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Abstract—Most real world problems have more than one
objective, with at least two objectives in conflict with one another
and at least one objective that is dynamic in nature. The
dynamic vector evaluated particle swarm optimisation (DVEPSO)
algorithm is a co-operative algorithm, where each sub-swarm
solves only one objective function and therefore, each sub-swarm
optimises only a sub-set of decision variables. Knowledge is
shared amongst the sub-swarms when the particles’ velocity is
updated, by using the position of the global guide of the sub-
swarm or of another sub-swarm. The global guide can only
provide information about the decision variables that are appli-
cable to the objective function that its sub-swarm is optimising.
Therefore, padding is required for the other decision variables.
This paper investigates various padding approaches, namely
using the sub-swarm’s global best, using the personal best (pbest)
of another particle in the sub-swarm, using the global best (gbest)
of another sub-swarm or performing parent-centric crossover on
another particle’s position, pbest and gbest. Results indicate that
using a random gbest or pbest performed well in fast changing
environments, and using the sub-swarm’s gbest performed well
in slowly changing environments.

I. INTRODUCTION

Optimisation problems with more than one objective, with
at least two objectives in conflict, and where the environment
changes over time are referred to as dynamic multi-objective
optimisation problems (DMOOPs). This paper focusses on
boundary constrained DMOOPs. Due to the conflicting ob-
jectives a single solution does not exist. Therefore, a dynamic
multi-objective optimisation algorithm (DMOA) has to find a
set of trade-off solutions for each environment.

Greeff and Engelbrecht [6] proposed a co-operative particle
swarm optimisation (PSO) algorithm to solve DMOOPs. Each
sub-swarm only optimises one objective and then knowledge
is shared amongst the sub-swarms. The knowledge sharing
occurs through the velocity update of a sub-swarm’s parti-
cles by using the global guide of either the particle’s own
sub-swarm or of another sub-swarm. If the global guide is
from another sub-swarm, it can only provide information or
knowledge about the decision variables that its sub-swarm is
optising, i.e. the decision variables that are applicable to the
objective function that the sub-swarm is optimising. Therefore,
for the velocity update, the selected global guide may not

contain information for all dimensions (decision variables) that
is required by the particles. Padding should then be applied
to the missing dimensions. Previous versions of dynamic
vector evaluated particle swarm optimisation (DVEPSO) used
the sub-swarm’s global best (gbest) for padding. However,
this approach may limited the diversity of the sub-swarm.
Therefore, this paper investigates four padding approaches,
namely using:

• the sub-swarm’s global best
• the personal best (pbest) of another particle in the same

sub-swarm
• the gbest of another sub-swarm
• the resulting particle obtained from performing parent-

centric crossover (PCX) on another particle’s position,
pbest, and its sub-swarm’s gbest.

The rest of the paper’s layout is as follows: Section II
provides background information on dynamic multi-objective
optimisation (DMOO). The DVEPSO algorithm and padding
required for knowledge transfer is discussed in Section III.
Section IV discusses the experimental setup, such as the
algorithm configurations, bechmark functions, performance
measures and statistical analysis used for this study. The results
obtained from the experiments are discussed in Section V.
Finally, conclusions are drawn in Section VI.

II. BACKGROUND

This sections provides information on DMOO that is re-
quired for the rest of the paper.

Let the nx-dimensional decision space be represented by
S ⊆ Rnx . Let the feasible space be represented by F ⊆ S,
where F = S for boundary constrained optimisation problems.
Let x = (x1, x2, . . . , xnx

) ∈ S represent a decision vector and
let fk : Rnx → R define a single objective function. Let an
objective vector containing nk objective function evaluations
be represented by f(x) = (f1(x),
f2(x), . . . , fnk

(x)) ∈ O ⊆ Rnk , with O representing the
objective space. Then a boundary constrained DMOOP is
defined as:



minimise f(x,W(t))

subject to x ∈ [xmin , xmax]
nx (1)

where W(t) is a matrix of time-dependent control parameters
of an objective function at time t and nx is the number of
decision variables. The boundary constraints are referred to as
x = (x1, . . . , xnx

) ∈ Rnx and [xmin , xmax]
nx .

The quality of two DMOO solutions is compared using
vector domination, defined as:

Definition 1. Vector Domination: Let fk be an objective
function. Then, a decision vector x1 dominates another de-
cision vector x2, denoted by x1 ≺ x2, if and only if

• fk(x1) ≤ fk(x2), ∀k = 1, . . . , nk; and
• ∃i = 1, . . . , nk : fi(x1) < fi(x2) .

The best decision vectors is referred to as being Pareto-
optimal, defined as follows:

Definition 2. Pareto-optimal: A decision vector x∗ is Pareto-
optimal if

@k : fk(x) ≺ fk(x∗) (2)

The set of all Pareto-optimal decision vectors is referred
to as the Pareto-optimal set (POS). If the decision vector x∗

is Pareto-optimal, the objective vector, f(x∗), is also Pareto-
optimal. The set of objective vectors that correspond to the
decision vectors in the POS is referred to as the Pareto-optimal
front (POF). When solving a DMOOP, the goal of a DMOA
is to track the POF over time and to find for each environment
a diverse set of solutions.

III. PADDING FOR KNOWLEDGE SHARING

This section discusses the DVEPSO algorithm and the
padding of DVEPSO’s particle’s for knowledge sharing.

A. Dynamic Vector Evaluated Particle Swarm Optimisation
Algorithm

Parsopoulos et al. [16] introduced a co-operative PSO-
based algorithm called the vector evaluated particle swarm
optimisation (VEPSO) algorithm. It was extended for DMOO
by Greeff and Engelbrecht [6], referred to as DVEPSO. The
number of DVEPSO’s sub-swarms is equal to the number
of the DMOOP’s objectives that the algorithm is optimising.
Each sub-swarm optimises only one objective function and
knowledge of its best solutions is shared with the other sub-
swarms. This shared knowledge is contained in the global
guide and is used to update the velocity of the particles. A
knowledge sharing strategy is used to select a sub-swarm, as
well as which particle of the selected swarm will be used for
knowledge sharing, i.e. in the velocity update of the particles.

The following default configuration of DVEPSO is used in
this study [8], [14]:

• Each objective function is optimised by a global best
PSO.

• A particle’s new position is selected as the particle’s
new personal best (pbest) if the particle’s new position
leads to a better objective function value than its current
pbest. Only the objective function being optimised by
the sub-swarm is taken into consideration when these
two positions are compared with one anther, i.e. Pareto-
dominance is not used.

• A particle’s position is selected as the new gbest of the
sub-swarm if the particle’s new position dominates the
current gbest. However, if a particle’s new position is
non-dominated with regards to the sub-swarm’s current
gbest, one of these two positions is randomly selected as
the sub-swarm’s new gbest.

• A specified number of particles, referred to as sentry
particles [2], are randomly selected and re-evaluated after
the algorithm performed the specific iteration, but before
the next iteration starts. If after re-evaluation any sentry
particle’s fitness value differs with more than a specificed
value, the sub-swarm is notified that a change in the
environment has occurred.

• If a change in the environment has occurred, 30% of the
particles of the sub-swarm whose objective function has
changed is randomly re-initialised [8]. The archive’s non-
dominated solutions are re-evaluated and solutions that
have become dominated are removed from the archive.

• A random knowledge sharing topology is used [7], where
the sub-swarm selected for knowledge sharing can be
another sub-swarm or the sub-swarm itself. Therefore, for
some iterations a sub-swarm may end up using its own
global guide to update its particles’ velocity. The global
guide of the selected swarm is chosen using tournament
selection.

• If the archive is full, a solution is removed from a
crowded region in the archive.

B. Padding Additional Dimensions

Knowledge is shared amongst the sub-swarms of DVEPSO
when the velocities of a sub-swarm’s particles are updated. The
random knowledge sharing strategy may result in the global
guide being selected from a sub-swarm whose particles have
a different dimension. In these cases, the global guide can
only provide information about the decision variables that are
applicable to the objective function that is being optimised by
the selected global guide’s sub-swarm. Therefore, padding is
required for the other decision variables (dimensions).

This process of padding is illustrated in Figure 1. In
Figure 1, DVEPSO is used to solve a two-objective DMOOP,
with objectives f1 and f2. f1 has a dimension of one and f2
has a dimension of n. Since each sub-swarm only solves one
objective, the particles of S1 will have a dimension of one, and
the particles of S2 will have a dimension of n. If a particle
of S1 is selected to share knowledge with S2, the particle
will be used to update the velocity of the particles in S2.
However, only one dimension of the particles of S1’s position
is in common with particles of S2’s position. Knowledge
about additional dimensions (the uncommon dimensions) are



required before the selected particle (global guide) can be used
to update the velocity of S2’s particles. Therefore, padding is
required to obtain the missing dimensions.

Fig. 1: Applying padding to share knowledge between the swarms
of DVEPSO

In this paper, the following four approaches are investigated
for the padding (explained with reference to Figure 1):

• Using the gbest of the same sub-swarm (S2) to pad the
missing dimensions (referred to as Pg in the rest of the
paper).

• Firstly selecting another sub-swarm according to the
knowledge transfer strategy. Once a sub-swarm is found
that contains particles with more dimensions:

– A pbest of the selected sub-swarm is randomly
chosen to pad the missing dimensions (referred to
as Prp in the rest of the paper).

– The gbest of the selected sub-swarm is chosen to pad
the missing dimensions (referred to as Prg in the rest
of the paper).

– A particle of the chosen sub-swarm is randomly
chosen. Parent-centric crossover (PBX) is then per-
formed on the selected particle’s position, its pbest
and the selected sub-swarm’s gbest (referred to as Pc

in the rest of the paper).

IV. EXPERIMENTAL SETUP

This section discusses the experimental setup used for this
study. Section IV-A discusses the algorithms that were used
for this study. The benchmark functions and performance
measures are discussed in Sections IV-B and IV-C respectively.
The statistical analysis that were performed on the obtained
data is discussed in Section IV-D.

A. Algorithms

The default DVEPSO configuration as discussed in Sec-
tion III-A is used in this study. In addition, the padding ap-
proaches discussed in Section III-B are used to pad the missing
dimensions when required. Therefore, the performance of four
DVEPSO configurations are compared in this paper, namely
Pg , Prg , Prp and Pc (refer to Section III-B).

For this study, each algorithm configuration was executed
for 30 independent runs on each benchmark function and for
each environment. Each run had 20 environment changes, i.e.
if a change occurred every 10 iterations, each run had 200
iterations.

B. Benchmark Functions

According to a comprehensive analysis of DMOOPs in [13],
seven benchmark functions with various characteristics were
selected to evaluate the DVEPSO configurations on. These
functions are DIMP2 [15], dMOP2 [5], dMOP2dec [11],
HE2 [9], HE7 and HE9 [13], [8], FDA4 [3], FDA5 [3] and
FDA5dec [11]. For each benchmark function the following
severity of change (nt) and frequency of change (τt) combi-
nations were used: nt = 10 and τt = 10 (a fast changing
environment), nt = 10 and τt = 25 (a slow changing
environment), nt = 10 and τt = 50 (a very slow changing
environment), nt = 1 and τt = 10 (a severely changing
environment) and nt = 20 and τt = 10 (a gradually changing
environment).

A modified version of DIMP2 with a concave POF (referred
to as DIMP2 in the rest of the paper) is used in this study.
Each decision variable of DIMP2 has its own rate of change.
dMOP2’s POF changes from convex to concave and vice
versa over time. However, with dMOP2dec, in addition to the
characteristics of dMOP2’s POF, its POF is deceptive, i.e.
there is at least one local POF and the search space favours the
local POF and not the global POF. HE2 have a disconnected
POF, i.e. the POF consists of disconnected continuous pieces.
HE7 has a POF that changes from convex to concave and
vice versa over time, a non-linear POS, and each decision
variable has a different POS. All of the functions discussed so
far are 2-objective functions. FDA4, FDA5 and FDA5dec are
3-objective functions with a non-linear POF. In addition, the
spread of solutions in the POF of FDA5 and FDA5dec changes
over time and FDA5dec’s POF is deceptive.

C. Performance Measures

Based on an analysis of performance measures in [12],
two performance measures were selected for this study. The
first measure is the alternative accuracy measure (accalt) [1],
referred to in this article as acc (a low acc value indicates
good performance). acc is measured as the absolute difference
between the hypervolume (HV) of the true or optimal POF
and the hypervolume of the approximated (found) POF at
a specific time t. The second measure, stability (stab) [1],
quantifies the effect that changes in the environment have on
acc of the DMOA. It measures the difference in acc values
for consecutive environments and a low stab value indicates
good performance.

These two measures require the hypervolume value, which
was calculated with the source code of Fonseca et al [4].
For the hypervolume calculations, the reference vector was
calculated for each benchmark function, consisting of the
worst objective function value for each dimension.



D. Statistical Analysis

For each DMOOP, environment, and performance measure
wins and losses were calculated as proposed in [10]. For each
time step just before a change in the environment occurred,
the average performance measure value over 30 runs was
calculated. A Kruskal-Wallis test was performed on these
average values obtained by the DVEPSO configurations. A
pair-wise Mann-Whitney U test was performed for each pair
of DVEPSO configurations if the Kruskal-Wallis test indicated
a statistical significant difference between these performance
measure values. If the Mann-Whitney U test indicated a
statistical significant difference, wins and losses were awarded
as follows:

1) At each time step just before a change in the environ-
ment occurred, the average performance measure values
of the two DMOAs were compared.

2) For each environment, the DMOA with the best perfor-
mance measure value was awarded a win and the other
DMOA was awarded a loss.

3) In order to ensure that a DMOA’s performance on a
specific DMOOP did not lead to skewed results, the
number of wins and losses were normalised for each
DMOOP.

For all statistical tests a confidence level of 95% was used.

V. RESULTS

This section discusses the results of the experiments. Sec-
tion V-A discusses the performance of the algorithms with
regards to the two measures. The performance of the algo-
rithms in each environment is discussed in Section V-B. A
discussion of the results, as well as observations that were
made, are presented in Section V-D.

A. Performance Per Measure

The wins and losses that were obtained per measure, over
all benchmarks and all environments, are discussed in this
section. Table I presents the wins and losses obtained for acc.
For acc, Prg performed the best, obtaining 6.9 more wins than
losses. The second best performing configuration was Prp,
being awarded 1.3 more wins than losses. Both Pc and Pg

performed much worse, obtaining more losses than wins. No
statistical significant difference was observed for stab.

TABLE I: Overall wins and losses for acc obtained by DVEPSO
using various padding approaches

PM Results Padding Approaches
Pc Pg Prg Prp

acc Wins 7.95 9.45 13.45 13.15
acc Losses 13.05 12.55 6.55 11.85
acc Diff -5.1 -3.1 6.9 1.3
acc Rank 4.0 3.0 1.0 2.0

B. Performance Per Environment

Table II presents the wins and losses over all benchmark
functions and all performance measures for each of the envi-
ronments. No padding approach won in more than one type

of environment and each padding approach came last in at
least one environment. Pg obtained the most wins in two
environments, but also the least wins (worst rank) in two
other environments. Both random approaches, Prg and Prp

performed well, obtaining a top three rank in 4 environments
and obtaining the worst rank in only one environment. These
two appraoches performed well in fast changing environments
and Pg performed well in slower changing environments.

TABLE II: Overall wins and losses per environment for DVEPSO
using various padding approaches

nt-τt Results Padding Approaches
Pc Pg Prg Prp

10-10 Wins 1.1 0.2 6.9 2.8
10-10 Losses 3.9 5.8 0.1 1.2
10-10 Diff -2.8 -5.6 6.8 1.6
10-10 Rank 3.0 4.0 1.0 2.0
10-25 Wins 1.95 3.0 1.0 1.05
10-25 Losses 3.05 0.0 1.0 2.95
10-25 Diff -1.1 3.0 0.0 -1.9
10-25 Rank 3.0 1.0 2.0 4.0
10-50 Wins 0.3 2.5 0.55 3.65
10-50 Losses 1.7 1.5 2.45 1.35
10-50 Diff -1.4 1.0 -1.9 2.3
10-50 Rank 3.0 2.0 4.0 1.0
20-10 Wins 5.4 0.9 3.45 3.1
20-10 Losses 2.3 4.1 1.95 4.5
20-10 Diff 3.1 -3.2 1.5 -1.4
20-10 Rank 1.0 4.0 2.0 3.0
1-10 Wins 1.9 2.85 1.95 3.15
1-10 Losses 4.8 1.15 1.45 2.45
1-10 Diff -2.9 1.7 0.5 0.7
1-10 Rank 4.0 1.0 3.0 2.0

C. Overall Performance

The wins and losses over all benchmark functions, all
performance measures and all environments are presented in
Table III. Prg performed the best, obtaining 6.9 more wins
than losses. Even though Prp obtained only slightly less wins
than Prg, it obtained more losses than Prg. These two random
approaches outperformed the other two approaches by being
the only two approaches that were awarded more wins than
losses.

TABLE III: Overall wins and losses for DVEPSO using various
padding approaches

nt-τt Results Padding Approaches
Pc Pg Prg Prp

all Wins 10.65 9.45 13.85 13.75
all Losses 15.75 12.55 6.95 12.45
all Diff -5.1 -3.1 6.9 1.3
all Rank 4.0 3.0 1.0 2.0

D. Discussion of Results

A statistical significant difference in results was only ob-
served for DIMP2 and HEF5. Figures 2 and 3 present the
approximated POFs found by the padding approaches for HE7
and DIMP2 with nt = 1-τt = 10 over all 30 runs. Figure 3
illustrates the existance of outliers in the approximated POFs.
In fast changing environments outliers will exist in the approx-
imated POFs, since the algorithm does not find a solution that



dominates the outlier in number of iterations that are available
before the environment changes. However, it can be seen that
the outliers only exist in the first few environments. Since
DIMP2 is a type I DMOOP, its POS changes over time but
the POF remains static. Therefore, the outliers are eliminated
in later environments.

The wins and losses for DIMP2 and HE7 are presented
in Tables IV and V respectively. Prg performed the best for
DIMP2 and was also the only approach that was awarded
more wins than losses. For HE7, Prp outperformed the other
approaches, obtaining 6.6 more wins than losses. The average
acc values obtained for DIMP2 and HE7 (with nt = 1-
τt = 10) by the padding approaches for each environment
are presented in Figure 4. From Figure 4 it can be seen that
Pg consistently obtained the lowest acc values for DIMP2.
Similarly, Prp consistently obtained the best acc values for
HE7.

TABLE IV: Overall wins and losses for DVEPSO using various
padding approaches for DIMP2

nt-τt Results Padding Approaches
Pc Pg Prg Prp

all Wins 0.1 0.9 2.0 0.0
all Losses 1.9 1.1 0.0 0.0
all Diff -1.8 -0.2 2.0 0.0
all Rank 4.0 3.0 1.0 2.0

TABLE V: Overall wins and losses for DVEPSO using various
padding approaches for HEF5

nt-τt Results Padding Approaches
Pc Pg Prg Prp

all Wins 6.05 1.2 3.75 10.7
all Losses 5.65 6.8 5.15 4.1
all Diff 0.4 -5.6 -1.4 6.6
all Rank 2.0 4.0 3.0 1.0

Even though no statistical significant difference were ob-
served for the other functions, some observations can be made
from the results. The acc values for each environment obtained
by the various padding appraoches for FDA4, FDA5dec and
HE2 are presented in Figure 5. For FDA4 all approaches
obtain a better acc value over time. FDA4 is also a type I
problem (similar to DIMP2) and therefore even though the
POS changes over time, the POF remains static. For FDA5dec

the acc values increase and decrease over time. Furthermore,
the acc values vary over a big range. This occurs since
the spread of the solutions change over time and the POF
is deceptive. Therefore, the algorithms (padding approaches)
struggle to converge to good solutions. Similar to FDA5dec, the
acc values for HE2 increases and decrease over time. However,
over time the acc increase more than what they decrease.
Therefore, as time goes by, all padding approaches struggle
even more to converge to good solutions.

VI. CONCLUSIONS

When solving dynamic multi-objective optimisation prob-
lems (DMOOPs) with the dynamic vector evaluated particle
swarm optimisation (DVEPSO) algorithm, each sub-swarm

optimises only one objective and knowledge is then shared
between the sub-swarms. The knowledge is shared by using
the global guide of either the sub-swarm or from another
sub-swarm when updating the particle’s velocity. However,
it may occur that the particles of the various sub-swarms
have different dimensions, since they only contain the decision
variables applicable to their sub-swarm’s objective function.
Therefore, if a particle with a smaller dimension is chosen
for knowledge sharing, it does not have values for all of the
decision variables that are required for the velocity update.
In these cases, padding is required to obtain values for these
missing dimensions.

This paper investigated four approaches to pad the missing
dimensions, namely using the sub-swarm’s own gbest, using
a randomly selected pbest or gbest from another swarm and
using parent-centric crossover (PBX) on a randomly selected
particle’s position, pbest and gbest. The results indicated that
with regards to accuracy (acc) the random approaches (random
gbest and random pbest) performed the best in fast changing
environments, and the approach that uses the sub-swarm’s own
gbest performed the best in slowly changing environments.
Therefore, an approach that combines the usage of these two
approaches may perform well in both slowly changing and
fast changing environments.

In addition, all approaches struggled to converge to the
Pareto-optimal front (POF) of HE2, HE7 and FDA5dec in fast
and severely changing environments. Outliers also occurred
when solving DIMP2, especially in fast and severely changing
environments. Therefore, more research is required to improve
the convergence of DVEPSO in these type of environments.
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Fig. 3: POF found for DIMP2 with nt = 1-τt = 10 by the various padding approaches over 30 runs
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Fig. 4: acc values for DIMP2 and HE7 with nt = 1-τt = 10 for the various padding approaches for each of the 20 environments
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Fig. 5: acc values for FDA4, FDA5dec and HE2 with nt = 1-τt = 10 for the various padding approaches for each of the 20 environments


