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Abstract—Process monitoring has a central role in the process
industry to enhance productivity, efficiency, and safety, and
to avoid expensive maintenance. In this paper, a statistical
approach that exploit the advantages of multiscale PLS models
(MSPLS) and those of a generalized likelihood ratio (GLR) test
to better detect anomalies is proposed. Specifically, to consider
the multivariate and multi-scale nature of process dynamics,
a MSPLS algorithm combining PLS and wavelet analysis is
used as modeling framework. Then, GLR hypothesis testing is
applied using the uncorrelated residuals obtained from MSPLS
model to improve the anomaly detection abilities of these latent
variable based fault detection methods even further. Applications
to a simulated distillation column data are used to evaluate the
proposed MSPLS-GLR algorithm.

I. INTRODUCTION

Engineering systems require monitoring approaches to de-
tect abnormalities and sustain its normal operation. In such
framework, data-based techniques provide efficient tools for
extracting useful feature for design of monitoring schemes
based on empirical models derived from the available process
data [1]–[4]. Such methods require a minimal a prior knowl-
edge about process physics, but depends on the availability of
quality input data. Principal component analysis (PCA) and
partial least squares (PLS) are two basic methods of multi-
variate analysis and reputed as powerful tools for monitoring
multivariate processes with highly correlated process data [5],
[6]. By extracting useful data from the original dataset using
PLS modeling and then using monitoring indices such as
T 2 and Q statistics faults in the monitored process can be
detected. However, PLS-based monitoring indices such as T 2

and Q statistics often are relatively inefficient at detecting
incipient faults [7], [8].

However, the presence of measurement errors (noise) in
the data and model uncertainties degrade the quality of fault
detection (FD) techniques. In addition, most of industrial
process data generally have multiscale properties, signifying
that they include features and noise occurring at different
contributions over both time and frequency. Nevertheless,
majority FD approaches are based on time-domain data such
PCA and PLS approaches (operates on a single time scale),
and thus they not take into consideration the multiscale char-
acteristics of the data. Multiscale representation of data using

wavelets, which is a powerful feature extraction tool, has been
demonstrating a good capacity to separate efficiently deter-
ministic and stochastic features [9]. Wavelet based-multiscale
representation of data has been used extensively in literature
to ameliorate the effectiveness and robustness of fault detec-
tion strategies [9], [10]. Regarding multiscale PLS (MSPLS)
modeling and monitoring, in [11], [12] the author employed
multiscale representation to develop multiscale MSPLS in
order to enhance the accuracy of PLS model. In fact, MSPLS
model is able to remove the autocorrelations of variables by
wavelet analysis and to remove correlations between variables
with PLS transformation [11]. The author in [11] demonstrates
that multiscale representation of data improved the FD abilities
of conventional PLS. Thus, combining the advantages of
MSPLS with those of generalized likelihood ratio (GLR)
hypothesis testing should provide even further improvements
in fault detection. Likewise, GLR hypothesis testing which is
very popular in the framework of model-based fault detection,
has demonstrated good detection capacity for a fixed false
alarm probability [7], [13], [14].

The rest of this paper is organized as follows. Section II
gives a brief overview of the PLS model. In Section III, the
multiscale PLS approach is briefly reviewed, and Section IV
introduces the GLR hypothesis testing and its use in anomaly
detection. Next, the concept of marrying MSPLS modeling and
GLR test is presented in Section V. Section VI applies the
proposed MSPLS-GLR procedure to a simulated distillation
column process. Finally, Section VII concludes this paper.

II. PLS MODELING

Consider a pair of datasets X ∈ RN×M and Y ∈ RN×1,
where X , Y are the input and output variables, respectively.
After the data standardization by first subtracting the sample
mean of the training data and then dividing by the sample
standard deviation of the training data, PLS projects X and Y
on to a lower dimension subspace defined by number of latent
variable [z1, z2, . . . , zl] as follows:{

X = ZPT +E
Y = ZQT + F

(1)



Where Z ∈ RN×l (l is the number of latent variable) is
the score matrix represents the projection of the variables
on the subspace, P ∈ RM×l represents the loading matrix
for X and Q ∈ R1×l represents the loading matrix for Y.
E and F represents the model residue of input and output
respectively. PLS calculates the input loading vectors, Pi, so
that the covariance between the estimated latent variable Ẑi
and model output, Y, i.e., [15]:

P̂i = argmax
Pi

cov(Zi,Y) (2)

such that PTi Pi = 1; Zi = XPi

where, i = 1, . . . , l, l ≤ m. Various algorithms have been
proposed to compute PLS-based latent variables [15], [16],
the most used is the Non-linear iterative partial least squares
(NIPALS) algorithm .

III. MULTISCALE PLS MODELING

In this section, the multiscale will be merged with PLS
model to improve the prediction quality of the PLS model
and latter utilized for fault detection methods. We introduce
multiscale representation of data and describe their advantages
when applied to fault detection techniques.

A. Wavelet-based multiscale representation

Using a discrete wavelet transform, an original signal space,
x, can be decomposed into two sub-spaces: an approximation
subspace, A, and detailed subspaces, D. The scale function
φj,k(t) =

√
2−jφ(2−jt − k), k ∈ Z) and wavelet functions

ψj,k(t) =
√
2−jψ(2−jt − k), j = 1, . . . , J, k ∈ Z, where the

coarsest scale J normally termed the decomposition level, span
the approximation and detailed subspaces, respectively. Any
signal can be represented by a summation of all scaled and
detailed signals as follows [17]:

x(t) =

AJ (t)︷ ︸︸ ︷
n2−J∑
k=1

aJkφJk(t)+

J∑
j=1

Dj(t)︷ ︸︸ ︷
n2−j∑
k=1

djkψjk(t) . (3)

where j, k, J and n represent the dilation parameter, transla-
tion parameter, number of scales, and number observations
in the original signal, respectively [18]–[20]. djk and aJk
represent the scaling and the wavelet coefficients, respectively,
and AJ(t) and Dj(t), (j = 1, 2, . . . , J) are the approximated
signal the detail signals, respectively.

In other words, the detailed signal Dj(t) at scale j can be
obtained by passing the original and scaled signals through
a high-pass filter (g), and the scaled signals are generated by
passing the original and scaled signals through a low-pass filter
(h) [21]. A signal can be described at multiple resolutions by
decomposing it on a family of wavelets and scaling functions.
For example, consider the series time measurements of the
feature indicator shown in Figure 1. The signals in Figures 1(b,
d and f) are at increasingly coarser scales compared to the
original signal in Figure 1(a).

Fig. 1. Illustration of data representation at multiple scales of a heavy-sine
signal.

Multiscale representation is an effective method for dealing
with autocorrelated or non-Gaussian data [10]. Some of the
advantages of multiscale filtering in PLS model are pointed out
next [10]: (1) The ability to naturally denoise signals. (2) Since
in most cases the resulting wavelet coefficients are orthogonal
the coefficients become decorrelated even if the input set of
data happens to be autocorrelated. (3) Wavelet coefficients
follow a normal distribution regardless of the distribution of
the input set of data. (4) Wavelet coefficients are stationary and
can therefore be used for both stationary and non-stationary
input signals. These advantages will be exploited to improve
the quality of PLS models via the development of an algorithm
that merge multiscale de-noising and PLS models. Before
discussing the multiscale PLS modeling, a brief description
of multiscale de-noising is presented.

B. Multiscale data filtering algorithm

A wavelet-based de-nosing algorithm comprises the follow-
ing three main steps [22]:
(1) Decompose the original signal at multiple scales via

wavelet transform to obtain wavelet coefficient series in
different level;

(2) Select thresholds for each level and remove the wavelet
coefficients that are below a threshold value;

(3) Inverse wavelet transform based on the detail coefficients
to obtain a de-noised signal.

Several threshold selection criterion have been proposed
including Fixed Threshold [23], Rigorous Sure threshold,
Heursure threshold and Min-max threshold. The simplest
wavelet threshold method, which is proposed in [23], uses the
same threshold to deal with coefficients in the expansion.

C. Multiscale PLS (MSPLS) modeling algorithm

The motive behind the integrated multiscale PLS modeling
is to amalgamate the benefit of multiscale denoising and PLS
modeling to improve model quality and thus improving the
fault detection methods. Let the input data matrix X and the



output data matrix y, and the denoised data via multiscale
filtering at a scale (j) be Xj and yj , then the PLS model,
which is computed using these denoised data, can be expressed
as,

yj = TjBjQ
T
j − Fj , (4)

where, Xj ∈ Rn×m is the filtered input data matrix at scale
(j), yj ∈ Rn×1 is the filtered output vector at scale (j), F ∈
Rm×p is the residuals of output matrices at scale (j).

However, filtering the input and output data a priori with-
out taking the relationship between these two data sets into
account may result in the removal of features that are im-
portant to the model. Thus, multiscale filtering needs to be
integrated with PLS model for proper noise-removal. One
way to accomplish this integration between multiscale filtering
and PLS modeling is using the following MSPLS modeling
algorithm [24]:

TABLE I
MSPLS MODELING FRAMEWORK.

(1) Split the data into two sets: training and testing.
(2) Pre-processing of the input\output data is required to ensure that

all variable data is set to zero mean and unit variance
(3) Denoise the training data at different scales (decomposition

depths) via the denoising algorithm presented in Section III-B.
(4) Construct a PLS model based on the denoised data at each scale.

The number of LVs is determined using cross-validation
(5) Use the estimated model from each scale to predict the output for

the testing data, and compute the cross validation mean square
error.

(6) Select the PLS with the least cross validation mean square error
as the MSPLS model.

After a MSPLS model is builded, various methods for
anomaly detection can be applied. Two monitoring statistics,
the T 2 and Q statistics, are usually utilized for FD pur-
pose [25]. First, Hoteling T 2 statistics indicates the variation
within the process model in LVs space. The other is the Q
statistic, also known as the squared prediction error (SPE),
which monitors how well the data conforms to the model.
Although the two methods have their advantages and disad-
vantages, both tend to fail to detect small anomalies [26].
Motivated by the powerful of GLR test for detecting additive
shifts in the process mean [13], we propose an innovative
MSPLS-based GLR faut detection method for multivariate
processes. In the next section, we briefly describe the GLR
test.

IV. GLR TEST-BASED FAULT DETECTION

Assume that we have a measured vector Y =
[y1, y2, . . . , yn] ∈ Rn distributed according to one of the
two following Normal distributions, N (0, σ2In) or N (θ 6=
0, σ2In), where θ is the mean vector (which is the value
of the anomaly) and σ2 > 0 is the variance, which is
supposed to be known. The GLR test decides between the
null hypothesis H0 = {Y ∼ N (0, σ2In)} and the alternative
hypothesis H1 = {Y ∼ N (θ, σ2In)} by comparing between
the generalized likelihood ratio, L(Y ), and a given value of

the threshold, h(α). The likelihood ratio test statistic, L(Y ),
is given as

L(Y ) = 2 log

sup
θ∈Rn

fθ(Y )

fθ=0(Y )

1

σ2

{
‖Y ‖22

}><H0

H1
h(α). (5)

Typically, the threshold h(α) is chosen to achieve a desired
probability of a false alarm, predefined a priori [27].

P0 (L(Y ) ≥ h(α)) =
∫ ∞
h

f0(y)dy = 1− Fχ2
1
(h) = α. (6)

Notice that Yt ∼ N (θ, σ2)} under H0 and consequently
L has a central χ2 distribution with one degree of freedom.
Moreover, H0 can be rejected at the significance level α if the
observed value of L(Y ) is larger than (1 − α)-th quantile of
the χ2

1 distribution. The power function is given by:

βδ∗(c
2) = Pθ(L(Y ) ≥ h(α)) = 1− F1,λ(θ)(h),

where, F1,λ(Y ) is the non-central χ2(1, λ) distribution with
one degrees of freedom and non-centrality parameter λ(θ) =
1
σ2 ‖ P⊥H θ ‖22. The GLR test will be merged with MSPLS to
enhance its fault detection ability.

V. MSPLS-BASED GLR FAULT DETECTION SCHEME

In the proposed MSPLS-GLR monitoring approach, the
GLR test is applied to the residuals of the responses variables
obtained from the MSPLS model. As given in Equation (4),
the output vector y can be written as the sum of a predicted
vector ŷ and a residual vector F, i.e.,

y = ŷ + F. (7)

The residual of the output variable, F =
[f1, . . . , ft, . . . , fn], which is the diference between the
observed value of the output variable, y, and the predicted
value, ŷ, obtained from MSPLS model, is potential indicator
for fault detection. In nominal conditions, no abnormalities
happen in the monitored process; thus, the value of residuals
fluctuates around zero due to measurement noise. A significant
departure from zero of residuals reveals important deviations
from normal behavior, indicating that the inspected process is
running under abnormal conditions. Thus, the fault-detection
problem can be addressed as as a binary hypothesis testing
problem, considering two hypotheses: the null hypothesis
H0, where F is fault-free and the alternative hypothesis H1,
where F contains a fault. The GLR-based test is used to
make decisions between the null hypothesis H0, (absence of
anomalies) and the alternative hypothesis H1, (presence of
anomalies). In such cases, to know whether the process is
under control, it is natural to consider testing the following
hypotheses:{

H0 = {F ∼ N (0, σ2In)}, (null hypothesis);
H1 = {F ∼ N (θ, σ2In), (alternative one). (8)

To test whether H0 should be rejected in favor of H1,
we use the GLR test presented in Section IV. An algorithm
that outlines the proposed MSPLS-based GLR fault-detection
method is summarized next.



TABLE II
MSPLS-BASED GLR FAULT DETECTION ALGORITHM.

1) Given:
• Collect the training data set (X and y) representative of a

normal condition. This is necessary to build the reference
MSPLS model and to set the control limits.

• A predefined false alarm probability, α0,
2) Data pre-processing:

• Auto-scale the data by removing the data mean and scaling
the variance to unity.

3) MSPLS training phase:
(1) Construct a MSPLS model using the training data.
(2) Determine the number of LVs using cross-validation tech-

nique or any other model selection method,
(3) Express the output matrix as a sum of predicted and

residual matrices as given in equation (4),
4) MSPLS-based monitoring phase:

(1) For a new sample data, apply the same scaling used in
training phase.

(2) Compute the model output residuals, F,
(3) Compute the GLR threshold, h(α)
(4) Compute the GLR decision function, L(F), and check

whether there is any violation of its threshold, h(α).

VI. MONITORING A SIMULATED DISTILLATION COLUMN

A. Process description

The method is tested using a distillation column process
simulated by Aspen (see [28] for details) with added zero-
mean Gaussian noise, where the predictor variables consist
of ten temperatures (Tc) in different stages of the monitored
column, feed flow rates and reflux stream, and the composition
of the light component in the distillate stream represents the
response variable. The Aspen simulator is used to generate
1024 data samples to be used in constructing the reference
MSPLS model. Figure 2 shows the dynamic input-output
data of the distillation column around the nominal opearting
condition which then added noise of Signal-to-Noise Ration
of 10. These data are used to develop model development and
testing purpose. The first 512 data set are used for training the
PLS model and Latter 512 data set used for testing purpose.
Using the cross-validation technique, three LVs were needed
for the PLS model.

To evaluate the performance of the inferential model, four
numerical criteria were used: R2 and the root mean square
error (RMSE). These were calculated as follows:

RMSE =

√
1

n

∑n
t=1(yt − ŷt)2

n
, (9)

R2 = 1−
∑n
t=1(yt − ŷt)2∑n

t=1(yt −mean(Y ))2
, (10)

where yt are the measured values, ŷt are the corresponding
predicted values by the PLS model and n is the number
of samples. The constructed MSPLS model provides a good
predictive quality, with the R2 = 0.96 and the low RMSE of
0.003.

A PLS model is fitted to the scaled training dataset, and
the goodness of fit is shown in Figure 3. Figure 3 show the

Fig. 2. Simulation of Distillation Column: Variation of input-output data
with noise SNR=10 (solid red line:noise free data; blue dots- Noisy data)

scatter plot of observed versus predicted values of the testing
data set obtained from the selected MSPLS model, and the
regression line. It shows that the points are distributed along
the regression line the slope of the regression line between
observed and predicted values is not significantly different
from 1 and the y-intercept is not significantly different from 0.
Therefore, the models were successful in accounting for most
of the significant autocorrelations present in the data, and there
is no indication of a curvature or other anomalies. According
to Figure 3, it can be seen that the scatter plots of observed
and predicted data indicate a reasonable performance of the
constructed MSPLS model.
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Fig. 3. Scatter plots of predicted and observed training data.

After the model is identified, it is used to monitor the
abnormal events (faults) in the distillation column process that
may lead the process to depart from its normal state.

B. Detection results

After a process model has been successfully identified,
we can proceed with fault detection. We then introduce two
types of anomalies into the testing data sets and compare the
performance of different anomaly detection techniques (i.e.,



MSPLS-GLR and PLS-GLR charts). In the first case study,
it is assumed that the testing data sets contain additive bias
anomlies, case (i). In the second case it is assumed that the
testing data set contains drift sensor anomalies, case (ii).

Case (i): Abrupt anomaly - Bias sensor anomaly: The
testing data with SNR=10 are generated for the purpose of
evaluation of MSPLS and PLS monitoring performances. In
this case study, a bias anomaly, which is 2% of the total varia-
tion in temperature Tc3, was incorporated into the temperature
sensor measurements Tc3 between samples 100 and 150. The
performances of the PLS-GLR test and MSPLS-GLR test are
demonstrated in Figure 4(a)-(b), respectively. From figure 4(a)
it can be seen that the PLS-GLRT chart is capable to detect
this abrupt anomaly but with several false alarms. Figure 4(b),
clearly show the capability of this proposed MSPLS-GLR
monitoring method, in detecting this small anomaly without
false alarms.

Fig. 4. Monitoring results of PLS-GLR chart (a), and MSPLS-GLR chart
(b) in the presence of a bias anomaly in the temperature sensor measurements
‘Tc3’ (Case (i)).

Case (ii): Gradual anomaly - Slow drift sensor
anomaly: This case is aimed to assess the potential of the
proposed MSPLS-based GLR anomaly detection scheme to
detect a slow drift anomaly. A slow drifting sensor anomaly
with a slope of 0.01 was added to the temperature sensor Tc3
starting at sample 250 lasting until the end of the testing data.
Monitoring results of PLS-GLRT and MSPLS-GLRT statistics
are shown in Figure 5(a)-(b). Figure 5(a) illustrates that PLS-
GLRT chart detected anomaly at sample 300, but with several
region of false alarms. The MSPLS-GLRT chart increased
linearly from sample 250, exceeding the control limits at signal
295 (see Figure 5(b)). The superiority of the new MSPLS-
GLRT chart over the conventional PLS-GLRT chart is verified
again.

VII. CONCLUSION

Data observed from chemical processes are usually noisy
and correlated in time, which makes the anomaly detection
more difficult as the presence of noise degrades anomaly

Fig. 5. Monitoring results of PLS-GLR chart(a), and MSPLS-GLR chart (b)
in the presence drift sensor anomaly in ‘Tc3’ (Case (ii)).

detection quality and most methods are developed for inde-
pendent observations. This paper proposes a statistical method
to monitor multivariate input output systems, which is based
on MSPLS algorithm and GLR test. MSPLS has been used
in this work as a modeling framework for fault detection
using GLR hypothesis testing. The GLR test is applied on
the uncorrelated residuals obtained from the MSPLS model.
Data of the simulated distillation column is used to validate the
advantages of the MSPLS-based GLR fault detection method.
Results show that the combined use of MSPLS models and
GLR hypothesis testing can achieve better fault detection
efficiency than the conventional PLS based GLRT.
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