
A Hierarchical Maze Navigation Algorithm with
Reinforcement Learning and Mapping

Tommaso Mannucci Erik-Jan van Kampen
Faculty of Aerospace Engineering, Delft University of Technology, 2629HS Delft, the Netherlands

Abstract—Goal-finding in an unknown maze is a challeng-
ing problem for a Reinforcement Learning agent, because the
corresponding state space can be large if not intractable, and
the agent does not usually have a model of the environment.
Hierarchical Reinforcement Learning has been shown in the past
to improve tractability and learning time of complex problems,
as well as facilitate learning a coherent transition model for the
environment. Nonetheless, considerable time is still needed to
learn the transition model, so that initially the agent can perform
poorly by getting trapped into dead ends and colliding with
obstacles. This paper proposes a strategy for maze exploration
that, by means of sequential tasking and off-line training on
an abstract environment, provides the agent with a minimal
level of performance from the very beginning of exploration.
In particular, this approach allows to prevent collisions with
obstacles, thus enforcing a safety restraint on the agent.

I. INTRODUCTION

Reinforcement Learning (RL) [1] is a bio-inspired branch
of machine learning. RL has been chosen for many application
[2] due to its simplicity and adaptability, since assigning the
reward function is usually simpler than solving the problem
beforehand, and since it allows to solve tasks that are time-
varying or that present uncertainties. However, one of the
well known drawbacks of RL is that, at the start of learning,
the policy is usually inefficient since the agent’s knowledge
of the environment is incomplete. Extensive exploration can
be necessary before a task is correctly performed, depending
on its complexity: the curse of dimensionality dictates that
learning times grow exponentially with the number of states,
which poses a problem when considering large and discrete,
or continuous state spaces. This initial “blind search” can limit
the applicability of RL algorithms, for which keeping learning
time to a minimum is therefore a strong requisite.

The branch of Hierarchical Reinforcement Learning (HRL)
introduces abstraction in the learning process: the ability to
find common features between states and actions for a given
task, as well as between tasks. Although multiple instances
of HRL exist in literature, Barto [3], reports of three main
approaches: options [4], [5] are sequences of actions that
can be appended to the action set A, which perform specific
subtasks; Hierarchies of Abstract Machines (HAMs) [6] put
restrictions on the space of realizable policies through ma-
chines that learn how to achieve specific subtasks, so that
the RL problem becomes optimizing the machines and the
transitions between them; MAXQ [7] instead directly divides
the complete task into subtasks, and assigns to each its own
pseudo-reward. Regardless of the specific method, there are

several advantages to learning when abstraction is performed.
The agent can individuate the relevant features of the state
space to appropriately perform the task. Abstraction can also
help the agent when performing sequential tasks by addressing
which region of the state space is most relevant at a given time;
this is especially useful when considering tasks that share one
or more intermediate subtask. Finally, abstraction can be useful
in reducing the effects of stochasticities.

Indoor navigation is a field where both autonomous [8] and
semi-autonomous [9] platforms can benefit from the applica-
tion of HRL. In particular, maze navigation exemplifies the
advantages of abstraction during learning. Applying classical,
“flat” RL algorithms to mazes usually implies very long learn-
ing times, due to the typically large state space of this tasks,
and due to the difficulty of implementing appropriate function
approximators. However, the problem can be simplified by
abstraction. For example, an agent that had learned how to
avoid one obstacle could reapply this knowledge to avoid
similar ones. Higher levels of abstractions can be devised;
e.g. if the agent has learned what constitutes a wall, it can
learn wall-following behavior, and remember which walls have
been previously followed. These and other relatively simple
abstractions can be used to speed up learning; however, this
abstraction very often originates from the designer itself. For
example, to implement wall or corridor following behaviours,
the designer needs to properly define which actions adhere to
the behaviour and devise an appropriate reward. The reward
must be tailored as well to teach the agent when to adopt and
terminate a learned behaviour (e.g. when to stop wall follow-
ing); alternatively, switching conditions between behaviours
must be predefined. Parr [6] shows this kind of behavioral-
based approach when applied to a maze.

This paper presents a different approach to hierarchy, in-
spired by the layered control philosophy of Brooks [10] and
by the top-down hierarchy of Feudal Reinforcement Learning
[11]. The strategy is to implement a highly abstracted “lowest-
level” controller that needs the least possible amount of task
and environment knowledge in order to be applied. This
controller can therefore be extensively trained off-line before
any actual real-life implementation. The resulting zero-time
initial policy might be sub-optimal, but the initial blind-search
will be prevented. The properties of such an approach are
illustrated in a goal-finding task inside a relatively large maze.
Using mapping and RL to promote exploration combined
with a hierarchical navigation policy results in an agent that
efficiently navigates the unknown environment with minimal



learning time; additionally, undesired occurrences such as
collisions are minimized during the actual task.

The remainder of the paper is structured as follows. Section
II presents fundamentals for the methods applied, i.e. RL,
HRL, and mapping. Section III illustrates in detail the ap-
proach. Section IV presents the experimental setup upon which
the algorithm is tested, the results of which are discussed in
Section V. Finally, Section VI concludes.

II. FUNDAMENTALS

A. RL and HRL

Let S and A be respectively the set of states s and actions
a. Rps, a, s1q is the reward function assigning reward r after
transition s, aÑ s1, which is given by the probability function
T : S ˆAˆ S Ñ r0 , 1s. A policy πps, aq : S ˆAÑ r0 , 1s
is optimal if @s it maximizes the value function

V πpsq “ E
´

ř8
k“0 γ

krk

¯

,

where γ P p0 , 1q is the discount. These five elements con-
stitute a Markov Decision Process (MDP). Among other RL
algorithms that can solve MDPs, temporal-difference methods
approximate the value of states V psq with

V π
k`1psq “ V π

k psq ` α
`

rk ` γV π
k ps

1q
˘

upon transition from s to s1. The optimal solution is then
obtained by iterating and evaluating the policy.

HRL is a branch of RL that is loosely connected by
the concept of extended temporal actions or macro-actions,
i.e. activities extended in time. These introduce temporal
abstraction into learning, e.g. how to solve subtasks. HRL
differs from “flat” RL in that it is not defined on MDPs but
the more general Semi-Markov Decision Processes (SMDPs)
[4], an extension of MDPs that includes extended temporal
actions.

B. Mapping and maze exploration

Mapping means using sensor readings to generate an in-
ternal representation of the environment. Typically, the agent
starts exploration with a small map of its immediate surround-
ings or with no map at all, but expands on this as more
measurements are performed. Two main representations for
maps exist. As the name suggests, grid-based maps partition
the environment into an evenly spaced grid. In theory, each
cell can be observed or unobserved, and observed cells can
be either empty or occupied. However, in order to cope with
reading errors, occupancy of a cell is often treated as a
continuous value, e.g. in evidence grids [12]. If the value
of occupancy of a cell is below a set threshold it is empty,
otherwise it is full. Grid-based maps constitute a quantitative
representation for an environment, while topological maps are
a qualitative one. These maps do not use grids but graphs:
vertices represent locations, such as rooms, corridors, or land-
marks; edges indicate which locations are reachable from one
another. Hybrid representations known as “grid-topological”
[13] have been attempted as well in the hope of combining

Fig. 1: An example of sonar reading. Sonars are positioned at the
front, right, and left of the agent, and detect obstacles in a straight
line with a range of up to three squares.

the simple interpretation and use of topological maps with the
more precise nature of grids.

III. APPROACH DESCRIPTION

This section explains the proposed approach. After briefly
describing the agent, the two main elements of the approach
are illustrated: the hierarchical control for local navigation, and
the global exploration strategy, based on mapping and RL.

A. Agent description

The agent considered in this paper represents a ground
robot equipped with distance sensors. The robot is assumed
to be able to travel at constant speed in the direction it is
facing, to brake with negligible braking distance, and to turn
on the spot. The discrete primitive actions of the agent are
then advancing one square, turning 90˝ clockwise, or turning
90˝ counterclockwise. The agent navigates with the aid of a
map; this is not provided beforehand but is built online, based
on the sensor readings. Three close range distance sensors
(e.g. sonars) are positioned at the front, right and left of the
robot, detecting the nearest obstacle within three squares of
distance in a straight line (see figure 1). A compass detects
which of the four cardinal directions the agent is facing at
each time. Assuming perfect readings of the sensors, a map is
built progressively which is consistent with the environment.
It is assumed that the robot performs perfect odometry, so that
the agent knows its position in the map at all times.

B. Hierarchical control for local navigation

Local navigation is performed through hierarchical control,
which is obtained by repeatedly applying a single, simplified
low level controller, on multiple levels of abstraction.

This low-level policy is obtained off-line in a “minimalist”
environment, a simple minigrid (figure 2) four squares long
and three squares wide, which is used to teach basic navigation
to a trainee agent. The squares of the minigrid can contain
fixed obstacles, in which case they are impassable. The trainee
will learn how to avoid obstacles to reach the goal positions
pg“p

1
g, p

2
g, p

3
g, of the fourth row.

The training is divided into episodes, at the start of which
the trainee is initialized at a random, empty position pst
in one the first three rows. Obstacles are then positioned
randomly in the remaining squares. Therefore, a total of



Fig. 2: In this sample episode, the environment contains four occupied
squares, included a goal state. The agent starts in p0 and descends
towards goal p6 in six steps. As the agent performs a deviation with
action a2, the obtained trajectory is suboptimal.

212 ´ 23 “ 4088 obstacle placements O are possible. The
trainee can then attempt moving from pst to any adjacent
square by conventional actions up, down, right, left. If the
square is empty, the trainee moves with probability one and
receives a reward of -1. Otherwise, the action is not applied
for this iteration. The trainee chooses a random action with
probability 0.1, and otherwise takes the action that, during the
episode, has been selected the least amount of times from its
current position. An episode terminates as soon as the trainee
reaches a goal position or, if including discarded actions, the
100th iteration is reached.

It should be noted that the trainee is not exactly the same
agent described in the previous paragraph. It is instead an
abstracted version of it, which does not take take orientation
into account. This is reflected in the different actions available
to the two. Nonetheless, all trajectories simulated in training
by the trainee are reproducible in the maze by the agent using
primitive actions.

Given k the number of moves in an episode, the trainee
performs k trajectories τ“tO, pi, ai:k´1, R, pku. Each trajec-
tory is a motion pattern starting from position pi at time i, all
terminating in pk at time k, after sequence of actions ai:k´1.
Each trajectory yields an undiscounted return R“i´ k. If the
episode terminates before the 100th iteration, pk is always one
of the goals pg. The trainee can then use each trajectory as an
option [4] when in position pi to get to goal pk, given obstacles
O, receiving a return R. The same motion is also reused
whenever possible by applying appropriate transformations to
the environment; e.g. consider placement O and its mirrored
image O1 obtained by switching the first and third column of
the minigrid. A trajectory that reaches a goal in O can be used
(opportunely mirrored) to reach a goal in O1. Consider again
figure 2, in which the trainee successfully reaches the goal in
six moves, and therefore six trajectories are observed:

tO, p0, a0:5,´6, p6u, tO, p1, a1:5,´5, p6u,
tO, p2, a2:5,´4, p6u, tO, p3, a3:5,´3, p6u,
tO, p4, a4:5,´2, p6u, tO, p5, a5,´1, p6u.

To these, six trajectories are added for right-left mirrored en-
vironment O1. Additionally, five trajectories are found for the
top-down mirrored environment O2, where goal p6 is replaced

by position p1. Finally, five more trajectories are obtained
for the environment O3 obtained rotating the obstacles by
180˝. In total, 22 valid trajectories are found in four different
environments with a single episode of training.

In case the iteration limit of 100 is reached, it is assumed
that the goals can not be physically reached, given obstacles
O, from starting position pst and all positions encountered
afterward in the episode. These trajectories are also used to
teach the trainee, with the following modifications. First, R
is replaced by ´100 for all τ , as an indication that they
all fail in reaching the goals. Second, each trajectory τ is
replaced by three trajectories with pk “ p1,2,3g . Unsuccessful
trajectories will then be in the form: tO, pi, ai:k´1,´100, p

1
gu,

tO, pi, ai:k´1,´100, p
2
gu and tO, pi, ai:k´1,´100, p

3
gu.

Valid trajectories are recorded by means of a table T :
tOu ˆ tpiu ˆ tpku ˆ taiu Ñ R that maps the combination
of environment, starting and ending positions, and first action
of each trajectory to the return R. The 4088 ¨9 ¨3 ¨4 entries are
initially empty. At the end of an episode, for each trajectory
τ the content of the corresponding entry in T is compared to
the new return R: if it is empty or lower, then it is replaced by
R. After convergence, T indicates if a goal pk can be reached
for given environment and position, and the number of moves
necessary to do so when starting with action ai.

The table T can then be used to navigate the agent inside
a grid, provided that:

‚ the agent has a map with the surrounding obstacles;
‚ a local direction of motion is assigned.
Navigation is performed as follows. The agent places a

minigrid inside the map, so that the current position of the
agent is inside the first three rows, and the goals are in the
local direction of motion. Setting aside for the moment the
presence of unobserved squares, assume that the map provides
the placement O. Then, according to the current position pi
inside the minigrid, T is consulted to obtain the optimal trainee
action up, down, etc., which is then decomposed into the
equivalent primitive actions. Figure 3 illustrates an example
of navigation from state A1 to state A9. The agent is initially
in A1, and is instructed to go South. It positions the minigrid
between A1-D3 an reaches goal D1. Then, it is commanded
to proceed East, so it positions the minigrid in D1-F4. This
time multiple goals are available, and the agent ends in E4.
Following the same identical steps, it then continues East
through D4-E7, and finally North through A7-D9, reaching
its goal.

As it can be seen, proper maze navigation can be obtained
by iterating the policy contained in T . However, determining a
direction of motion and positioning the minigrid appropriately
is not trivial. For example, the direct route between A1-A9 in
figure 3 is blocked by an obstacle. The agent must understand
the presence of the obstacle, and then circumnavigate it,
in order to avoid unnecessary or even unsafe actions (e.g.
collisions).

This can be achieved by applying the policy T of the
minigrid on a higher level of abstraction. Consider partitioning
the map into groups of 9-by-6 (or 6-by-9) squares, and each



Fig. 3: Sample of maze navigation obtained through iteratively
adopting the minigrid logic of table T .

(a) (b)

Fig. 4: Transitions between tiles (a) are abstracted into a macrogrid
(b), which allows to circumvent obstacles.

group into 6 tiles, so that each tile is a group of 3-by-3 squares.
Figure 4a shows one such group and its 6 constituent tiles A1,
A2, B1, etc. In the same way that the policy T , applied to
the minigrid, indicates how to transition between squares, the
policy is applied to a macrogrid to move the agent between
tiles. As with the minigrid, the macrogrid is composed of 4-
by-3 cells, which however do not represent squares of the
map. Cells A1, A2, B1 and B2 (figure 4b) represent the tiles
with the same name. If the agent is in any square of a tile,
it is considered to be inside the corresponding cell of the
macrogrid. The remaining cells (with the exception of αI and
βI) do not represent tiles, but transitions between tiles. If a
transition cell is occupied, it is not possible to move between
the two adjacent tiles. For example, in figure 4, obstacles
prevent paths A2-B2 and B1-C1, so α2 and β1 are occupied.
Occupancy of transition cells can be assessed by the agent by
positioning a minigrid so that the first three rows overlap one
of the two tiles, and then checking T to see if any goal can be
reached. Finally, cells αI and βI represent invalid transitions,
and as such are always considered occupied. The use of tiles
and macrogrids introduces temporal abstraction, since moving
between tiles is an extended temporal action.

Figure 5 shows an application of the combined hierarchical
control when the map contains unobserved squares, in which
the agent is exploring towards the East. A grid of 3-by-2 tiles
is then placed on the map, so that the goal tiles are located
in the direction of motion, and the agent is initially in the
top-right corner of tile A2. In order to promote exploration,

(a) (b)

(c) (d)

Fig. 5: In (a), the agent receives instructions from the macrogrid to
which it cannot abide due to the presence of obstacles. A new path
is then issued and executed until in (b), the agent declines the given
instruction a second time, as it might not be able to reach goals A7,
B7 or C7. The macrogrid computes a third and final path which is
then carried on with success in (c) and (d).

all transition cells of the macrogrid are initially considered to
be empty. Once a transition is issued by applying T to the
macrogrid, a minigrid is positioned as to include the current
tile and the three neighbouring squares of the destination tile,
which therefore represent the goals. Table T is then consulted
again to move between squares. If the minigrid contains any
unobserved squares, these are considered occupied, in order
to prevent collisions with unobserved obstacles. It can be that,
due to the presence of occupied or unobserved squares, the
transition indicated by the macrogrid cannot be completed. The
cell representing the failed transition is marked as occupied
inside the macrogrid, which is then consulted again to see
if an alternative path is available. If no path is available, a
different direction must be explored. For example, in figure
5a, the initial suggested transitions are South, East, East.
The South transition is immediate. For the following move
to East, however, the minigrid returns -100, meaning that
the transition is impossible. The corresponding transition cell
is again marked as occupied; the macrogrid then reroutes as
North, East, East. The agent goes up one tile to the
original position, and then one tile right (figure 5b). The
following transition East is again denied by the minigrid,
since the unobserved squares might contain obstacles. The
macrogrid then reroutes South and East, which the agent
executes in figures 5c and 5d.

In theory, the policy given by T could be reiterated further,
by performing abstraction at increasingly higher levels. Here,
the hierarchical structure of control is limited to the two levels
of square navigation (no abstraction) with minigrids and tile
navigation (one level of abstraction) with macrogrids discussed
above. The map-based strategy of the following section com-



pletes the approach by determining which direction to explore.

C. Exploration strategy

In addition to the local navigation policy given by T ,
a global exploration strategy is necessary to find the goal
efficiently. This section illustrates how the current map of the
environment is used to select target sectors for the agent in
order to explore.

The strategy adopted for exploration is to individuate fron-
tiers [14]. Frontiers are those portion of the border of the
current map that are not occupied by obstacles, and that
therefore do not prevent movement. The agent must cross
a frontier in order to move into unobserved areas of the
map, explore the environment further, expand its map, and
eventually find the goal. The frontier approach is combined
with RL in order to reduce unprofitable exploration. The
procedure is summarized in Algorithm 1.

Algorithm 1 Target sector selection

1: Given
2: map, σ P Σ
3: Initialize
4: V Ð 0
5: Until goal not found
6: unexploredÐ tσ :ă 50% observed squaresu
7: eligible Ð tσ : adjacent to visitedu X t␣visited Y

unexploredu X tσ : D frontieru
8: targetÐ argmaxsect P eligibleV pcurrent, sectq
9: counterÐ 2 ¨ distancepcurrent, targetq

10: Until target is reached _ counter ‰ 0
11: navigate towards target
12: counterÐ counter´ 1
13: update map
14: If reached
15: r Ð ´0.1
16: update V pΣ, targetq
17: otherwise
18: r Ð ´1
19: update V pσtr, targetq
20: update Σ , V

At the start of exploration, the agent has an initial map.
The map is then partitioned into groups of 6-by-6 squares,
the sectors σPΣ. If needed, additional unobserved squares are
added to the boundaries of the map until all sectors are exactly
6 squares of side. Initialize the value function V : ΣˆΣÑ R
as zeros.

All sectors that:
‚ are adjacent to a visited sector, i.e. a sector which contains

at least a visited square, and
‚ are not visited, or contain more than 50% unobserved

squares, and
‚ are separated by a frontier from at least one of their

neighbours
are eligible target sectors. Frontiers are defined as follows: if
the agent can reach the candidate sector starting from any side

Fig. 6: An example of frontier evaluation.

of one of the adjacent sectors, then a frontier exists between
the two sectors. Unobserved squares are assumed empty for
the sake of determining if a frontier exists. Figure 6 shows an
example: neighbour sector A certainly does not have a frontier
with the candidate, since the common side cannot be reached
due to occupied squares; on the contrary, neighbour B has a
frontier to the candidate.

The actual target among the eligible sectors is then selected
according to value function V :

trgt “ argmaxeligV pcurr, eligq. (1)

If more than one sector has the same value, the nearest one is
selected. The use of a value function to select actual targets is
motivated by the fact that the agent might not be able to reach
the target sector in a reasonable amount of time, e.g. because
the unobserved squares turn out to be occupied, or because
the agent needs to circumvent a wall in order to reach the
target. Therefore, the agent is given a counter as a time
limit to reach the assigned target. The counter starts equal
to twice the distance, measured in sectors, between the agent
and the target. Each time that the agent is assigned a direction
of motion (as in figure 5), the counter is reduced by one. If
the agent moves to the target before the counter reaches zero,
it is assigned a reward r“´0.1. Then @σ P Σ, V is updated
according as

V pσ, trgtq “ V pσ, trgtq ` 0.2 ¨ pr ´ V pσ, trgtqq; (2)

otherwise, r“´1 and, given σtr the sectors visited during the
trajectory to trgt, it is

V pσtr, trgtq “ V pσtr, trgtq`0.2 ¨ pr´V pσtr, trgtqq. (3)

Note that V is optimistically initialized since the reward is
always negative. Therefore, when a target sector is reached, it
is unlikely to be selected again due to p2q regardless of the
current sector. Conversely, (3) penalizes the choice of target
only for those sectors for which a path is not found. Since
the map is continuously updated during navigation, the value
function is expanded after each update to include any new
sector discovered.

IV. EXPERIMENTAL SETUP

The approach is tested in a maze environment: the men-
tioned maze of Parr and Russell [6] (figure 7). The maze is a
grid of 85 squares of side, of which approximately 3600 are
visitable, while the rest are either occupied or not accessible.



0 10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

Fig. 7: The maze devised by Parr and Russell for HAM application
(adapted from [6]).

The maze contains several identical obstacles which hinder
exploration: they create multiple bottlenecks; also, if the agent
enters within the “u” shape of an obstacle, it will need to
spend actions to return in the open. If the agent collides with
an obstacle, it will bump, so that its position remains the same
but its orientation is flipped by 180˝. The task of the agent is
to find the goal states at the opposite side of the maze. Since
the agent does not have any prior information on the maze, the
task is equivalent to exploring the maze as fast and efficiently
as possible.

The agent is initialized in the top-left corner of the map
at a random cardinal orientation. The initial map is entirely
composed of unobserved squares, except for the current sensor
readings. In order to navigate, the agent uses the hierarchical
control described in section III: table T is obtained by teaching
the trainee agent in the minigrid environment for 120000
episodes. For the first 100 timesteps, the agent adopts the
following stochastic policy: with probability 0.79, the agent
advances in the direction of its current orientation; with
probability 0.13 the agent turns 90˝ to its left; the rest of the
times it turns 90˝ to its right. This policy provides the agent
with a direction to explore, and is the result of a selection
among similar candidate policies, evaluated in a simulated
goal-finding task in multiple randomly cluttered environments.
Albeit suboptimal, it was semi-empirically devised to provide
an incentive to exploration compared to a canonical random
policy.

After the 100th timestep, the policy is modified to take into
account the presence of the map. With probability 0.2, the
agent follows the earlier semi-empirical policy; otherwise, a
target sector is identified according to the frontier approach
of the previous section. When a target sector is assigned, the
agent turns to face the cardinal direction that will bring it
closest to the target; e.g. if the target is located at North-North
East, the agent would turn to face North. It will then advance
in that direction until either its orientation is no longer the
closest to target (in which case it will adjust its orientation
and continue advancing), until it completes the path (updating

value function V with a success, and returning to policy), or
until it fails to reach the target before the counter runs out (in
which case it updates V with a failure, and again returns to
policy for a new target). The agent continues exploring until
it comes in sensor range of any goal state, which terminates
the episode.

V. RESULTS

Figure 8 shows the amount of steps to goal and the number
of observed squares for 30 sample episodes of the algorithm.
Each curve represents a different episode and terminates with
a square. The number of primitive actions to goal has a mean
value of 1917 (indicated by a vertical line), but it varies
from a few hundreds to more than five thousands. This is
coherent with the experimental setup, since the agent does not
know the location of the goal, but only tries to maximize its
exploration. Therefore, when the agent explores in the goal
direction by chance, the goal states can be found in as little
as 620 timesteps. Conversely, if the agent explores away from
the goal, completion time can increase by several times.

To provide a reference, the algorithm can be compared with
two different hierarchical approaches to the same problem:
the original HAMs of Parr [6], and the results of Zhou et
al. [15]. Parr defines a-priori a hierarchy of machines, each
representing a constraint on the space of possible policies,
connected through call, stop and choice states. The
agent considered by Parr has a different set of sensors: four
short range “sonars” which detect obstacles in the adjacent
square, and a long range, high-directed sensor that can spot
obstacles far away. Another difference is that Parr’s agent does
not perform mapping. Under these conditions, the HAMQ-
learning achieves an ideal performance after 270000 iterations.

In the work of Zhou et al., a flat Q-learning algorithm
is compared to a hierarchical Q-Learning algorithm, using
the same agent described in this paper. The higher level
of hierarchy of this algorithm uses local sensor readings to
estimate the current position of the agent with respect to an
internal map, which is updated during and after each episode.
This constitutes a belief macro state, upon which a North,
East, etc. command is sent to the lower level controller,
which navigates avoiding obstacles. The initial performance
of Q-learning and Hierarchical Q-learning is approximately
the same, with primitive actions in the order of 105 to find the
goal, which reduces drastically to „ 5000 primitives for the
hierarchical algorithm after 30 episodes.

A direct comparison between the proposed algorithm and
the two discussed above should be avoided, due to the in-
trinsic differences between the three approaches. Nonetheless,
it should be noted that the proposed algorithm is able to
achieve a comparable level of performance during its first
episode, without prior information on the specific environment,
but including off-line training. This proves the effectiveness
of implementing abstraction together with pre-training as a
tool for obtaining hierarchical structured controllers with a
satisfactory level of initial performance.



0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 8: The amount of exploration performed by the agent in the Parr
and Russel maze with the frontier approach. Each line represents one
of 30 different episodes, terminating with a square. The vertical line
represents the mean number of primitive actions to goal. The dashed
line indicates the mean exploration rate.

In the first 1000 steps, the exploration rate is very consistent,
with a mean rate of approximately two new observed squares
per timestep. In order to appreciate the result, consider that
the maximum rate allowed by the sensor reading is of seven
squares when advancing, and of three squares when turning,
in the event of unobstructed, unobserved surroundings. After
the initial exploration, a reduction in rate of exploration can
be observed, for which there are two explanations. First,
the agent often needs to relocate to another position of the
map in order to continue the exploration, navigating through
already explored areas of the maze as it does so. Second,
the agent often attempts to explore the unobserved states on
the other side of walls, treating them as obstacles. These
attempts are quickly dismissed by implementing the value
function; however they cause the agent to spend actions that
don’t contribute to the exploration. These explain the peculiar
shape of the curves, in which steep rates of exploration are
separated by period with little or no new observations. Even
when accounting for these effect, the mean rate of exploration
is 1.68 new squares per timestep (indicated by the dashed line).

In order to evaluate the exploratory strategy adopted by the
agent, figure 9 shows the exploration rate when, instead of
adopting the frontier approach, the initial stochastic, semi-
empirical policy is adopted for the entire duration of the
task. Once again 30 different episodes are presented. It can
be seen that the mean amount of steps to completion is
significantly higher, approximately 6400 steps, and that the
mean exploration rate is also lower, equal to 0.62 new observed
squares per primitive action.

Finally, figure 10 shows the final maze and the trajectory
of the agent after a typical episode. The agent starts with 100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 9: The amount of exploration performed by the agent in the Parr
and Russel maze with the semi-empirical policy.

Fig. 10: The final map of the agent after one sample episode. The
agent start at an extremity of the map, in the top-left corner, and
follows the trajectory until it finds the goals by exploring efficiently
its surroundings.

primitive actions suggested by the semi-empirical stochastic
policy. As a result to this, the first “room” between the
starting position and the first bottleneck is only partially
explored. Conversely, all remaining areas through which the
agent successively navigates are almost completely explored.
The agent’s trajectory covers most of the open areas, only
occasionally repeating its steps. As an exception, the agent
spends a few timesteps in the proximity of the wall at the
bottom-left of the maze. As mentioned, this is due to the agent
trying to access the area behind the wall itself, which causes
a small delay in exploration.

As a concluding observation, the algorithm presented here is
designed to maximize the starting exploration, preventing the



Time: 374

Fig. 11: A sample follow-up episode with the algorithm. Using the
previously gained map and the discovered location of the goal, this
can be reached with less than 400 primitive actions.

inefficiencies that RL and HRL tend to exhibit in the initial
phase of learning. As such, the results presented are limited
to first episodes, and no knowledge is transferred from one
episode to another. Nonetheless the algorithm can also include
previous knowledge to solve the task in a lower amount of
iterations. Figure 11 shows an example of a follow-up episode
of the algorithm, where a goal value function Vg : Σ Ñ R
is built based on the map obtained in the previous episode.
The value of sectors increases as they near the goal, so that
the navigation policy of T can be used (with one more level
of abstraction) to control the agent from the starting sector
to the one containing the goals, requiring in this case less
than 400 primitive actions. Therefore, the proposed strategy
performs satisfactorily on its first episode; however, if previous
knowledge is indeed available (e.g. a map), the strategy can
easily exploit it to further improve its performance, similarly
to other RL approaches.

VI. CONCLUSIONS

This paper presents a layered, hierarchical control approach.
The strategy of the approach consists of developing a simple
low-level control, learned off-line by a trainee agent in a
simple, highly abstracted environment, without specific infor-
mation on the task to be performed. The learned policy is then
applied iteratively and on multiple levels of hierarchy, provid-
ing control for local navigation. The approach is completed by
a global exploration strategy obtained through a combination
of mapping and Reinforcement Learning. Mapping is used
to individuate frontiers in order to discover unexplored areas,
while Reinforcement Learning provides flexibility to the ex-
ploration, preventing the agent from repeating mistakes when
looking for frontiers.

A maze environment is used to test the algorithm in
simulation. The agent, representing a ground robot equipped
with sensors, is tasked with finding a goal location. The maze,
including the location of the goal and the shape and number of
the obstacles, is initially unknown to the agent. The primary
objective of the agent is then to explore it as efficiently as
possible. Results show that the algorithm provides a steady rate
of exploration during the initial phase of the task, followed, if
the goal is yet to be found, by a second phase with slightly
reduced exploration, due to relocation and due to delays from
incorrect exploration attempts. Nonetheless, a comparison with
similar hierarchical methods shows that the algorithm achieves
a satisfactory performance in exploring the environment from
the very first iteration. This is confirmed by examining the
trajectories obtained during the episodes, which show the agent
exploring the environment exhaustively but efficiently.

Summarising, the combination of abstract, off-line training
with a map based, adaptive exploration results in a learning
agent whose initial performance, albeit suboptimal, is not
affected by the conventional “blind search” phase. Further-
more, the implementation of navigation policy through layered
control prevents the agent from attempting unsafe actions, such
as entering unobserved squares.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction,
vol.1, no.1, Cambridge: MIT Press, 1998.

[2] L. P. Kaelbling et al., “Reinforcement Learning: A survey”, J. of
Artificial Intell. Research, vol.4, pp.237-285, 1996.

[3] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning”, Discrete-Event Dynamic Syst., vol.13, num.4,
pp.341-379, 2003.

[4] R. S. Sutton and A. G. Barto, “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning”, Artificial
Intell., vol.112, num.1, pp.181-211, 1999.

[5] D. Precup, “Temporal Abstraction in Reinforcement Learning”, Ph.D.
dissertation, University of Massachusetts, Amherst, 2000.

[6] R. Parr and S. Russell, “Reinforcement learning with hierarchies of
machines”, Advances in Neural Inform. Process. Syst., pp.1043-1049,
1998.

[7] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ
value function decomposition”, J. of Artificial Intell. Research, vol.13,
pp.227-303, 2000.

[8] C. Chen et al.,“Hybrid Control for Robot Navigation - A Hierarchical
Q-Learning Algorithm”, IEEE Robot. Automat. Mag., vol.15, num.2,
pp.37-47, 2008.

[9] D. Barzin and G. Nejat, “A hierarchical reinforcement learning based
control architecture for semi-autonomous rescue robots in cluttered
environments”, in 2010 IEEE Int. Conf. Automat. Sci. Eng., pp.948-953,
Aug. 2010.

[10] R. Brooks, “A robust layered control system for a mobile robot”, IEEE
J. Robot. Automat., vol.2, num.1, pp.14-23, 1986.

[11] P. Dayan and G. E. Hinton, “Feudal Reinforcement Learning”, Advances
in Neural Inform. Process. Syst., 1993.

[12] H. P. Moravec and A. Elfes, “High Resolution Maps from Wide Angle
Sonar”, in Proc. of the 1985 IEEE Int. Conf. Robot. and Automat., 1985,
vol.2, pp.116-121.

[13] S. Thrun and A. B:ucken, “Integrating Grid-Based and Topological Maps
for Mobile Robot Navigation”, in Proc. of the AAAI 13th Nat. Conf.
Artificial Intell., Portland, OR, Aug. 1996, pp.944-951.

[14] B. Yamauchi, “A Frontier-Based Approach for Autonomous Explo-
ration”, in Proc. of the IEEE Int. Symp. Computational Intell. Robotics
and Automation (CIRA), 1997, pp.146-151.

[15] Y. Zhou et al., “Autonomous Navigation in Partially Observable Envi-
ronments ”, to be presented at the Int. Micro Air Vehicle (IMAV) Conf.
Competition, Beijing, China, Oct. 2016.


