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Abstract—Efficient biosignal processing requires a solid algo-
rithmic background as well as lightweight infrastructure. Job
scheduling, namely the policy determining the maximum process
number and the order of the actual process execution from the
CPU, is closely related not only to performance but also to quality
of service (QoS). Thus, scheduling policies are important infras-
tructure components along with hardware, network protocols,
and memory management algorithms to name a few. In a typical
workstation setting scheduling is local and constitutes part of the
operating system, whereas in distributed systems such as Hadoop
there is an additional global scheduling layer at the cluster level.
An adaptive scheduling algorithm at the operating system level
suitable for CPU bound processes and based on estimating higher
order moments of the process size distribution is proposed. Then
it is compared to FIFO, SJF, and RR policies with synthetic data
derived from the standard MIT-BIH electrocardiogram (ECG)
dataset serving as performance and quality benchmark.

Index Terms—Biosignal processing; Cardiovascular time se-
ries; Scheduling policy; Higher order moments; Poisson distri-
bution; Binomial distribution; Support analytics; autotools

I. INTRODUCTION

The design and deployment of successful bioengineering
tools rely heavily on both computational and algorithmic
frameworks because of their sensitive, human-centric nature as
well as because of their high data intensity. In many realistic
scenaria, such as frailty assessment, where a heterogenous
subject group is under continuous study or monitor a relatively
smooth result flow is desired even for offline analytics in
order for the healthcare assistants or medical personnel to be
fully utilized as well as for population anomalies to be timely
discovered. This adds a new quality of service (QoS) criterion
for evaluating bioengineering systems besides the traditional
performance-oriented ones.

One way for achieving both quality and performance obec-
tives is adding flexible job scheduling policies such that system
workload remains balanced under logical assumptions and
the user perception of the mean turnaround time remains
satisfactory. Policy adjustment is one of the least invasive
methods to alter performance and quality dynamics and,
consequently, many systems offer APIs for dynamically doing
so. This principle applies to both workstation and distributed
settings alike. In fact, in infrastructure falling under the latter

category there are at lest two independent policy, one for local
node scheduling and one for global job control. Depending on
system configuration, local and global policies might interact,
although in practice for resiliency, abstraction, and scaling
purposes they are completely independent [1].

In order to better meet the above requirements, scheduling
policies gradually came to rely on a number of methods
ranging from linear or maximum likelihood estimators and
neural networks to time series predictors and association
rules. This is similar, albeit more sophisticated, to the branch
prediction techniques employed by advanced hardware since
at least the 1980s [2][3]. That has by no means led to the
extinction of traditional policies which are agnostic to the
process number or to their individual or statistic characteristics
which are simpler and, hence, computationally lighter and
easier to implement.

The primary contribution of this paper is a flexible schedul-
ing policy based on higher order moments of the estimated
process size distribution. The proposed policy along with the
widespread policies of first-in first-out (FIFO), round robin
(RR), and linear estimation (LE) have been implemented in
C for a typical Linux workstation. Under every of these four
scheduling policies have been executed two distinct process
groups. Each of these groups performs an offline bioengi-
neering computation, namely the Z-score and the Görtzel
algorithm. The standard MIT-BIH dataset has been used to
generate the benchmark data for evaluating both the perfor-
mance and the perceived QoS of the four abovementioned
scheduling policies. It should be highlighted that a conscious
effort was placed on keeping production tools to a minumim.
Thus, the simulator and the auxiliary programs were written
in C, developed and maintained with standard autotools.

The remaining of this work is structured as follows. Section
II briefly reviews the scientific literature regarding scheduling
policies and bioengineering analytics. Higher order statistics
are discussed in section III. The proposed scheduling algorithm
is outlined in section IV along with the performance and qual-
ity criteria it is designed to meet. Sections V and VI described
the datasets and the results obtained from executing the four
scheduling policies for processes computing the Z-score and



for the Göertzel algorithm respectively, whereas section VII
summarizes the findings and outlines certain future research
directions. Table I summarizes the notation of this paper. Data
are represented as real column vectors unless explicitly stated
otherwise in boldface small letters and are always indexed
from zero for compatibility with the C implementation and, for
the Görtzel algorithm, for the Fourier frequency components.
Acronyms are defined the first time they appear in text. Finally,
the terms process and job are used interchangeably throughout
the text. The same holds about job size and length.

TABLE I
SYMBOLS USED IN THIS PAPER.

Symbol Meaning
4
= Definition or equality by definition
E [X] Mean value of random variable (r.v.) X
E [Xp] p-th noncentral moment of r.v. X
Var [X] Variance of random variable X
MX (s) Moment generating function of r.v. X
µ̂0 Data sample mean (data implied)
σ̂0 Data sample variance (data implied)
J(x) Length in terms of time steps of process x
ρ0 Process service rate or workload, 0 ≤ ρ0 < 1
{sk} Set consisting of elements sk
|S| Cardinality of set S

II. RELATED WORK

Analytics form the algorithmic cornerstones of bioengineer-
ing. Currently there is a vast array of processing algorithms
for one dimensional biosignals such as cardiovascular and
respiratory time series, two dimensional such as biomedical
images, and multidimensional like blood biochemical exami-
nations. In [4] an iterative regularization algorithm based on
finite differences for electrocardiograms (ECGs) is proposed.
ECGs can be used for biometric purposes as stated in [5],
where features are extracted by principal component analysis
(PCA). The dynamic time warp (DTW) [6] is a distance
metric employed for biosignals such as BOLD fMRI signals
[7]. The cardinality of large biodatasets can be estimated
as in [8]. Arrythmia detection from noisy ECG signals can
be done by neural networks [9][10][11], non-linear principal
component analysis (PCA) neural networks [12], and zero-pole
infinite impulse response (IIR) analysis [13]. Finally, graph-
based methods exist for analyzing brain connectivity [14] or
protein-to-protein interaction [15] and are supported by graph
databases such as Neo4j [16].

Higher order statistics describe the behavior of a random
variable beyond the mean value and the variance [17]. Al-
though for a normally distributed random variable the knowl-
edge of these two quantities suffice to completely understand
it, this in general is not the case [18][19]. Higher order
moments form the theoretical foundation of independent com-
ponent analysis (ICA) [20], a methodology with numerous
applications in signal processing and in bioengineering among

others. Higher order cumulants have been applied in the
simulation of low level brain activity [21][22][23].

Scheduling policies are of paramount importance in operat-
ing systems such as the completely fair scheduler (CFS) found
predominantly in Linux systems since the 2.6.23 kernel release
[24], in multithreading environments [25][26], in parallel sys-
tems [27][28], and in distributed computing frameworks [29].
Also branch prediction strategies found in modern hardware
are based on techniques such as neural networks [3] [30]. An
early overview can be found in [2]. Given that a VLSI systolic
array implemenation for computing higher order moments
already exist [31], the proposed policy can be integrated into
CPU circuitry.

Finally, since for the build and maintenance of the scheduler
some of the GNU autotools software tools collection were
used, they deserve a brief mention. When a new software
package is to be installed, then configure executes a special
script contained in that package as mandated by the GNU
Coding Standards to tailor it for the local system. Then the
source code is compiled and with GNU make, which controls
conditional compilation, library linking, and, in the context of
this paper, the handling of some symbolic names. Thus, in a
typical Linux system typing at the prompt

# c o n f i g u r e && make && make i n s t a l l

usually sufficies to install a new software package. Finally,
libtool prepares source code for being part of a static or
dynamic library according to essential Linux requirements
about the maintenance and interoperability of shared libraries.

III. HIGHER ORDER MOMENTS

Higher order statistics are frequently used to obtain a succint
description of the behavior of a random variable. Although
a normally distributed random variable is fully characterized
by its mean and variance, this is not the case for an arbitrary
random variable X . Thus, it is desired knolwdge of the higher
order moments mk or of the higher order cumulants ck. The
following discussion is about mk

4
= E

[
Xk
]
.

Definition 1: The moment generating function MX(s) for
a random variable X is defined as the conjugate Laplace
transform of random variable X , namely

MX(s)
4
= E

[
esX

]
, MX(0) = 1, s ∈ C (1)

Unlike the characteristic function, the moment generating
function may not exist for a given distribution. A prime
example is the lognormal distribution where the density fXl(·)
for such a continuous random variable Xl is

fXl(lnx;µ, σ) =
1

σ
√

2π
e−

(ln x−µ)2

2σ2 (2)

whose k-th moment is the well defined quantity

E
[
Xk
l

]
= ekµ+

k2σ2

2 (3)

When MX(s) exists, then it holds that



Property 1: The Taylor expansion of MX(s) is

MX(s)
4
=

+∞∑
k=0

E
[
Xk
] sk
k!

(4)

and consequently the k-th moment can be computed as

E
[
Xk
]

= k!

(
∂kMX(s)

∂s
| s=0

)
(5)

The datasets used as benchmarks during the simulation
relied on the Poisson and the binomial distributions. A Poisson
random variable Xp has the probability mass function

prob {Xp = k;λ0}
4
=
λk0
k!
e−λ0 , k ∈ Z+, λ0 ∈ R∗ (6)

where its mean value and variance are

E [Xp] = Var [Xp] = λ0 (7)

and its moment generating function is

MXp(s) = eλ0(e
s−1) ≈ eλ0s (8)

where the last approximation is due to the MacLaurin expan-
sion of the exponential function

es =

+∞∑
k=0

sk

k!
= 1 + s+

s2

2
+
s3

6
. . . ≈ 1 + s, |s| � 1 (9)

The Poisson distribution is unimodal and skewed, in other
words it has a unique global maximum and it is nonsymmetric,
with a considerable segment of its mass concentrated near
the origin. It is used to model a system where there is a
large number of short processes mixed with a few big jobs,
representing thus a scenario of uneven load.

On the contrary, a system where the majority of jobs is
of intermediate length with small and equal fractions of short
and long processes is modeled by a binomial random variable.
Such a variable Xb has the probability mass function

prob {Xb = k;n, p0}
4
=

(
n

p0

)
pk0(1− p0)

n−k (10)

with n ∈ Z+ and p0 ∈ (0, 1). Its mean value and variance are

E [Xb] = np0 and Var [Xb] = np0(1− p0) (11)

while MXb(s) is

MXb(s) = ((1− p0) + p0e
s)
n ≈ e−np0 + np0e

s−(n−1)p0

(12)
where the last relationship is the first order approximation of

(γ0 + x)
n

=

n∑
k=0

(
n

k

)
γn−k0 xk ≈ γn0 + nγn−10 x (13)

in conjunction with the approximation

(1− x)
γ0 ≈ e−γ0x, |x| � 1, γ0 � 1 (14)

Like the Poisson distribution it is also unimodal but it
is not skewed. This property is crucial for establishing that
intermediate-sized jobs are the majority in the process pool.

This distribution will establish the baseline scenario, since it
intuitively correspond to a moderately loaded system.

A common third order metric for assessing the skewness of
a given distribution is the skewness coefficient [17] defined as

κ
4
= E

(X − E [X]√
Var [X]

)3
 =

E
[
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3
]
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3
2
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3
2

=
E
[
X3
]
− 3E [X]

(
E
[
X2
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) 3

2

Since the scheduler is agnostic to the process size distribution
and κ is time dependent, it has to be estimated. The noncentral
and central natural estimators of order k, denoted respectively
as νk and ν̄k [17], provide a way for tracking κ. Since

νk
4
=

1

n− k + 1

n−1∑
j=0

xk[j] ≈ E
[
Xk
]

ν̄k
4
=

1

n− k + 1

n−1∑
j=0

(x[j]− ν1)
k ≈ E

[
(X − E [X])

k
]

then it follows that κ is approximated by the ratio

κ ≈ ν̄3

ν̄
3
2
2

=
ν3 − 3ν1

(
ν2 − ν21

)
− 3ν31

(ν2 − ν21)
3
2

(15)

It should be noted that the noncentral natural estimator may
be suboptimal in terms of estimation error compared to a
Bayesian or a maximum likelihood (ML) estimator [17], but
it can be easily recursively computed as new jobs arrive as

νk[n+ 1] =

(
n

n+ 1

)
νk[n] +

(
1

n+ 1

)
xk[n] (16)

where νk[n] is the natural estimator of order k for n processes.
Recall that νk[n] pertains to job set {x[j]}n−1j=0 while νk[k]

to {x[j]}n−1j=0 ∪ {x[n]}. Since there is no lightweight way to
express the central natural estimator in recursive terms, (15)
was cast in terms of natural estimators based on the fact that

Var [X] = E
[
X2
]
− (E [X])

2 ≈ ν2 − ν21 (17)

In the case of unimodal distributions κ might, under some
assumptions, give an indication of the distribution shape.
Specifically, when κ equals zero, then the underlying distribu-
tion is either symmetric or asymmetric but with equal mass on
both sides of the mean. In other words, in this case the mean
is also the median of the distribution. When κ is positive, then
more mass is placed on the right tail of the distribution, while
a negative κ denotes a mass shift to the left tail. A binomially
distributed random variable has κ equal to zero, while for a
Poisson random variable κ is 1/λ0.

A practical problem which arose during the dataset creation
was the generation of random numbers. Instead of using



specialized software such as MATLAB or R, two established
mathematical approaches were implemented in C in the inter-
ests of keeping the number of software tools low. In order to
create a sequence of Poisson distributed numbers, the inverse
transform method, which relies on uniformly distributed num-
bers over the unitary interval [17], was implemented as shown
in algorithm 1 using the follwing code snippet

# i n c l u d e < s t d l i b . h>
# i n c l u d e <t ime . h>
# i n c l u d e <math . h>
. . .
t i m e t t 0 ; double u ;
t 0 = t ime ( ( t i m e t )NULL ) ;
s r a n d ( ( unsigned i n t ) t 0 ) ;
u = fmod ( r and ( ) , 1 . 0 + ( double )RAND MAX) ;

The rand () function generates unformly distributed integers
from 0 to the implementation defined constant RAND MAX,
which is guaranteed to be at least 216 − 1 in ANSI C and
subsequent standards. The casting to double and the addition
of an explicitly double literal prevent a denominator overflow
as in many implementations RAND MAX is the maximum
int or long. srand () does not return a value and is used
only to initialize the pseudorandom number generator of the
standard C library. The expensive double precision operations
are not part of the simulation and were only used once for
the dataset generation before the actual simulation. Also, the
fmod() function is necessary as the C modulus operator %
works only with integer operands.

Algorithm 1 Inverse transform method for Poisson r.v. [17]
Require: U = {uk} uniformly distributed in (0, 1); λ0
Ensure: P = {pk} has Poisson distributed numbers

1: for k ← 1 to |U | do
2: j ← 0 and p ← e−λ0 and F ← p
3: while uk > F do
4: p ← pλ0

j+1 and F ← F + p and j ← j + 1
5: end while
6: pk ← j and P ← P ∪ {pk}
7: end for
8: return P

The binomially distributed numbers were generated in a
straightforward way based on the fact that Xb is the sum
of n independent indicator or Bernoulli random variables.
Therefore, algorithm 2 was used in this case.

IV. PROPOSED SCHEDULING POLICY

Scheduling policies lie at the heart of virtually all production
and development systems ranging from personal computers
and workstations to mainframes to distributed processing
systems. They play an important role since they directly affect
average process completion time, which is of essence in case
of many interconnected systems, as well as the perceived sys-
tem performance, an integral part of user experience. Besides

Algorithm 2 Binomially distributed number generation
Require: Parameters n and p0; desired cardinality |B|∗
Ensure: B has n binomially distributed numbers as in (10)

1: B ← ∅ and |B| ← 0
2: while |B| < |B|∗ do
3: get independent indicator r.vs {Ik}nk=1, each with p0
4: b ←

∑n
k=1 Ik and B ← B ∪{b} and |B| ← |B|+ 1

5: end while
6: return B

process profile, the mission requirement of a system is also a
factor in scheduling policy selection.

Some basic common policies include:

• First in, first out (FIFO): Processes are executed in the
order they arrive. Although it is straightforward to im-
plement and maintain, the average execution time under
FIFO depends heavily on the process arrival sequence.
The latter is in general undesired, as it may lead to
slow, fluctuating, or otherwise unacceptable system per-
formance for specific process arrival sequences.

• Shortest job first (SJF): Processes are shorted in ascend-
ing estimated execution time and then are executed in that
order. Average execution time tends to gradually increase,
while the insertion of new short processes in the system
may result in long delays for bigger jobs.

• Round robin (RR): Each process is sequentially given a
time slot. Its major drawback is frequent context switch-
ing, although it leads to acceptable performance.

In terms of its dominant resource a process can be catego-
rized as follows:

• CPU bound: The process type is computationally inten-
sive requiring frequent access to the CPUs or to the
GPUs. Although a CPU bound application need noy
necessarily be data intensive, it is rapidly becoming the
case. Typically have the highest priority in hierarchical
scheduling policies.

• I/O bound: This process type is usually interactive in na-
ture or handles large data volumes. Such a process tends
to be blocked waiting for user response or reading disk
files or generating traffic along the memory hierarchy. An
I/O bound process is more likely than a CPU bound to
be data intensive.

• Memory bound: A process of this type also utilizes
heavily the memory hierarchy but, unlike an I/O bound
process, both its execution time and messaging burden
are inversely proportional to total memory capacity. It is
primarily used to describe big data applications relying
on sublinear or random sampling algorithms.

• Network bound: This is an emerging category intended to
serve as an abstraction of streaming big data applications.
Unlike a memory bound process, the window length does
not necessarily affect computation time but it is closely
related to result quality. A process of this type relies
on network resources, which are slower than CPUs and



GPUs but faster than typical memory components [32].
At this point a crucial distinction should be made. Any job

x has a length J(x), so the E [J(x)] and Var [J(x)] are well
defined, whether they are deterministic or stochastic. However,
when processes are scheduled, then the mean E [X] and the
avarage Var [X] of the actual computation time each process
requires under workload ρ0 are also of interest. In general,
E [J(x)] 6= E [X] and Var [J(x)] 6= Var [X] because of a
multitude of reasons such as scheduling overhead, context
switching, I/O requests, cache misses, memory transfers, and
high latency disk reads [33]. The following criteria assess
scheduling quality in terms of these quantities.

Criterion 1: E [X] should be a linear function of E [J(x)]

E [X] = θ1E [J(x)] + θ0 (18)

This criterion provides a service guarantee regarding E [X].
Parameters θ1 and θ0 depend on ρ0 and may not always exist.

In scenaria when systems are pipelined or when a smooth
job flow is required either for technological, financial, or user
experience reasons metrics regarding Var [X] are required.

Criterion 2: The difference of the job execution time
variance Var [X] from Var [J(x)] normalized by Var [J(x)]
should not exceed a constant, namely

|Var [X]−Var [J(x)]|
Var [J(x)]

≤ θ2 (19)

Criterion 2 places stricter constraints on the scheduling policy
but ensures both a bounded process execution time and a
smoother job flow. Here θ2 depends on ρ.

Criterion 3: Given that w0 processes are scheduled, there
should be at least θ3 = Ω (w0) time steps before a switch.
Since algorithm 3 relies on scheduling switching, it makes
sense to investigate how frequently policy changes occur
since they incur an non-negligible cost. Criterion 3 outlines
a possible acceptable frequency which gives to each process
at least a constant amount of timesteps before an estimation
of its execution time is formed.

Higher Order Policy (HOP), the proposed scheduler aimed
mostly at CPU bound processes, is outlined in algorithm 3.
It is based on the observation that SJF is on the average
more apppropriate when the process length distribution is
unbalanced as it yields a more stable job flow. As shorter
processes are completed and moved out of the job pool, then
fewer and larger jobs remain. As a result, the process length
distribution tends to be more balanced and the overall job size
variance decreases, a scenario in which RR results in smoother
job flow. In case the process size becomes again unbalanced,
perhaps as new jobs arrive or because of local fluctuations at
the job length distribution, switching returns to SJF mode.

HOP requires besides the process set S four operational
parameters, namely w0, β0, τ0, and L. Scheduling stability is
primarily ensured by L and w0. Specifially, L is the maximum
number of scheduled jobs at any given moment and it is
a safeguard against thrashing. Although other sophisticated
techniques exist, the crude mechanism of keeping track of
the number of scheduled jobs suffices in many applications.

The full study of thrashing phenomena are outside the scope
of this paper.

Stability is additionally ensured by w0, the number of most
recent past estimates used for computing κ. A tradeoff was
sought for determining w0, as a large value would smooth job
lengths but the smoothed average might contain samples from
an older process length distribution. On the contrary, a small
value of w0 will always contain with high probability samples
from the current distribution but possibly at the expense of
reduced estimation error. The time window within which no
policy switch is allowed is also controlled by w0 and equals
β0w0. According to criterion 3, many functions of w0 would
be admissible. However, a simple one was chosen which is
directly dependent on w0.

Finally, τ0 is a numerical threshold which allows some tol-
erence in declaring that κ is zero. Its inclusion was necessary
not only because of numerical reasons, namely floating point
roundoff errors, but also because of algorithmic ones: Since κ
is approximated by an estimator known to be error prone and,
moreover, the estimator itself is estimated over a time window,
it makes sense to assume that κ might not be zero but close
to zero in the presence of the Poisson distribution.

Algorithm 3 Proposed scheduling policy (HOP)
Require: Process set S; thresholds w0, β0, τ0, L
Ensure: Conforms to quality and performance requirements

1: while job set S is non-empty do
2: if a current job s∗ has terminated then
3: S ← S \ {s∗}
4: end if
5: if a new job s′ is waiting and |S| < L then
6: S ← S ∩ {s′}
7: end if
8: if |S| < w0 then
9: schedule with RR

10: else
11: update κ as in (15) with the most recent w0 values
12: if no policy change during past β0w0 steps then
13: if |κ| ≤ τ0 and policy is RR then
14: switch to SJF
15: else
16: if |κ| > τ0 and policy is SJF then
17: switch to RR
18: end if
19: end if
20: end if
21: end if
22: end while
23: return

Some general notes about the simulation in the following
two sections are in order. There were no dependencies among
processes and the single most important resource for each job
was memory. Moreover, the total memory requirements were
less than the physically available RAM. The combined effect



of these factors were the absence of deadlocks, extensive cache
misses, and excessive disk utilization.

Processes were chosen to be scheduled with the lightweight
execve function declared in the header <unistd.h> and which
directly opens executable files. The source code was compiled
with the standard gcc version of Ubuntu 16.04.01 Xenial
Xerus LTS to an executable file which had the ELF file
format and supported 64-bit address spaces. Also, the C code
was maintained with GNU make, the installation script was
automatically prepared with configure and a shared library
version where the schedulers as well as the auxiliary pre-
sudorandom number generators are available as library calls
was generated with libtool. The development platform was
an Ubuntu 16.04.01 LTS workstation with 16 GB of physical
memory and an Intel Core i7 processor with 4× 256 KB L2
cache and 8MB L3 cache.

Finally, although the proposed scheduling policy simulates
an operating system function, it was compiled in hosted mode
which is typical for higher level C applications. Therefore,
compared to the free-standing compilation mode for low
level code, there were unusually many programming facilities
available, such as the standard C I/O library and higher level
system calls. The only such facility which was actually used
were functions from the mathematical library. The primary
data types and structures such as union and struct are part of
the language proper and, hence, are available in both modes.

V. APPLICATION: Z-SCORE COMPUTATION

Data vectors often have to undergo some normalization
before comparison, especially if the distance metric to be
applied is sensitive to various translations. A normalization
common in biomedical signal processing is Z-score [7] which
given the sample mean and variance of the data vector x

µ̂0
4
=

1

n

n−1∑
k=0

x[k] = ν1

σ̂0
4
=

√√√√ 1

n− 1

n−1∑
k=0

(x[k]− µ̂0)
2

=
√
ν̄2 (20)

generates the normalized version z for 0 ≤ k ≤ n− 1

z[k]
4
=

{
1
σ̂0

(x[k]− µ̂0), σ̂0 ≥ τ0
µ̂0, σ̂0 < τ0

(21)

This double normalization, in terms of both amplitude and
variance, is pivotal for certain pattern discovery algorithms
and distance metrics. Consider for instance a vector x ∈ Rn
representing a discrete signal and a scaled version of itself
δ0x. If the useful information is codified in the waveform
represented by x and not in the scaling parameter δ0, as
in FSK modulation, then the Euclidean distance will fail to
discover a perfect match. In case the variance is below a
threshold, which practically means that x is almost constant,
no division takes place and the signal is simply replaced by µ̂0

as a numerical safeguard preventing a very small denominator.
The complexity of algorithm 4 is Θ (n) and, once µ̂0 and σ̂0

Algorithm 4 Z-score computation (basic implementation)
Require: Data x; threshold τ0
Ensure: z is a doubly normalized version of x

1: µ̂0 ← 0 and σ̂0 ← 0
2: for j ← 0 to n− 1 do
3: µ̂0 ← µ̂0 + x[j]
4: end for
5: µ̂0 ← µ̂0

n
6: for j ← 0 to n− 1 do
7: σ̂0 ← σ̂0 + (x[j]− µ̂0)

2

8: end for
9: σ̂0 ←

√
1

n−1 σ̂0
10: if σ̂0 ≤ τ0 then
11: for j ← 0 to n− 1 do
12: z[j] ← µ̂0

13: end for
14: else
15: for j ← 0 to n− 1 do
16: z[j] ← 1

σ̂0
(x[j]− µ̂0)

17: end for
18: end if
19: return z

are computed, the Z-score of each x[k] can be computed at
constant time and memory, making it a lightweight procedure.

In order to simulate the workload of a biosignal processing
system, the publically available MIT-BIH dataset was used
to generate the benchmark dataset. Specifically, the series 1
waveform with 1800 samples was designated as the generator
signal. Then, 2000 continuous segments, 1000 for each distri-
bution, were extracted always starting from the first sample.
The length of each such segment was chosen according to
• either a binomial distribution with n = 400 and p0 = 0.4.

E [J(xb)] = 421 and Var [J(xb)] = 72.
• or a Poisson distribution with λ0 = 0.5 added to the first

300 samples to ensure bigger segments. E [J(xp)] = 414
and Var [J(xp)] = 16.

The data were copied with a C program to the C source code
of the application as static data in order to avoid costly file
reads. In this context the workload ρ0 means that at any given
at most ρ0 percent of the total processes are being scheduled.

Subsequently the average θ̄0, θ̄1, θ̄2, and θ̄3 were computed.
θ̄0 and θ̄1 were approximated in the least squares sense. By
design, only HOP results in policy switching.

As shown in tables II and III, the unbalanced nature of the
Poisson distribution is reflected to the almost double size of
policy switches compared to the ones required on average for
the balanced binomial dataset. There are policy changes in the
latter as well, but their number suggests they have occured to
counter some temporary load imbalance.

Regarding the variance difference, as reflected in θ̄2, its
behavior is similar in both datasets. That is, FIFO leads to
the biggest such difference denoting a low QoS. This can
be attributed to the lack of control over the job sequence.
HOP and RR are almost equivalent, while SJF is in-between.



TABLE II
Z-SCORE COMPUTATION TIME (BINOMIAL, ρ0 = 0.2).

Policy θ̄1 θ̄0 θ̄2 θ̄3
FIFO 1.1902 0.9999 1.4916 -
RR 1.2432 1.8223 1.1092 -
SJF 1.2175 1.7082 1.3217 -
HOP 1.1899 2.1841 1.0113 12.4309

Finally, HOP achieves a better relationship with a lower θ̄1
between E [J(x)] and E [X] in both cases, where now RR has
the worst average performance because of frequent context
switching. FIFO and RR have comparable performance.

TABLE III
Z-SCORE COMPUTATION TIME (POISSON, ρ0 = 0.2).

Policy θ̄1 θ̄0 θ̄2 θ̄3
FIFO 1.3844 1.2100 1.7702 -
RR 1.5182 1.7721 1.1991 -
SJF 1.3157 1.4442 1.5180 -
HOP 1.2995 2.5224 1.2021 26.1131

VI. APPLICATION: GÖRTZEL ALGORITHM COMPUTATION

The Fourier transform of a biosignal plays an important
role in many cases, for instance in the analysis of electro-
cardiograms (ECGs). Since the human heart has been long
evolved to operate in a clockwork periodic way, any signs
of malfunction such as tachycardia or bradycardia might
show easier in a spectral analysis of an ECG. Although Fast
Fourier Transform is in every aspect an efficient algorithm
and has been implementated on numerous platforms, there
are instances where selective frequency monitor is desired.
When b, the number of frequencies to be moniotred, is less
than O (log n), where n is the dataset size, then the Görtzel
algorithm, a methodology based on the principles of multirate
signal processing might be an appealing choice, provided that
n is of moderate size.

The Görtzel algorithm is an IIR filter with transfer function

H(z) =
1− ωkz−1

1− 2 cos
(
2kπ
n

)
z−1 + z−2

, ωk = ei
2kπ
n (22)

which corresponds to the recurrence for 0 ≤ j ≤ n− 1

u[j] = x[j]− 2 cos

(
2kπ

n

)
u[j − 1]− u[j − 2]

with the elements of the auxiliary data vector u are

u[0] = x[0] and u[1] = x[1]− 2 cos

(
2kπ

n

)
x[0] (23)

and the final value in f [k − 1] is

f [k − 1] = u[n− 1]− ωku[n− 2] (24)

The basic form is outlined in algorithm 5. Its complexity is
O (bn) which can be quadratic at worst when b = O (n).

Algorithm 5 Görtzel algorithm (basic implementation)

Require: Data x; frequency set Ω
4
= {ωk}nk=1

Ensure: f [k − 1] contains the Fourier coefficient at ωk
1: for all ωk ∈ Ω do
2: u[0] ← x[0] and u[1] ← x[1]− 2 cos

(
2kπ
n

)
x[0]

3: for j ← 2 to n− 1 do
4: u[j] ← x[j]− 2 cos

(
2kπ
n

)
u[j − 1]− u[j − 2]

5: end for
6: f [k − 1] ← u[n− 1]− ωku[n− 2]
7: end for
8: return f

The same methodology as in the previous section was
followed and the results are shown in tables IV to VII. In
general, the behavior of the four scheduling algorithms is the
same with that of the previous section. However, becuase of
the increased complexity of Görtzel filtering, there are sharper
differences in performance. FIFO and SJF now achieve the
best linear relationship with HOP being the runner up but with
better variance than the two. Therefore, HOP maintains a better
mean-variance tradeoff compared to its competitors. Also, the
number of scheduling switches is again roughly the half for the
balanced dataset compared to the unbalanced. Finally, bigger
b results in more demanding computations.

TABLE IV
GÖRTZEL COMPUTATION TIME (BINOMIAL, b = 5, ρ0 = 0.2).

Policy θ̄1 θ̄0 θ̄2 θ̄3
FIFO 1.2331 1.5789 2.7709 -
RR 1.9021 1.9336 1.8733 -
SJF 1.5513 1.4325 2.1133 -
HOP 1.7003 1.3565 1.8236 17.0022

TABLE V
GÖRTZEL COMPUTATION TIME (POISSON, b = 5, ρ0 = 0.2).

Policy θ̂1 θ̂0 θ̂2 θ̂3
FIFO 1.2846 1.6973 3.3429 -
RR 1.9734 2.0031 2.0888 -
SJF 1.4520 1.6643 2.5517 -
HOP 1.5009 1.1135 1.9099 31.0251

TABLE VI
GÖRTZEL COMPUTATION TIME (BINOMIAL, b = 100, ρ0 = 0.2).

Policy θ̂1 θ̂0 θ̂2 θ̂3
FIFO 1.2703 1.8856 3.8592 -
RR 2.0798 1.9964 2.1831 -
SJF 1.4118 1.2241 2.6113 -
HOP 1.6733 2.3354 2.1105 14.8875



TABLE VII
GÖRTZEL COMPUTATION TIME (POISSON, b = 100, ρ0 = 0.2).

Policy θ̂1 θ̂0 θ̂2 θ̂3
FIFO 1.4283 1.7902 4.0003 -
RR 2.0934 1.7773 2.5802 -
SJF 1.5633 1.9425 2.7718 -
HOP 1.5172 1.8809 2.2993 25.9163

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes HOP, an adaptive scheduling policy at
the operating system level which relies on switching between
SJF and RR depending on the estimation of the skewness
coefficient of the job size distribution. Simulations with two
biomedial analytics applied each to two datasets derived
from the MIT-BIH standard dataset indicates that HOP offers
improved load handling and reduced execution time variance.

Future directions include a better estimator like the median
filter, the investigation of the relationship between the window
size and the estimation error, and an extension to Hadoop.
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