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Abstract—This paper discusses the Correntropy Induced Met-
ric (CIM) based Growing Neural Gas (GNG) architecture. CIM is
a kernel method based similarity measurement from the informa-
tion theoretic learning perspective, which quantifies the similarity
between probability distributions of input and reference vectors.
We apply CIM to find a maximum error region and node insert
criterion, instead of euclidean distance based function in original
GNG. Furthermore, we introduce the two types of Gaussian
kernel bandwidth adaptation methods for CIM. The simulation
experiments in terms of the affect of kernel bandwidth σ in CIM,
the self-organizing ability, and the quantitative comparison show
that proposed model has the superior abilities than original GNG.

Index Terms—Growing Neural Gas; Correntropy Induced
Metric; Kernel Method; Clustering;

I. INTRODUCTION

Clustering algorithms in the field of artificial neural net-

works have performed its usefulness in numerous research

fields such as statistics, data mining and multivariate analysis.

One of the typical clustering algorithms is Self-Organizing

Map (SOM) [1] which is introduced by Kohonen. The original

SOM has a fixed size network which is able to adapt to

consecutive input data by changing its network topology.

Conventionally, numerous studies based on SOM algorithm

have introduced such as classification [2], [3], cluster anal-

ysis [4], [5] and vector quantization [6]. However, the fixed

size network in SOM is limiting an applicability for further

applications or a wider usage, such as the problems with

large scale dynamic data. In general, Growing Neural Gas

(GNG) [7] algorithm performs the superior ability to dynamic

information due to its network growing ability. GNG has a

self-adaptability to input data by increasing network size and

its topological structure. The topological network in GNG is

able to represent the input data with more flexible way than a

fixed size network like SOM. Furthermore, it can be improving

visualization capabilities and understandings of input data,

simultaneously. Due to its usefulness and effectiveness, it has

widely accepted to numerous applications, such as robotics

[8], computer vision [9] and complex data set modeling [10],

[11].

Conventionally, several types of studies have introduced to

improve the learning algorithms for construction of topological

network. Ghesmoune et al. [12] introduced a growing neural

gas over data stream which allows us to discover clusters

of arbitrary shapes without any assumptions on the number

of clusters. Boonmee et al. [13] introduced a hybrid GNG

by considering not only the distance between the clusters,

but also the centroids of the each cluster to obtain more

practical topology structure. Mohebi and Bagirov [14] applied

an algorithm based on split and merge of clusters to initialize

neurons. The initialization algorithm speeds up the learning

process in large high-dimensional data sets. Palomo et al.

[15] combined GNG and tree structure to represent a network

topology, which is called Growing Neural Forest (GNF).

GNF learns a set of trees so that each tree represents a

connected cluster of data. The experimental results show that

it outperforms some well-known foreground detectors both in

quantitative and qualitative terms.

One of the successful approaches is to apply the kernel

method for the network learning process [16]. Chalasani and

Principe [17] discussed the kernel SOM in terms of a similarity

measure called Correntropy Induced Metric (CIM) from the

information theoretic learning perspective. Adapting the SOM

in the CIM sense is equivalent to reducing the localized cross

information potential, and information theoretic function that

quantifies the similarity between two probability distributions

based on Gaussian kernel function. In this paper, we introduce

the CIM based similarity measurement to growing network

architecture, called GNG-CIM, and also introduce the kernel

bandwidth adaptation method for CIM. It can be expected that

the proposed model shows a superior data dimension reduction

ability than original GNG.

This paper is organized as follows; Section II briefly intro-

duce the definition of CIM. Section III presents the details of

GNG-CIM algorithm. Section IV describes simulation experi-

ments to evaluate the abilities of proposed model. Concluding

remarks are presented in Section V.

II. DEFINITION OF CORRENTROPY INDUCED METRIC

Correntropy is a generalized similarity measure between

two arbitrary random data X and Y [18], which is defined

as follows;

Cσ (X,Y ) = E [κσ (X − Y )] , (1)

where, κσ is a kernel function that satisfies the Mercer’s

Theorem [19]. It induces a reproducing kernel Hilbert Space.



Therefore, it can be defined as the dot product of the two

random variables in the feature space as follows;

C (X,Y ) = E [〈φ(x)〉 , 〈φ(y)〉] , (2)

where, φ denotes a non-linear mapping from the input space to

the feature space based on inner product operation as follows;

κ (x, y) = [〈φ(x)〉 , 〈φ(y)〉] . (3)

In practical, correntropy can be described by the following

equation due to the finite number of data L available;

ĈL,σ =
1

L

L
∑

i=1

κσ (xi − yi) . (4)

Here, correntropy is able to induce a metric, which is called

Correntropy Indced Metric (CIM), in the data space. Let sam-

ple vectors X = [x1, x2, . . . , xL] and Y = [y1, y2, . . . , yL]
are given, CIM can be defined as follows;

CIM (X,Y ) =
[

κσ(0)− Ĉσ(X,Y )
]

1

2

=

[

1

L

L
∑

i=1

{κσ(0)− κσ(xi − yi)}

]

1

2

. (5)

It can be considered that CIM in information theoretic

learning perspective quantifies the similarity between two

probability distributions.

III. GROWING NEURAL GAS WITH CORRENTROPY

INDUCED METRIC

Conventionally, Chalasani and Principe introduced CIM to

Self-Organizing Map called SOM-CIM [17]. Although SOM-

CIM showed the superior self-organizing ability, SOM-CIM

has a certain limitation due to its fixed topological network.

Thus, to overcome a drawback of SOM-CIM, we introduce

correntropy to GNG, which is called GNG-CIM. As mentioned

in Section II, CIM is calculated based on kernel function.

Therefore, we also introduce the kernel adaptation method for

GNG-CIM inspired by SOM-CIM. In the following subsec-

tions, we first present the fundamentals of GNG-CIM, then two

types of kernel bandwidth adaptation methods are introduced;

adjusted by (i) the number of nodes in topological network,

and (ii) the distribution of nodes in topological network,

respectively. In this paper, we utilize a Gaussian kernel for

CIM, which is most popularly applied in the information

theoretic learning.

A. Fundamentals of GNG-CIM

In regards to original GNG [7], the node which is most

similar with input data, and the region which has a maximum

error are defined by euclidean distance based calculations,

respectively. On the other hand, the proposed model utilizes

CIM based calculations. We consider that this is the significant

difference between GNG-CIM and original GNG.

Let us suppose the input vector V = (v1, v2, . . . , vL) is

given to the network at an instant l, the winner node is obtained

using CIM as follows;

r = argmin
k

CIM (v(l), w)N=1

= argmin
k

(κσ(0)− κσ (‖v(l)− w‖)) , (6)

where, r denotes index of the node at instant l, k denotes the

number of nodes in network, ws denotes the reference vector,

and σ denotes a kernel bandwidth.

Throughout the remaining sections, it is assumed that s
denotes the index of 1st similar node, and t denotes the index

of 2nd similar node, i.e., ws and wt denote 1st and 2nd similar

reference vectors for all nodes k, respectively. Furthermore, the

topological neighbors of s-th node (i.e., all nodes that have

edge connection with s-th node) are indicated by e, such as

topological neighbors reference vector we.

As mentioned earlier, the CIM is regarded as a local error

between input and reference vectors for updating the weight,

i.e.;

Err ← Err + [CIM (v(l), w)]2 . (7)

The update rule for reference vector w is defined as follows;

w(l + 1) = w(l)− ηw∆w, (8)

where, ηw (0 < ηw ≤ 1) denotes learning rate. Here, the

Gaussian kernel is utilized, then the gradient ∆w is defined

as follows;

∆w =











−Gσ (‖v(l)− w‖) (v(l)− w) (r = s) (9a)

−hrsGσ (‖v(l)− w‖) (v(l)− w)

(r 6= s ∈ neighbors e) , (9b)

where, Gσ denotes a Gaussian kernel. hes is given as follows;

hrs(l) = exp

(

−
(wr − ws)

2

2σh(l)

)

, (10)

where, σh is the kernel bandwidth.

The update rules for network topology and node insert

procedure are same as original GNG manner. In terms of

original GNG, the new node will be inserted into the region

that has maximum error based on euclidean distance. In

contrast, GNG-CIM applies CIM based error calculation which

is defined as Eq. (7). The entire process of GNG-CIM is

presented in Algorithm 1.

B. Kernel Bandwidth Adaptation in GNG-CIM

In terms of kernel based clustering algorithm, to determine

the appropriate kernel bandwidth σ is essential to control the

performance of its model. In this paper, we introduce the

two types of kernel bandwidth adaptation methods which are

inspired by SOM-CIM [17]. Note that the following adaptive

kernel algorithms are performed at step 6 in Algorithm 1.



Algorithm 1 Topological mapping in GNG-CIM

Require:

input vector v(l)
reference vector w
available maximum number of nodes Nmax

maximum node age agemax

new node inserting cycle λ
error reduction rate for node inserting process α
error reduction rate for all nodes β
CIM criterion Ccim

Ensure: reference vector w
1: Initialization: Create two nodes and its reference vector

with edge between two nodes, and setting zero values to

CIM and edge age.

2: Input a vector v(l) to a topological map

3: Calculate CIM and find 1st and 2nd similar reference

vectors by Eq. (6)

4: Calculate the local error of s-th node by adding it to

the squared CIM between reference vector ws and input

vector v(l) by Eq. (7)

5: Update the reference vector ws and its topological neigh-

bor reference vectors we by Eqs. (8)-(10)

6: Kernel bandwidth adaptation

7: Increase the age of all edges outgoing from the s-th node

8: if s-th node and t-th node are connected,

and (CIMt − CIMs) ≤ Ccim then

9: Set the age of their edge to zero

10: else

11: Create a new edge between s-th node and t-th node

12: end if

13: for each Edge age is larger than agemax, for all nodes

do

14: Remove edge

15: end for

16: for each Node which has no more emanating edges do

17: Remove node

18: end for

19: Determine a p-th node which has a largest CIM

20: Determine a q-th node which has a largest CIM among

neighbors of p-th node

21: if The number of current iterations is a multiple of λ,

the number of nodes is smaller than Nmax,

and CIMq > Ccim then

22: Create a u-th node at the middle between p-th and q-th

nodes as follows; wu = (wp + wq)/2
23: Replace the edge between p-th and q-th nodes by the

edges between p-th and u-th nodes, and q-th and u-th

nodes, respectively

24: Decrease the errors of p-th and q-th nodes, and set the

value of the error of u-th node as follows;

Errp ← α ·Errp
Errq ← α ·Errq
Erru ← Errp

25: Decrease errors of all nodes as follows;

Err ← β · Err
26: end if

27: if l < L then

28: Continue from step 2 with l← l + 1
29: end if

1) Number of Nodes based Adaptation: This is one of a

simplest methods to determine the kernel bandwidth which is

controlled by the proportion of current number of nodes in

topological network in available maximum number of nodes,

such as;

σh(l) = σi
h exp

(

−θ · σi
h

N

Nmax

)

, (11)

where, σi
h denotes initial value of σ, θ denotes decreasing rate

of σi
h, N denotes a current number of nodes in topological

network, and Nmax denotes the available maximum number

of nodes, respectively.

2) Node Distribution based Adaptation: Chalasani and

Principe [17] extent the Kullback-Leibler divergence based

density estimation algorithm [20] to the kernel bandwidth

adaptation algorithm as follows; here, Kullback-Leibler di-

vergence DKL (f ||g) is estimated non-parametrically from

the data by the Parzen window estimation [21]. If f is

estimated Probability Density Function (PDF) of data vl

(l ∈ 1, 2, . . . , L) and g is estimated PDF of reverence vectors

wj (j ∈ 1, 2, . . . , Nmax), thus DKL can be described as

follows;

DKL (f, g) = Ef

[

log
(

∑L

l Gσv
(V − v(l))

)]

−Ef

[

log
(

∑Nmax

j Gσv
(W −wj)

)]

,(12)

where, σv is the kernel bandwidth for input data, and σw is

the one for reference vectors. Here, it can be regarded that

the minimizing the second term in Eq. (12) is equivalent

to optimizing the kernel bandwidth σw. Therefore, the cost

function of kernel bandwidth σw is represented as follows;

J(σ) = −
∑L

l

[

log
(

∑Nmax

j Gσv
(W −wj)

)]

. (13)

Here, the estimation of PDF with reference vectors can be

done using a single kernel bandwidth, which is called the

homescedastic case. The kernel bandwidth σw is calculated

by gradient descent over the cost function J(σ) as follows;

∂J

∂σw

=−Ev





∑Nmax

j Gσw
(V − w(j))

[

‖V −w(j)‖2

σ3
w

− d
σw

]

∑Nmax

j=1 Gσw
(V −w(j))



 .

(14)



(a) Input Data (b) Original GNG (c) GNG-CIM (σ = 1.0) (d) GNG-CIM (σ = 2.0)

(e) GNG-CIM (σ = 4.0) (f) GNG-CIM (σ = 6.0) (g) GNG-CIM (σ = 8.0) (h) GNG-CIM (σ = 10.0)

Fig. 1: Affect of the kernel bandwidth σ for self-organizing capability

TABLE I: Common parameter settings for all models

number of maximum epochs E : 200
available maximum number of nodes Nmax : 300
maximum node age agemax : 50
new node inserting cycle λ : 50
error reduction rate for node inserting process α : 0.5
error reduction rate for all nodes β : 0.9

TABLE II: Parameter settings of Original GNG

learning rate for BMU ǫb : 0.2
learning rate for connected nodes ǫn : 0.05

In consideration of an on-line update rule, the stochastic

gradient of Eq. (14) is applied by replacing the expected value

by the instantaneous value of the input vector. Finally, the

update rule of homoscedastic case is obtained as follows;

σw(l + 1) = σw(l)− ησ∆σw(l), (15)

where, ησ (0 < ησ ≤ 1) denotes learning rate. ∆σw(l) is

defined as follows;

∆σw(l) = −

∑Nmax

j=1 Gσw
(v(l)−w(j))

[

‖v(l)−w(j)‖2

σw(l)3 − ρd
σw(l)

]

∑Nmax

j=1 Gσw
(v(l)− w(j))

,

(16)

where d denotes dimensions of input vector, ρ denotes a

scaling factor for the stability of topological network [17].

TABLE III: Parameter settings of GNG-CIM with number of

nodes based adaptation

initial kernel bandwidth σ : 2.0
learning rate for reference vector ηw : 0.9
CIM criterion Ccim : 0.005
decreasing rate θ : 0.1

TABLE IV: Parameter settings of GNG-CIM with node dis-

tribution based adaptation

initial kernel bandwidth σ : 10
learning rate for reference vector ηw : 0.9
CIM criterion Ccim : 0.005
learning rate for kernel bandwidth ησ : 0.9
scaling factor ρ : 0.4

IV. EXPERIMENT

This section presents the simulation experiments in terms of

the affect of kernel bandwidth σ in CIM, the self-organizing

ability, and the quantitative comparison with Peak Signal-to-

Noise Ratio (PSNR) [22] by comparing with original GNG and

GNG-CIM with two kernel adaptation methods, respectively.

Throughout this section, the following parameter settings are

utilized; Table I shows the common parameter settings for

GNG architecture. Tables II, III and IV show the specific

parameter settings for each model.

A. Affect of Kernel Bandwidth σ in CIM

First of all, we evaluate the affect of kernel bandwidth σ
in CIM. Fig. 1(a) shows the input data which is consisted by



(a) Input Data (b) Original GNG (c) GNG-CIM (Num of Nodes) (d) GNG-CIM (Node Distribution)

Fig. 2: Self-organizing capability for Rectangle Data

(a) Input Data (b) Original GNG (c) GNG-CIM (Num of Nodes) (d) GNG-CIM (Node Distribution)

Fig. 3: Self-organizing capability for Half Kernel Data

(a) Input Data (b) Original GNG (c) GNG-CIM (Num of Nodes) (d) GNG-CIM (Node Distribution)

Fig. 4: Self-organizing capability for Corners Data

990 samples from normal distributions. For this section, the

kernel bandwidth σ in GNG-CIM is fixed as Fig. 1.

In Fig. 1(b), due to an algorithm of GNG, the nodes are

inserted until Nmax and several sub clusters are organized. In

contrast, GNG-CIM shows the strong outliers rejection ability.

As a result, GNG-CIM is able to organize the proper number of

clusters with lesser number of nodes based on the kernel band-

width. In other words, we could be designed the information

based on the appropriate dimension reduction. Furthermore,

the results in Fig. 1 emphasize that it is significant to define

the appropriate kernel bandwidth to obtain useful information

for further processing.

B. Self-Organizing Experiment

This experiment evaluates the self-organizing capability of

models with respect to 2D and 3D data distributions. In this

experiment, each dataset is consisted by L=1000 data points,

respectively. Figs. 2, 3, 4 and 5 show the results of 2D

dataset of Rectangle, Half Kernel, Corners and Crescent Moon

Data, respectively. Fig. 6 shows the result of 3D Wave data.

Here, only the Rectangle Data (Fig. 2) is including the noise

information.

In Fig. 2, original GNG is greatly influenced from noise

information. On the other hand, GNG-CIM (especially, node



(a) Input Data (b) Original GNG (c) GNG-CIM (Num of Nodes) (d) GNG-CIM (Node Distribution)

Fig. 5: Self-organizing capability for Crescent Moon Data

(a) Input Data (b) Original GNG (c) GNG-CIM (Num of Nodes) (d) GNG-CIM (Node Distribution)

Fig. 6: Self-organizing capability for 3D Wave Data

distribution based adaptation method) shows the superior out-

lier rejection ability. This is because the CIM is a probability

distributions based function. The influence from node in low

probability (density) region is lower than the one from high

probability region. Due to the algorithm of original GNG, the

nodes are inserted as much as possible until Nmax. Thus, there

are lots of sub clusters, especially Fig. 3. In contrast, GNG-

CIM have clustered data into appropriate number of clusters

without having sub clusters. In regards to 3D dataset as Fig. 6,

the nodes in original GNG cover the surface of data. However,

the network structure is not well represented the shape of data

(Several edges are not connected properly). On the other hand,

the network of GNG-CIM represents the summary of data

properly although the nodes in network are not covered the

surface of data.

From the self-organizing experiment, it can be regarded

that CIM-GNG has the superior self-organizing capability with

smaller number of nodes in topological network. In addition,

there is a possibility to improve the ability of GNG-CIM by

finding the more suitable kernel bandwidth for data.

C. Quantitative Comparison Experiment

In order to show a quantitative comparison for the unfolding

capability, the PSNR of topological network is compared. The

PSNR is calculated as follows [22];

PSNR = 10 log10

(

MAX2
I

MSE

)

, (17)

where, MAX2
I is the squared euclidean norm of input vector

V , MSE denotes mean squared error which is given as follows;

MSE =
1

L

L
∑

i=1

‖w(i)− v(i)‖2, (18)

here, L denotes the number of input vectors, v(i) is i-th
input vector, and w(i) represents the winning reverence vector

corresponding to v(i).
According to the definition of PSNR, it can be regarded that

the model with higher PSNR is better. In addition, we also

consider the number of nodes N in topological network for

the evaluation of unfolding capability. Thus, it can be regarded

that the model with higher PSNR and smaller number of nodes

has a superior ability.

The results of quantitative comparison are shown in Fig.

7. In this experiment, we utilized the results from previous

experiment to calculate PSNR and number of nodes N in

topological network. In Fig. 7, the number of nodes in original

GNG shows higher states than GNG-CIM models although it

shows better PSNR. Here, the number of nodes in original

GNG is inserted until Nmax, thus Log(N ) for each dataset

shows same value. CIM based models show better dimensional



reduction performance than other models. Thus, the models

have smaller Log(N ). Comparing with PSNR, GNG-CIM

with number of nodes based adaptation shows lower state

than original GNG. On the other hand, GNG-CIM with node

distribution based adaptation shows similar or higher PSNR,

except for Corners dataset. This is because the number of

nodes in network is too low. According to Eq. (17), the large

number of nodes makes high PSNR. Thus, there is a possibility

to improve the performance by changing the parameter settings

relating to CIM.

The results from this section, it can be considered that GNG-

CIM with node distribution based adaptation has the superior

abilities than other models.

V. CONCLUSION

In this paper, we introduced the generalized similarity

measurement called CIM to GNG instead of Euclidean-based

one in GNG, and we utilized CIM for the criteria of node

insert process. CIM is a kernel method based similarity

measurement, thus we also introduced the kernel bandwidth

adaptation algorithms based on the approaches in SOM-CIM.

The experimental results show that due to the adaptation of the

kernel bandwidth, GNG-CIM is able to control the complex-

ity of model easily. Self-organizing capability in GNG-CIM

shows that the model is able to represent the data structure

with the less number of neurons than original GNG, with

maintaining the outstanding outliers rejection ability.

As a future work, we will consider the optimization al-

gorithm for kernel bandwidth adaptation and the number of

nodes, for maximizing the performance of GNG-CIM.
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