-
allel. A typical example is to evaluate the same R function
on many different sets of data. For Windows desktop users,
Microsoft R Open includes multi-threaded math libraries to
improve the performance of R and also works on all OS
Windows/Unix/Mac [29]. These libraries make it possible for
several common R operations, such as matrix multiply/inverse,
matrix decomposition, and some higher-level matrix opera-
tions, to compute in parallel and use all of the processing
power available to reduce computation times [30].

V. CONCLUSION

This paper has presented an intuitive and inexpensive
big data security analysis approach using Computational In-
telligent (CI) techniques for Windows desktop users. It is
based on the combination of Windows batch script, EmEditor
(which can be replaced with any powerful editor) and R. This
security analysis approach was carried out on a real dataset
of 1, 006, 889, 160 bytes (1.01 GB) with more than 10 million
observations, which were collected in the Windows Firewall
log file “pfirewall.log” and integrated into the “mergedLog”
file over the period of 30 days. This desktop-oriented security
analysis deduced the security status of the desktop, and sources
and causes of the security breaches successfully. Based on
the analyses results, a fuzzy inference system was designed to
predict the risk of attack and protect the desktop. This security
analysis approach and its successful implementation on the
modest desktop configuration demonstrates the potential of the
proposed approach. However, this particular implementation
was limited to the simulated data based on certain firewall
rules, a small number of protocols and IP addresses; it would
be important to extend rules and areas of investigation, and
collect external traffic for making this approach a generalised
security analysis approach.

REFERENCES

[1] W3schools.com. (2016) OS platform statistics and trends. [Online].
Available: http://www.w3schools.com/browsers/browsers os.asp

[2] H. Carvey, Windows Forensic Analysis Toolkit: Advanced Analysis
Techniques for Windows 8. Elsevier, 2014.

[3] A. Cavoukian and J. Jonas, Privacy by design in the age of big data.
Information and Privacy Commissioner of Ontario, Canada, 2012.

[4] B. Oancea and R. M. Dragoescu, “Integrating R and hadoop for Big
Data Analysis,” arXiv preprint arXiv:1407.4908, 2014.

[5] Cran.r-project.org. (2015) The comprehensive R archive network.
[Online]. Available: https://cran.r-project.org/

[6] Microsoft.com. (2009) Overview of windows firewall with advanced
security. [Online]. Available: https://technet.microsoft.com/library/
6ff0e320-0369-496a-8f1f-0b7224c7f857.aspx

[7] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[8] N. Naik, R. Diao, C. Quek, and Q. Shen, “Towards dynamic fuzzy
rule interpolation,” in IEEE International Conference on Fuzzy Systems,
2013, pp. 1–7.

[9] N. Naik, R. Diao, and Q. Shen, “Genetic algorithm-aided dynamic fuzzy
rule interpolation,” in IEEE International Conference on Fuzzy Systems,
2014, pp. 2198–2205.

[10] N. Naik, “Fuzzy inference based intrusion detection system: FI-Snort,”
in IEEE International Conference on Dependable, Autonomic and
Secure Computing, 2015, pp. 2062–2067.

[11] N. Naik and P. Jenkins, “Fuzzy reasoning based windows firewall for
preventing denial of service attack,” in IEEE International Conference
on Fuzzy Systems, 2016.

[12] N. Naik, R. Diao, and Q. Shen, “Application of dynamic fuzzy rule in-
terpolation for intrusion detection: D-FRI-Snort,” in IEEE International
Conference on Fuzzy Systems, 2016.

[13] N. Naik and P. Jenkins, “Enhancing windows firewall security using
fuzzy reasoning,” in IEEE International Conference on Dependable,
Autonomic and Secure Computing, 2016, pp. 263–269.

[14] E. H. Mamdani and S. Assilina, “An experiment in linguistic synthesis
with a fuzzy logic controller,” International Journal of Man-Machine
Studies, vol. 7, no. 1, pp. 1–13, 1975.

[15] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” Systems, Man and Cybernetics,
IEEE Transactions on, no. 1, pp. 116–132, 1985.

[16] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with
big data analytics,” Interactions, vol. 19, no. 3, pp. 50–59, 2012.

[17] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and chal-
lenges in big data analytics,” Journal of Big Data, vol. 2, no. 1, pp.
1–21, 2015.

[18] Emeditor.com. (2015) Text editor for windows. [Online]. Available:
https://www.emeditor.com/

[19] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete analysis
of configuration rules to guarantee reliable network security policies,”
International Journal of Information Security, vol. 7, no. 2, pp. 103–
122, 2008.

[20] W. Cho, Y. Lim, H. Lee, M. K. Varma, M. Lee, and E. Choi,
“Big data analysis with interactive visualization using R packages,” in
Proceedings of the 2014 International Conference on Big Data Science
and Computing. ACM, 2014, p. 18.

[21] Cran.r-project.org. (2016, June 21) R Data Import/Export. [Online].
Available: https://cran.r-project.org/doc/manuals/R-data.html#XML

[22] R. R. Rosario. (2010, July 27) Taking R to the limit, Part
I: Parallelization. [Online]. Available: http://www.bytemining.com/
wp-content/uploads/2010/07/r hpc.pdf

[23] ——. (2010, August 17) Taking R to the limit, Part II: Working
with large datasets. [Online]. Available: http://www.bytemining.com/
wp-content/uploads/2010/07/r hpc.pdf

[24] P. Kumar, B. Ozisikyilmaz, W.-K. Liao, G. Memik, and A. Choudhary,
“High performance data mining using R on heterogeneous platforms,”
in Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on. IEEE, 2011, pp.
1720–1729.

[25] Cran.r-project.org. (2014, April 9) ff: memory-efficient storage of
large data on disk and fast access functions. [Online]. Available:
https://cran.r-project.org/web/packages/ff/index.html

[26] M. J. Kane, J. W. Emerson, P. Haverty, and C. Determan.
(2016, March 28) bigmemory: Manage massive matrices with
shared memory and memory-mapped files. [Online]. Available:
https://cran.r-project.org/web/packages/bigmemory/index.html

[27] D. Eddelbuettel. (2016, October 10) CRAN Task View: High-
Performance and Parallel Computing with R. [Online]. Available:
https://cran.r-project.org/web/packages/bigmemory/index.html

[28] R-core. (2015, December 4) Package ‘parallel’. [Online]. Available:
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

[29] Mran.microsoft.com. (2016, September 1) Microsoft R Open: The
Enhanced R Distribution. [Online]. Available: https://mran.microsoft.
com/open/

[30] ——. (2016, September 1) About Microsoft R Open: The Enhanced R
Distribution. [Online]. Available: https://mran.revolutionanalytics.com/
rro/

