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Abstract—Several conventional methods have been implement-
ed in pattern recognition, but few of them have biological
plausibility. This paper mimics the hierarchical visual system
and uses the precise-spike-driven (PSD) synaptic plasticity rule
to learn. The well-known HMAX model imitates the visual cortex
and uses Gabor filter and max pooling to extract features.
Compared with the traditional HMAX model, our modified
model combines with the characteristics of sparse coding, and
retains the features of the image in each orientation. In learning
layer, it is an effective preparation for the PSD rule that temporal
coding conveys precise spatio-temporal information. The PSD
rule is simple and efficient in synaptic adaptation, and calculates
directly. The results show our scheme provides a powerful
approach for handwritten digit recognition in noisy conditions.

Index Terms—Pattern recognition, visual hierarchical system,
HMAX model, PSD rule, spike neural network (SNN)

I. INTRODUCTION

MAGE information is a hierarchical transmission and ex-

traction in the primate visual system. The basic structure
and functional unit of the information processing is called
Receptive field (RF) in primary visual cortex [1]. Activated
by photoreceptor cells, RF disposes the spatio-temporal in-
formation through the lateral geniculate nucleus (LGN). It
is described as a signal extraction modular with localized,
oriented, and bandpass [2], [3].

Researchers imitate the primary characteristics for applica-
tions within the visual pattern recognition, and find simple
cells in the receptive field of the V1 area are used to deal
with external stimuli based on the neural sparse coding prin-
ciple [4]. Sparse coding is a kind of multidimensional data
description method. Image information remains in an active
state with only a few components after sparse coding. It is
observed that the natural images obtains the over-complete
base on the neural sparse coding, which shows the shape like
the Gabor wavelet [5]. In order to mimic the hierarchical visual
cortex, Poggio [6] first uses Gabor filter and max pooling to
propose a HMAX model. It adopts the simple S units and
complex C units The simple S units within S1 and S2 combine
their inputs with edge filter function to increase selectivity. The
complex C units within C1 and C2 pool their inputs through a
maximum operation to increase invariance. The HMAX model
possesses an extremely efficient on feature extraction.
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Pattern recognition not only relies on the extracted image
information, but also depends on the classifier. Several con-
ventional classifiers are used to implement pattern recognition,
such as naive Bayes classifier, decision trees, support vector
machine (SVM), and maximum entropy classifier. However,
most of these methods lack biological plausibility. Humans
easily distinguish different classes in a very short time. It
motivates researchers to find a fast and robust model for
pattern recognition from a biological view. Artificial neural
network (ANN) is abstracted by structure and function of
biological neural system. The spiking neural network (SNN)
is generally regarded as the third generation of ANN that
has more biological authenticity, and adopts spiking trains to
express and process messages [7]. Hebb [8] framed a synaptic
plasticity hypothesis: “Cells that fire together, wire together”.
This hypothesis emphasizes synergistic activity between presy-
naptic neuron and postsynaptic neuron. In fact, many learning
rules of SNN successfully accomplish the pattern classifica-
tion by training leaky Integrate-and-Fire (LIF) neuron input
synaptic weights, such as Spike Timing-Dependent Plasticity
(STDP) [9], tempotron [10], and precise-spike-driven synaptic
plasticity (PSD) [11].

Inspired by the Widrow-Hoff rule [12], PSD learning rule
trains synaptic weights by connecting an input temporal spike
pattern with a desired spike sequence. There are many basic
and widely studied schemes of encoding information in these
spikes, like rate coding and temporal coding. Rate coding
considers the firing rate within a short period and the temporal
coding cares for the precise time of spikes [13]. The PSD
rule is applied to the association and recognition of temporal
spatial pattern, so temporal coding is more suitable for it.
Compared the error between the desired and the actual output
spikes can drive neuron adaptation: The long-term potentiation
(LTP) shows the postsynaptic neuron spikes emerges after the
presynaptic neuron pulse; On the contrary, it causes long-
term depression (LTD) [14]. The predefined post-synaptic
threshold is adjusted to the optimal value in order to achieve
the stable state of temporal spike pattern. The modification
is proportional to a competency input spiking trace. Studied
through experimental simulations in [11], the performance
of the PSD rule shows it has computational efficiency and
biological rationality.

Hierarchical visual system in neural networks is applied
to solve pattern recognition problems. Masquelier et al. con-
vert pixels into temporal signals and send them into the
HMAX model. Their results show this method is a key to
understanding the visual system’s notable processing speed
[15]. Garrick et al. propose HFirst to enhance the features



of dynamic scenes, so that they can navigate with structured
surrounds and complex backgrounds [16]. The hierarchical
visual system with convolution deep network also does well
in pattern recognition [17]. All of them use the visual system
to extract features and achieve satisfactory results.

In this paper, we propose a pattern recognition architecture
which mimics the visual hierarchical system and uses the PSD
rule to learn. We select HMAX model to extract features of
images. Inspired by the sparse coding, we just choose a single
Gabor filter window in simple cell units. Encoding is the first
step in learning, which mimics how information is represented
in the retina. A temporal coding is used to emerge precise time
spikes, and the PSD rule learns these spikes. Consistent with
biological experimental observations, we set the precise timing
window on a millisecond level. By calculating the distance
between the output spike trains and the predicted spike trains,
the model can be applied to classify real data. The experiments
show that our approach has biological basis and efficient anti-
noise ability.

The organization of this paper can be summarized as fol-
lows: Section 2 introduces the proposed framework of the pat-
tern recognition model. Section 3 describes visual hierarchical
system and we will make a few alterations on HMAX model.
Section 4 describes the temporal learning rule about the PSD
rule. Section 5 shows the experimental results and analysis.
Finally, Section 6 summarizes this paper, and discusses the
advantages and limitations of the proposed method.

II. THE SYSTEM ARCHITECTURE

In this section, we describe the whole system architecture
for visual pattern recognition. It includes three functional parts:
the feature extracting part, the learning part, and the output
part. Fig. 1 indicates the general architecture of the system. A
stimulus is composed of a few components. Some of important
components are encoded and they are connected to the spiking
learning neurons to generate spike train.

Each part performs different roles. The feature extracting
layer analyzes the useful information from external stimuli.
The learning layer encodes the features and sends spikes into
the neuron network. The output part extracts information based
on neural responses. This whole process helps to solve the
problem of getting data into and out of SNN, as well as the
pattern recognition task.

A. Feature Extracting Layer

The aim of the feature extracting part is to select the
important components of the input stimuli. We adopt the
HMAX model [18] to extract image features. The Gabor
filter intensifies the edge information of each orientation and
weakens the effect of noise on the image. Max pooling
extracts feature and reduce the amount of computation for the
subsequent learning. In this paper, we only choose the first two
layer S1, C1, and make some changes to the calculation model
(the traditional model is based on four layers S1, C1, S2, C2).
We modify the HMAX model to a single filter window inspired
by the association between Gabor filter and sparse coding. In
order to retain the characteristics of each orientation in CI,

Output layer

Learning layer

Feature extracting layer

Stimuli

Fig. 1. Architecture of the feedforward computational model for recognition.
It includes three functional parts: the feature extracting part, the learning
part, and the output part. The feature extracting layer analyzes the useful
information from external stimuli. The learning layer encodes the features and
sends spikes into the neuron network. The output part extracts information
based on neural responses.

we stitch the images of C1 from four orientations to form a
single image instead of treating as individual images. Through
this modified model, the task of feature extraction could be
fulfilled.

B. Learning Layer

The learning part is the most significant layer of our
system. In this part, the pixel information is converted to
the spiking signals, and then the spiking neural network
algorithm is used to learn. So the primary consideration is
a coding mechanism of spiking information. The biological
neural encoding algorithm of a specific stimulus signals can
be divided into three categories: rate coding, temporal coding,
and population coding [19]. Rate coding only takes into the
effect of high frequency information on spikes, while ignoring
the temporal correlation of spike trains. Nevertheless, temporal
coding, which makes full use of the information transmission
rate, accomplishes conditions that each cell is fired by only one
spike [13]. Thereby, we choose the temporal encoding scheme
in this paper. Then we send these spikes into the temporal
learning rule. Motivated by saving the experimental time, it is
better to join a teacher signal to improve the learning speed.
In the fourth section, the PSD rule will be introduced. It is a
supervised rule and uses the precise time spikes to learn.

C. Output Layer

The purpose of the output layer is to classify stimuli from
the responses of spiking neural network. We adopt the van
Rossum metric to classify stimuli after learning, which de-
scribes clearly in [20]. It measures and analyses the distances
between target value and actual value after learning, that is
to say, it acts on the result of the spiking neural network.
The distances ensures the effectiveness and accuracy of the
learning rule.



III. THE VISUAL HIERARCHICAL SYSTEM

Visual pattern recognition has always been a hot field of re-
search. In order to simulate nervous system better, neurologists
start to apply computing technology in brain researches and
cognitive sciences. Poggio has been committed to the bionic
research of visual system with his team. They find the visual
neural system represents fast and invariantly for human action
[21] and adopt this system to deal with object recognition
[22], natural videos [23], etc. HMAX works as a recognition
model for simulating brain structures. The alternating effect
of simple cells and complex cells uses template matching and
pooling operation to actualize visual image processing. S1
and C1 layer apply the Gabor filter and the max pooling. S2
filter with N previously gets patches which are in C1 format.
Each orientation in the patch is matched to the corresponding
orientation in C1 layer. The result is one image per C1 band
per patch. C2 values are computed by taking a max over all
S2 associated with a given patch. Thus, the C2 response has
length N. In this paper, we only choose the first two layer
S1, C1, and make some changes to the calculation model.
The HMAX of visual cortex model demonstrates advantages
in the feature extracting layer.

S1 features are generated to represent the classical simple
cells in the primary visual cortex. The Gabor filter uses the
template matching of V1 simple units in receptive fields [24].
The V1 area with RF generates a result by sparse coding which
extracts features with high-order filter [4]. Many researchers
use the 2-D Gabor filter function to establish the computation
model of sparse coding [25], [26]. The general form of sparse
coding is

SC; = Zzﬂ,j a,-hj,

SC = AH (M

where sc;, a;, h; are the element of each patch SC, the
basis function A of sparse coding, and the sparse coefficients
H respectively. One popular formulation of A indicates
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Fig. 2. The relationship between the sparse coding and the Gabor filter. (a)
and (b) donates the sparse component and the Gabor kernel function (a kind
of Gauss component), respectively. (c) shows the distribution of sparse (solid
line) and Gabor kernel function (dotted line).

Gabor filter
J\

Fig. 3. Tllustration of the modified HMAX model. The origin image is the
binary image. In S1 layer, we choose a single size of Gabor filter, which
extracts spatial features. The max pooling has been applied with CI1 layer,
which not only ensures the generated image having certain local invariance
but also deducts the whole data dimensions.

Origin image

Max pooling Feature image

Il # is the Frobenius norm and X is a positive constant. The
Gabor response G(x,y) can provide a close form of sparse
coding (see Fig. 2) like Eq.(1), which can be described as
follows:

G(Q?,y) = S(.’E,y).K:(.’L‘,y),
S(r,y) = exp(i(2m5 + ), A3)
K(r,y) = exp(—"5%%)

where ' = zcosf + ysinf, and y' = —xsinf + ycosb.

S(z,y) denotes the complex sine function, its values are not
more than 1,and it is satisfied with condition (2). K(x,y)
shows the 2-D discrete Gauss function envelope. A\ donates the
wavelength, which value depends on the pixel of the image. 0
determines the direction of Gabor function and ¢ is the phase
deviation. y donates length-width ratio, and it determines the
image’s shape after Gabor filter. o depends on bandwidth. For
the sake of simplicity, we only consider the real component
of Gabor filter to study features.
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For our experiment, the wavelength A and o = 0.56\. For
simplicity, ¢ is set to 0. In [27], the author proposes a sparse
HMAX model, which has a single size instead of multiple
sizes in S1 layer. So we also use a single scale to template
matching with Gabor filter and four orientations (0°, 45°, 90°,
135°).

After previous analysis, C1 unit pool over receptive field
organizes images from the previous S1 layer with the same ori-
entation. C1 layer uses max pooling [28] to abstract response
from different orientations of the images, and then adds them
together. To be more specifically, it divides each response into
m X m size and computes the maximum of each window:

9(17,7,)\,94,0,0,7) :(317])(— +80) (4)
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The invariant responses in four directions are obtained for
each group after data through C1 layer. It should be noted that
the selection of maximum is not operated crossing directions,



which is the key of HMAX. For object recognition, we extract
each class of features from the invariant responses generated
by CI layer and save them as the training results.

In this paper, we don’t use the S2 and C2 layer. S2 makes
a filter like S1, we have not adopted it to simplify the
calculation. C2 values are computed by taking a maximum
with different orientations from each peach. However, many
research shows the sensitivity of the mammalian visual system
with different orientations is different [29]-[31]. So it lacks
of biological rationality for C2 layer to select the maximum
value. In order to guarantee the characteristic of each direction
without distorted, we make a simple stitch with images after
C1 layer instead of S2 and C2 operation.

In fact, Fig. 3 indicates the generating procedure of spike
pattern with our modified HMAX model, which is made some
adjustments in this paper. The procedure can be decomposed
as follows: Firstly, the binary image is introduced into the
Gabor filter, to generate S1 layer with four different orienta-
tions. In this paper, we select a single template size, the other
parameter settings are consistent with our previous mention.
Secondly, after getting the image in four orientations, the max
pooling has been applied with C1 layer. Compared with simple
cells within V1, the feature extracting layer uses the HMAX
model to imitate the cortical complex cells which tend to have
larger receptive fields. In the visual cell simulation system, the
template matching operation and scale invariance operation
are most significant. S1 layer emphasizes the characteristic of
the edge in each orientation. We choose ¢ = 0, for example,
the horizontal stripes are retained, while the other directions
are weakened. Throughout the Gabor filter, the unique texture
features of the image are obtained. C1 layer uses the scale
invariance of image. The max pooling not only extracts key
features, but also achieves the purpose of dimension reduction.
Therefore, the modified HMAX model is effective for image
feature extraction.

IV. PRECISE SPIKE DRIVEN SYNAPTIC PLASTICITY

The temporal learning rules aim to study the spatiotemporal
pattern. The spike train s = {t/ : 1,.-- F} expresses the
ordered sequence of the spiking time issued from neuron. The
spike train is produced by the following:

F

Sty =Y _s(t—t/) (6)

=1

where t/ is the f—th spike firing time, and §(x) is the
Dirac delta function. When = = 0, 6(z) = 1; otherwise,
d(x) = 0. Although there are differences in various supervised
learning algorithms of spiking neural networks, the goal of
these methods is consistent: for the input spike train S;(¢) and
the target spike train Sy(¢), it searches the appropriate synaptic
weight matrix W of the spiking neural network to make S, ()
and S4(t) as close as possible (see Fig. 4).

Precise-spike-driven synaptic plasticity (PSD) is one of
the temporal learning rules, which is mainly to deal with
information encoded by precise timing spikes. The foundation
of PSD rule is the leaky integrate-and-fire (LIF) model. When

the rule modifies the synaptic weights, the trained neuron
emits one spike with the pattern corresponding to one category
(P+), and emits no spike with the pattern corresponding
to another category (P—). It called long term potentiation
(LTP) and the long term depression (LTD), respectively. The
postsynaptic potentials (PSPs) are the sum of the afferent
neural weights from all inputting spikes:

V() =Y wi y K(t—t:) + Vreat @)
i t;

where w; is the synaptic weights and ¢; is the firing time
of the ¢—th afferent. V.., is the rest potential of the neuron,
and K is the double exponential kernel function and it shows
as:

~(t-t1)
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where ¢/ is the f—th spike delivered from the s—th neuron.
Vb is a normalization parameter which makes the value of K
less than 1. 7, refers to the slow decay constant, and 7y is the
fast one. Set 7,/7; = 4. The postsynaptic current is one of
the most important parameter in the PSD rule, it satisfies the

following formula:

F
Ihse = (t—t)H(t—1]) ©
f=1
where I} is the i — th input synaptic current. H(t) is
the Heaviside function, which has the value O for x < 0, 1 for
x > 0, and 0.5 for x = 0. Synaptic weights of PSD rule are
derived from the Widrow-Hoff rules:

Aw; = n[Sa(t) — Sa(t)]Ilif’SD(t)

As we all known, the change of synaptic weights can also
be obtained by differential:
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Fig. 4. Basic framework of temporal learning rule. Starting with the random
generation of the initial synaptic weight matrix W, the learning process of
spiking neural network is divided into three stages: Firstly, the sample data is
encoded by a specific method to the spikes S7*(t), n =1,--- , N;; Secondly,
the spikes is input into the SNN, and obtains the actual output spike train

S (t), n=1,---, N, under the learning rule; Then, according to the target
spike train S%(t), n = 1,---, N, calculates errors of the spiking neural
network.
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Fig. 5. Typical process of PSD learning. In (a), the red dots are the time of
spikes denoted with each epoch. (b) and (c) are the dynamics potential of the
neuron before and after learning, respectively. The threshold voltage is shown
by the red line. (d) is the distance between the actual output spike train and
the target spike train within the whole process.

From formula (6), (10), and (11), the synaptic weights can
be described:

[’jm

SR —thHEG —t])
1f=1
F

> > K

F

@
Il

(12)
thH " — )

IIMQ

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experiments with our visual
pattern recognition model, which uses precise-spike-driven
synaptic plasticity. The training samples are randomly selected
from MNSIT handwritten digital characters dataset. And we
randomly add with different degrees of Gauss noise to each
selected pictures as our test set. The details are illustrated in
the experiment setup.

A. Experiment Dataset and Setup

MNIST dataset is the famous digital handwriting digits of
0-9. The sample size of this database is more than 70 thousand
about different digital handwriting. It has a wide range of
applications in pattern recognition.

In order to classify noisy image processed from the MNSIT
handwritten digital characters database, we adopt single layer
spiking neural network, which includes 10 neurons. Each

origin image is allocated to one neurons, ten neurons represent
1-10 handwritten digital. Each pixel of one image processed by
the feature extracting layer represents an afferent neuron (all
origin image size is 28 x 28, and after feature extracting, the
size is 12 x (12 x 4)). In learning layer, we also need to avoid
that a single weight is too large to make the results over fitting,
so we set the value of synaptic weights are not more than 6n.A.
The initial synaptic weights are in accordance with the random
sequence of Gauss distribution, which the standard deviation
is 0.2nA, and the mean value is 0.5nA. For the slow decay
constants, we set 7, = 10ms. The neurons are trained for 100
epochs, and the training data set is formed with 10 groups of
samples, which stand 0 — 9 digits. Each group includes ten
images, one is randomly selected from MNSIT handwritten
digital characters dataset and the other 9 are generated with a
random noise level of 0-5%. In the testing date set, we use
the same digital images, but the noise level is up to 20%, and
each group of samples is up to 100. Finally, we adopt the van
Rossum metric to classify stimuli after learning.

Fig. 5 shows a typical process of PSD learning, we choose
the digit 2 and the target spike train [40, 80, 120, 160] ms as
an example. In the initial 10 generations, although some mem-
brane voltage is up to the threshold voltage, the neurons are
fired in different time sequences. (b) is the initial voltage, from
which we can hardly find some useful regulation. There are
no regular spikes emerging. With the increasing of iterations,
the weights of each neuron are constantly changing, and the
spike signals emit within the target spike train slowly. In order
to achieve the target spike train, we continue to train. This is
called the supervision of learning, which makes the results of
the previous study as a teacher signal to impact later studying.
The emission rate and output spikes of the membrane voltages
are also the same as the time of the target spike train by the
final training. (d) is the distance between the actual output
spike train and the target spike train within the whole process.
By the continuing train of PSD rule, the distance is getting
smaller and smaller, and finally tends to 0.

B. Experimental Results and Discussion

In this section, we make some experiments to testify the
efficiency of our proposed architecture on noise image classi-
fication. In this paper, we use three different sets of data to
test. The parameter settings for each samples of training sets
have been introduced in experiment setup. The pictures in the
test groups are processed from each class. We add the Gauss
noise to these images, and the noise level is 0—20%. There
are 1000 test images for each noise ratio, which need to be
classified.

We restore the PSD rule mentioned in [11]. In principle,
different digits correspond to different target spike trains. But
n [11], each neuron is trained to produce same target spike
train for the optical characters. Because the pixel values for
each digit are different and the synaptic weights of target
spike train for each are also different, the interactions between
pixels and weights of different digits don’t achieve the target
spike train. That is to say, a pattern from the assigned class is
presented, and not to spike when patterns from other classes
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TABLE II
TABLE I THE TIME OF HMAX+PSD RULE AND PSD RULE
CLASSIFICATION PERFORMANCE OF HMAX_PSD
Time HMAX+PSD PSD Rule [11]
Accuracy Rule
Noise Level(%) Testing] Testing? Testing3 Average Training Time 1362.806 1341.673

Testing Time 4751.336 5260.804
0 1 1 1 1 .

Whole Time 6120.410 6607.617
0.5 0.999 0.999 1 0.999
1 0.997 0.996 0.998 0.997
L5 0.996 0.994 0.996 0.995
2 0.996 0.991 0.994 0.994 is less than 10%, its accuracy still reaches more than 90%.
25 0.995 0.987 0.995 0.992 It is reveal that the PSD rule with modified HMAX model is
3 0.987 0.984 0.991 0.987 more useful than just using PSD rule.
4 0.987 0.985 0.986 0.986 Our visual pattern recognition model is effective not only
5 0.979 0.977 0.982 0.979 in accuracy, but also in time (see Tab. II). There is that
6 0.983 0.976 0.976 0.978 wholetime = trainingtime—+Testingtime+ others. Others
7 0.978 0.971 0.974 0.974 is some functions that take a little time. Although in training
8 0.963 0.962 0.960 0.961 period, our scenario spends more time, the total experimental
9 0.942 0.954 0.952 0.950 time is still shorter than the PSD rule. During the training
10 0.928 0.942 0.937 0.936 within our scheme, the images are input into the HMAX

are presented. But which number of spikes in the target
spike train need be considered. Fig. 6 shows the result of
different number of spikes in the target spike train. The target
spike train includes four spikes will perform better. In order
to obtain higher accuracy, we adopt the target spike train
[40, 80, 120, 160] ms in the following experiments.

With the HMAX model, PSD rule performs well in noisy
image recognition. The classification accuracy of each test
set is shown in Table I and the blue line of Fig. 7 (the
green line donates the result of PSD rule). In the absence
of noise, the classification efficiency of the PSD rule based
on HMAX is 100%. It has a high accuracy in the case of a
small noise, which is up to 99% with the noise level 2.5%.
Since the key features are extracted by HMAX model and the
unimportant information is ignored, the anti-noise ability of
images is significantly improved. However, with the increasing
of the noise, the recognition rate of the algorithm is gradually
reduced, because the noise interference is too strong to make
the images lost the original features. But when the noise level

model, it will generate extra time; besides, the max pooling
achieves the purpose of dimensionality reduction. Because
the data of training set is relatively small, the advantage
is not obvious, the time is more than the PSD rule. When
starting to process the test set, the large number of data after
dimensionality reduction will save much time.

Therefore, based on the above reason, our paper combines
the advantage of the modified HMAX model and PSD learning
rule. Experiments prove that our scheme has a good biological
basis and shows the superiority in noise image recognition.

VI. CONCLUSION

A pattern recognition model mimics the visual hierarchical
system and uses the PSD learning rule has been presented. The
HMAX model adopts template matching and max pooling to
possess the features. In this paper, inspired by the association
between Gabor filter and sparse coding, we set a single size in
the S1 layer. Since C2 selects maximum by crossing directions,
which is lack of biological rationality, we don’t choose the
“patches” in C2. We stitch the images after C1 from four
orientation to retain the characteristics of each orientation.



The spike pattern generated by temporal coding conveys
significant spatiotemporal information about the input data.
PSD rule is designed to process precise timing spikes, where
one afferent neuron fires a single spike during the whole time
window. It is simple and efficient in synaptic adaptation, which
reduces the number of signal sources to calculate directly. PSD
rule changes the synaptic weights by the error computation
between the real spike train and the target spike train. Notably,
the weight modification just relies on the currently deviations
and does not affect future results. The PSD rule is terminated
when the real spike train is close unlimitedly the target spike
train. Such practical ways might be useful for noisy image
recognition.
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