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Abstract—From the last few years the interest and repercussion
on Unmanned Aerial Vehicle (UAV) technologies have been ex-
tended from pure military applications to industrial and societal
applications. One of the basic tasks to any UAV problems is
related to the Mission Planning. This problem is particularly
complex when a set of UAVs is considered. In the field of Multi-
UAV Mission Planning, some approaches have been carried out
in the last years. However, there are few works related to real-
time Mission Replanning, which is the focus of this work. In
Mission Replanning, some changes in the mission, such as the
arrival of new tasks, require to update the preplanned solution
as fast as possible. In this paper a Multi-Objective Genetic
Algorithm for Mission Replanning (MOGAMR) is proposed to
handle this problem. This approach uses a set of previous plans
(or solutions), generated using an oa liffline planning process, in
order to initialize the population of the algorithm, then acts as a
complete regeneration method. In order to simulate a real-time
system we have fixed a time limit of 2 minutes. This has been
considered as an appropriate time for a human operator to take a
decision. Using this time restriction, a set of experiments adding
from 1 to 5 new tasks in the Replanning Problems has been
carried out. The experiments show that the algorithm works well
with this few number of new tasks during the replanning process
generating a set of feasible solutions under the time restriction
considered.

I. INTRODUCTION

The current interest on Unmanned Aerial Vehicle (UAV)
capabilities has opened up new commercial applications for
the industry. These unmanned vehicles can be used in many
domains such as surveillance [1], flight training [2] or disas-
ter and crisis management, since they avoid risking human
lives while their manageability permits to reach areas of
hard access. Mission Planning for a team of UAVs involves
generating tactical goals, commanding structure, coordination,
and timing. Nowadays, UAVs are controlled remotely by
human operators from Ground Control Stations (GCSs), using
rudimentary planning systems, such as following preplanned
or manually provided plans.

The Mission Planning Problem (MPP) handles several vari-
ables, such as the assignments of tasks to the vehicles in
charge of performing them, the sensors used by the vehicles,
the flight profiles employed in every path or the orders of these
assignments, the assignments of UAVs to the GCSs controlling
them. In addition, several constraints must be also considered,
such as the fuel available by the vehicles, the feasible paths
or the correct orders and times. Besides, the problem can be
considered as a Multi-Objective optimization, where the fuel
consumption of every UAV, the makespan of the mission, the
total cost, the risk of the mission and other objectives must be
minimized.

In addition, some events that require a new plan of the
current mission could happen during its execution, such as
sensor failure or UAV malfunction, a new task arrival or
cancellation, or some changes in tasks priorities. This process
of Mission Replanning implies real-time rescheduling and re-
routing of each UAV involved. Besides, this process requires
to be fast enough so the status of the mission being executed
does not change before the re-routing of the vehicles.

In this approach, a Multi-Objective Genetic Algorithm
(MOGA) based on a previous approach for Mission Planning
[3] is reformulated to solve the Mission Replanning Problem
(MRP). It considers the Mission Plan being executed and one
or more new tasks that must be performed, so the initial
population of the Genetic Algorithm (GA) will be generated
fixing the tasks already set in the previous plan and randomly
setting the new tasks for each individual. On the other hand,
in the experimental phase, a time limit of 2 minutes will be
set for the algorithm execution, and a study of the optimality
of the solutions as the number of new tasks to be resolved
increases is carried out.

The rest of the paper is structured as follows. Section II
describes the related work concerning mission planning and
replanning, and other approaches in Multi-objective Optimiza-
tion. Section III presents the details of the Mission Replan-



ning Problem. Section IV presents the MOGA approach, the
encoding designed and the fitness function implemented to
solve the MRP. Section V provides a description of the dataset
employed, the setup in MOGA and a complete experimental
evaluation of it. Finally, in section VI the conclusions and
some future research lines of the work are presented.

II. RELATED WORK

Planning has been an area of research in Artificial Intel-
ligence (AI) for over three decades. The Mission Planning
Problem (MPP) can be summed up in finding the correct
schedule of resource-task assignments that satisfies the pro-
posed constraints. So a MPP can be formulated as a Constraint
Satisfaction Problem (CSP), where the tactic mission is mod-
elled and solved using constraint satisfaction techniques [4].
A CSP consists of a set of variables V = v1, ..., vn, each one
with a finite set of possible values Di (its domain), and a
set of constraints Ci restricting the values that variables can
simultaneously take. Moreover, the MPP must consider the
time when the tasks in the mission start and end, so a particular
class of CSP called Temporal Constraint Satisfaction Problem
(TCSP) [5], where variables represent times (time points, time
intervals or durations) and constraints represent sets of allowed
temporal relations between them, must be considered.

An essential concept in UAV Mission Planning is Mission
Replanning. Generally, the Mission Replanning process is
event-driven. In this case, an executing mission plan becomes
invalid due to some unexpected incidences. These replanning
factors could be:

• UAV or sensor failure.
• Urgent (rush) task arrival.
• Task cancellation.
• Due date change (delay or advance).
• Change in task priorities or position of the targets.
On the other hand, there exist two possible strategies

for Mission Replanning: robust plan generation or planning
repair. With robust planning, a plan with some contingency
rules is provided in preplanning phase, so when a replanning
is required it can respond automatically to it. Planning repair
consists in providing a new plan and re-routing each vehicle.
This strategy could be performed with partial repair methods
or with complete regeneration methods. The first ones just
change the assignments involved in the replanning event,
while the second ones could make a complete reassignment
of the entire mission. Due to the requirements of the real-
time problem, the algorithm must be very fast. Thus, the most
common approaches are repair methods.

There exist few works in this field. Most of them focus on
single-UAV missions, while this work focuses on Multi-UAV
and Multi-GCS missions. Fukushima and Mita [6] proposed an
algorithm for onboard mission replanning using the orthogonal
array experiment design approach to solve the problem of
repairing the original mission plan without human interactions.
Chien et al. [7] studied the use of iterative repair search for
spacecraft operations planning in the ASPEN System. A work
from Pascarella et al. [8] uses an agent-based approach with

a formal model to infer from real-time constraints, by which
Mission Planning is dynamically scheduled. Finally, Chen et
al. [9] developed a real-time planner for Multi-UCAV, where
the initial plan is obtained by a GA and an utility function is
used to check and reschedule the task assignments.

There are other approaches for Job-shop scheduling and
other problems similar to Mission Planning that consider
complete regeneration, using Branch & Bound [10], Tabu
Search [11] or GA [12]. This last approach was the faster
one, so our approach is also based on these techniques.

GAs have been traditionally used in a large number of dif-
ferent domains, mainly related to optimization problems [13].
These stochastic methods are inspired by natural evolution
and genetics, and the complexity of the algorithm depends on
the codification and the operations used to reproduce, cross,
mutate and select the different individuals of the population.

Several criteria can be taken into account in MPPs for
Multi-UAVs to measure the quality of a solution, such as the
fuel consumption, the makespan or the cost of the mission,
among others. Therefore, it can be interesting to optimize
simultaneously different objectives in order to get the best
solutions. This type of problems can be solved using Multi-
Objective Genetic Algorithms (MOGAs) [14] [15] based on
Pareto optimization techniques, which try to find the Pareto
Optimal Frontier (POF). The most known approaches are
SPEA2 [16] and NSGA-II [17].

Finally, there exist some metrics to evaluate the performance
of the algorithm, such as the hypervolume [18] or the gen-
erational distance [19]. In this work, a special modification
of the hypervolume metric is used. This new metric, applied
to a set of solutions with n objective variables consists of
the n-dimensional domain comprised between these solutions
(the approximated POF) and the optimal POF of the problem.
When the optimal POF is obtained, the volume comprised
between the obtained solutions and the optimal POF is 0, and
so is the hypervolume. Otherwise, the higher the hypervolume,
the worse the approximated POF.

On the other hand, it is also necessary to decide when the
algorithm has reached a good POF and stops its execution.
There exist several stopping criteria [20] in the literature. One
of the most used consists of a comparison function which will
stop the execution if the POF remains changeless for a number
of generations.

III. THE MISSION PLANNING AND REPLANNING
PROBLEMS

In this section, the MPP will be explained in detail. Then, a
CSP modelization of this problem will be presented. Finally,
the MRP will be presented as an extension of the previous
Mission Planning Problem.

A. Mission Planning Problem

The Multi-UAV Cooperative Mission Planning Problem
(MCMPP) [4] can be defined as a number n of tasks,
T = {t1, t2, ...tn}, performed by a team of m UAVs,
U = {u1, u2, ...um}, at a specific time interval. Each mission



should be performed in a specific geographic zone. In addition,
there is a number l of GCSs, G = {g1, g2, ..., gl}, controlling
these UAVs. A solution for a mission planning problem should
be the assignment of each task to a specific UAV, and each
UAV to a specific GCS, ensuring that the mission can be
successfully performed.

There are different kind of tasks (e.g. photographing or
escorting a target, monitoring a zone, etc.). Some of them can
be performed by several UAVs (Multi-UAV), reducing the time
needed to perform the task (e.g. mapping an area, or Step &
Stare). Each task must be performed in a specific geographic
area and in a specific time interval. In addition, tasks can be
carried out using the sensors available (i.e. Electro-optical or
Infra-red (EO/IR) cameras, Synthetic Aperture Radar (SAR),
Maritime Patrol Radar (MPR), etc.) by the UAVs in the
mission. If a UAV has available more than one sensor to
accomplish a task assigned to it, the sensor to perform the
task should be chosen for the mission planning.

Figure 1 presents a Mission Scenario with 5 tasks (a
surveillance task, a monitoring task and a step & stare task
represented in green, a photographing task represented with
a camera image, and a tracking task represented with an eye
image), 5 UAVs and 2 GCSs. As shown in this figure, the
zone of the mission could contain some No Flight Zones
(NFZs) represented in red. These zones must be avoided in
the trajectories of the UAVs during the mission.

Additionally, the vehicles performing the mission have some
features that must be taken into account in order to check if
a mission plan is correct: its initial position, its initial fuel,
its autonomy or maximum flight time, its range or maximum
flight distance, its cost per hour of usage, its available sensors,
and one or more flight profiles. A vehicle’s flight profile
specifies at each moment its speed, its fuel consumption ratio
and its altitude.

When a task is assigned to a vehicle, it is necessary to
compute the duration of the path between the zone of the
UAV’s departure and the zone of the task. If a task is the
last one assigned to a vehicle, in addition, the duration of
the return from this last task to the base must be calculated.
In order to compute these durations, it is necessary to know
which of the UAV’s flight profiles will be used, providing
the fuel consumption ratio, speed and altitude as previously
mentioned. For this reason, in these cases, the flight profiles
used must also be assigned to solve the mission.

Finally, a mission could have some time and vehicle de-
pendencies between different tasks. Vehicle dependencies
consider if two tasks must be assigned to the same UAV or
different UAVs. Moreover, we consider time dependencies
given by the Allen’s Interval Algebra[21].

B. CSP Modelling of the Mission Planning Problem

As previously mentioned, one way to model the MCMPPs
is using CSPs, since we need to find the correct schedule
of resource-task assignments which satisfies the proposed
constraints.

The modelization shortly presented here was explained in
more detail in a previous work [3]. Basically, we need to
provide the variables and the constraints. The variables of the
MCMPP are included into several sets of variables:

• Assignments of tasks to UAVs. As some tasks could be
Multi-UAV, these variables are represented as a binary
array of size n×m.

• Orders. Define the sequence in which each UAV per-
forms the tasks assigned to it. These variables are neces-
sary when start and end times of tasks are not fixed.

• Assignments of UAVs to GCSs. We need to assign the
control of each UAV to each GCS for monitoring the
mission.

• Path Flight Profiles. Set the flight profile that the vehicle
must take for the path performance.

• Return Flight Profiles. It is similar to the previous set
of variables but for the return path of each UAV.

• Sensor used in the task performance. These variables
set the sensor of the vehicle that will be used during the
task performance. It will be necessary to consider these
variables just in the case that the vehicle performing the
task has several sensors that could perform that task.

The CSP considers several constraints related to the differ-
ent complexity issues explained in the previous section:

• Sensor constraints. Check if a UAV has the sensors
needed to perform its assigned tasks.

• Order constraints. Assure that the values of the order
variables are less than the number of tasks assigned to
the UAV performing that task.

• GCS constraints. Assure that the GCSs assignments are
correct, UAVs are assigned to GCSs able to control them,
and they are located within the GCS coverage area.

• Temporal constraints. Assure the consistency of all the
times and durations involved in the mission planning.

• Dependency Constraints. These constraints are related
to the time and vehicle dependencies mentioned in the
previous section.

• Autonomy constraints. Assure that the total flight time
for each vehicle is less than its vehicle autonomy time.

• Distance constraints. Assure that the distance traversed
by each vehicle is less than its range.

• Fuel constraints. Assure that the fuel consumed by each
vehicle is less than its initial fuel.

There are several constraints implicit inside these con-
straints, such as avoiding NFZs, which are considered when
computing temporal constraints. In addition, it is necessary to
consider the route plan for every path performed by a UAV
when going to the task zone.

C. Mission Replanning Problem
Now that the MPP has been described and modelled, the

MRP can be extended from it. The MRP considers the same
constraints as the Mission Planning. The main difference lies
in the status of the tasks:

• Some tasks would have finished when replanning is
called, so they will be erased from the problem.



Fig. 1: Mission with 5 tasks (1 of them Multi-UAV), 5 UAVs and 2 GCSs.

• Some tasks would have not started yet.
• Some tasks would have started but still not ended.
In this approach, we consider that these tasks in execution

will remain fixed in the assignments.
Besides, we must also consider the position of the UAV

when replanning. In this case, we will take the future position
of the UAVs, and the status of the mission in general, after
the call to the planner.

Due to the complexity of the problem, a partial repair of the
mission plan may not be the optimal option in many cases.
For example, a new task may appear next to a UAV that
has many other tasks assigned. Then, this task could not be
assigned to this UAV due to fuel or time constraints unless
this UAV deallocates some of its previously assigned tasks.
For this reason, a complete regeneration method is employed,
as we will explain in the following section.

IV. MULTI-OBJECTIVE GENETIC ALGORITHM FOR
MISSION REPLANNING

In this approach, a previous hybrid version based on MOGA
and CSP [3] for the MCMPP is extended to solve the MRP.
The CSP is computed inside the fitness function of the
MOGA, checking that solutions fulfil all the constraints. This
algorithm is also based on the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) for the Multi-Objective consideration.

The Mission Replanner will input a new problem consider-
ing just the tasks that have not been performed yet, the position
of every vehicle (2 minutes in advance as explained in previous
section) and the start time of use of these vehicles. This start
time will be 0 if the vehicle is not performing any task at the
replanning time point, or the end time of the task that it is
performing at the replanning time point.

In addition, the algorithm will also receive the previous
plan, which will be used to create the initial population of
the MOGA. This population will fix the genes values with the
ones provided by this plan, and randomly initialize the other
gene values (the ones related to the new tasks).

The following subsections will present the encoding of
this approach, the fitness function used, the initializer of the
population and the algorithm itself.

A. Encoding

The encoding of this new approach consists of six different
alleles representing the features described in the previous
section. Figure 2 shows an example of this representation for
a mission with 5 tasks, 3 UAVs and 2 GCSs.

1) UAVs assigned to each task. If the Ti task is Multi-
UAV, then this cell contains a vector representing the
different UAVs assigned to this task, as shown in Figure
2 for tasks T1, T3 and T4.

2) Permutation of the task orders. These values indicate
the absolute order of the tasks. It is only used if there are
several tasks assigned to the same UAV (e.g. in Figure
2, UAV 1 performs tasks 1, 4 and 5 in this order).

3) GCSs controlling each UAV. What GCSs is assigned
to monitor what UAV.

4) Flight profiles used for each UAV to perform an
assigned task. As in the first allele, some of the cells
could contain a vector if the corresponding task is
performed by several UAVs.

5) Sensors used for the task performance by each UAV.
6) Flight Profiles used by each UAV to return to the base.
In Figure 2 example, according to the task assignments and

the order permutation, we can see that UAV 1 performs tasks



Fig. 2: Example of an individual that represents a possible solution for a problem with 5 tasks, 3 UAVs and 2 GCSs.

1, 4 and 5 in this order; UAV 2 performs tasks 2, 1, 4 and
3; and UAV 3 performs tasks 1, 4 and 3. On the other hand,
according to GCSs assignments, UAVs 1 and 3 are controlled
by GCS 1, while UAV 2 is controlled by GCS 2. Furthermore,
looking at the Flight profiles per task, UAV 1 uses minimum
consumption flight profile for all its assigned tasks; UAV 2
uses minimum consumption profile for task 1, and maximum
speed profile for the rest of tasks, and UAV 3 uses minimum
consumption profile for task 3, while maximum speed profile
for the rest of tasks. Regarding the sensors used, it can be
seen that task 1 is performed by UAV 1 using MPR radar
(mR) sensor, while UAV 2 uses an ISAR radar (iR), and UAV
3 uses a SAR radar (sR); task 2 is performed using EO/IR
sensor (eiS), etc. Finally, the last allele represents that UAVs
1 and 2 use minimum consumption profile for their return
path, while UAV 3 uses maximum speed profile.

B. Fitness function

The fitness function checks that all constraints are fulfilled
for a given solution. Then, the fitness works as a multi-
objective function minimizing the objectives of the problem:

• The number of UAVs used in the mission.
• The total fuel consumption.
• The total cost of the mission.
• The end time of the mission or makespan.
• The risk of the mission, which is computed as an average

percentage indicating how risky the mission is. We con-
sider three risk factors: UAVs that finish the mission with
low fuel, UAVs that fly near to the ground and UAVs that
fly close between them.

C. Preplanned Population Initializer

The initializer of the population used in this approach
receives the previous plan, which consists of an individual with
the same encoding explained in the previous subsection, but
with some empty assignments. The initializer will clone this
individual as many times as the size of the population. Then,
for each individual, the empty genes are assigned random
values. In the case of the permutation, the new tasks are
inserted in a random position of the permutation.

D. Algorithm

The Multi-Objective Genetic Algorithm for Mission Re-
planning (MOGAMR) is presented in Algorithm 1. In this
new approach, firstly a preplanned initialization is performed
in order to obtain the initial population (Line 1). Then this
initial population evolves using a MOGA. The evaluation of
the individuals is performed by a fitness function (Lines 7-11),
and the NSGA-II approach [16] (Line 16) is used for the Multi-
Objective elitism selection. This selection is based first on non-
dominated rank (according to the POF partition), and secondly,
for solutions having the same rank, on the crowding distance.
Then, a tournament selection (Line 19) is used to provide the
individuals that will be chosen to apply the genetic operators.
The crossover operator (line 20) consists of an extension of the
2-point crossover and the Partially-Matched Crossover (PMX)
independently applied to each allele of the chromosome. The
mutation operator (lines 21-22) is also an extension of the
uniform and the insert mutation applied to each allele.

Finally, the stopping criteria designed for this algorithm
(Lines 12-15) compares the non dominated solutions obtained
so far at each generation with the solutions from the previous
one. If the solutions remains unchangeable for a number of
generations, then the algorithm will stop and return these
solutions as an approximation of the POF.

V. EXPERIMENTATION

In this section, the experimental setup and the problem
used in the experimental phase is presented. Then, using a
previously planned mission, a series of replanning problems
are proposed considering for each problem a higher number
of new tasks to be replanned. For each one of these problems,
the Mission Replanner is used to find an approximated set of
solutions within the 2 minutes limit. In order to compare the
results obtained, the Mission Replanner is used a second time
with no time limit in order to find the optimal POF, and the
hypervolume between these two set of solutions is computed.

A. Experimental Setup

For the experiments below, the mission from Figure 1 is
used as the initial mission. This mission has been planned us-
ing the MOGA approach from a previous work [3]. Then, one



Algorithm 1: Multi-Objective Genetic Algorithm for Mis-
sion Replanning

Input: A mission M = (T,U,G) where T is a set of
tasks to perform denoted by {t1, . . . , tn}, U is a
set of UAVs denoted by {u1, . . . , um} and G is a
set of GCSs denoted by {g1, . . . , gl}. The set of
objectives O and their upper bounds
M = {Mi >> avg(oi)}. A mission plan
P = (TA,OA,GA,PFpA, SA,RFpA), where
TA are the task assignments of the plan, OA are
the orders (permutation) assignments, GA are the
GCS assignments, PFpA are the path flight
profile assignments, SA are the sensor
assignments and RFpA are the return flight
profile assignments. And positive numbers time
limit maxTime, elitism µ, population size λ,
mutprobability and stopGeneration.

Output: POF obtained with best solutions
1 S ← PreplannedPopulationInitializer(P ,λ)
2 initT ime← now()
3 convergence← 0
4 pof ← ∅
5 while now()− initT ime ≤ maxTime∧ convergence <
stopGenerations do

6 F ← ∅
7 for j ← 1 to λ do
8 if CSPCheck(Sj) then
9 F ←MultiObjectiveF itness(Sj)

10 else
11 F ←M

12 newpof ← createPOF (S)
13 if newpof = pof then
14 convergence← convergence+ 1

15 pof = newpof
16 Sbest← SelectNSGA2Best(µ, F )
17 newS ← Sbest
18 for j ← µ to λ do
19 p1, p2← TournamentSelection(Sbest)
20 i1, i2← Crossover(p1, p2)
21 i1←Mutation(i1,mutprobability)
22 i2←Mutation(i2,mutprobability)
23 newS ← newS ∪ {i1, i2}
24 S ← newS

25 return pof

of the solution plans obtained has been selected. This plan is
represented in Figure 3. In this assignment, MALE is assigned
tasks Surveillance, Monitoring and Step & Stare Searching,
in this order; URAV 1 is assigned the Identification/Tracking
task 1; URAV 2 is assigned Step & Stare Searching; URAV
3 is assigned Identification 2, and URAV 4 is assigned Step
& Stare Searching. As can be seen, Step & Stare Searching

(which is a Multi-UAV task) is divided and executed by 3
UAVs. On the other hand, GCS controls MALE, URAV 1 and
URAV 3, while GCS2 controls URAV 2 and URAV 4.

Fig. 3: Plan selected for Mission from Figure 1

Now, using this plan, 5 MRPs are proposed where the
number of new tasks is gradually incremented from 1 to 5.
These new tasks, which will consist of Photographing targets,
are spread along the Mission Scenario.

On the other hand, the setup of the algorithm is presented in
Table I. The size of the initial population will be based on the
number of new tasks added to the mission (nnew), the number
of UAVs (m) and the number of GCSs (l).

TABLE I: Experimental setup for the MOGAMR.

Mutation probability 0.1
Time Limit 2 min
Population size (λ) n2

new ∗m+m2 ∗ l
Elitism size (µ) 0.1*λ
Stopping criteria generations 10

B. Experimental Results

Using the five problems designed, we run the MOGAMR
with two approaches: 1) the presented in the experimental
setup, with a time limit of 2 minutes, and 2) an unlimited
time approach, which will be used to compare the results ob-
tained by the 2 minutes approach. With the solutions obtained
from each approach, we compute the Hypervolume comprised
between these two sets of solutions. When the hypervolume is
0, it means the solutions are equal, so the 2 minutes approach
obtains the optimal solutions despite the time limit. Otherwise,
if the hypervolume is positive, it means some optimal solutions
have not been found in the 2 minutes approach. Table II
presents the results obtained for these experiments, including
the hypervolume, the number of generations needed by each
approach and the execution time needed by the unlimited



TABLE II: Results obtained using the MOGAMR with plan from Figure 3 and adding 1-5 new tasks. The hypervolume
represents the Hypevolume comprised between the solutions obtained by the 2-time limit approach and the unlimited approach.

New tasks Hypervolume No. Generations 2-min approach No. Generations Unlimited approach Time Unlimited approach
1 0 15 16 0min 54s
2 0 43 43 1min 45s
3 0 52 67 3min 24s
4 1.58 43 64 5min 44s
5 6.43 32 79 8min 12s

approach. The experiments have been run in an Intel Core
i5-6200 2,3 GHz with 8 cores and 16GB DDR3 RAM.

As can be observed in the table, for 1 and 2 new tasks,
the algorithm converges in less than 2 minutes, so the results
obtained by the two approaches are the same. For 3 new
tasks, it can be seen that the algorithm does not converge
in 2 minutes, but the results obtained in this time are not
outperformed when the algorithm converges. On the other
hand, it can be appreciated that for 4 and 5 tasks, better
solutions have been obtained in the unlimited approach. So
it can be concluded that the MOGAMR is appropriated with
a time limit of 2 minutes for 3 or less new tasks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a previous approach of Multi-Objective Ge-
netic Algorithm for Mission Planning has been extended to
be used in Mission Replanning Problems, so our previous
solution to the Mission Planning problem has been extended
from a static perspective to a dynamic one. The new approach
takes the executing plan in order to initialize the population
of the Genetic Algorithm based on the previous assignments.
The fitness function designed checks that all constraints are
fulfilled, and if so, optimizes several objectives, including the
makespan, the fuel consumption, the total cost or the risk of
the mission.

The initial experiments, carried out using several problems
with an increasing complexity in terms of number of tasks
that need to be planned, show that the algorithm works well
when only some few new tasks are added. However, the
computation time grows very fast when the number of new
tasks increases, as expected. This generates a serious problem
to include this kind of approaches in real time systems, where
a fast generation of solutions is needed. For this reason, a deep
study on different methods and heuristics that could be applied
to outperform the results obtained, and to improve the time
computation (under a time limitation), will be done in the near
future. Finally, we will also focus on developing a Decision
Support System (DSS) for this problem, in order to select one
solution among those obtained by the algorithm according to
some quality metrics and the GCS operator profile.
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