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Abstract—Navigation in an unknown or uncertain environment
is a challenging task for an autonomous agent. The agent is
expected to behave independently and to learn the suitable action
to take for a given situation. Reinforcement Learning could
be used to help the agent adapt to an unknown environment
and learn the right actions to take. This paper presents the
setup and the results of a reinforcement learning problem
utilizing Q-learning and a Safety Handling Exploration with
Risk Perception Algorithm (SHERPA) for safe exploration in an
unknown environment. The agent has to explore its environment
safely and must learn the optimal action for a given situation from
the feedback received from the environment. The results show
that the agent can learn a value function converged to within
10% of the optimal values after 5000 iterations. The simulation
results show that the proposed approach ensures that the agent
explores an unknown environment safely and learns the desirable
actions for a given situation.

I. INTRODUCTION

Reinforcement learning [1] (RL) is a bio-inspired control
approach based on agent-environment interaction. While tradi-
tional machine learning algorithms are susceptible to dynamic
changes in the environment, RL can help an autonomous agent
learn the optimal behaviour, with little or no prior knowledge
of its environment, and with changing conditions. For these
reasons, RL has become a promising tool for improving au-
tonomous navigation of an agent in an unknown environment.

During exploration, the agent tries different actions to learn
and refine its policy. However, actions that put the agent
in danger are undesirable, e.g. on collision course with an
obstacle. For profitable exploitation in real-life applications,
it is necessary that the agent explores safely. Existing RL
algorithms tend to encourage exploration, but only a few take
into account the repercussions of exploration in a potentially
hostile environment. Fraichard and Asama [2] propose an
algorithm that ensures safety in the exploration phase of an
agent’s learning to a certain extent. A drawback is that the
algorithm relies on a-priori knowledge of the environment.
Moldovan and Abbeel [3] propose an optimization formulation
algorithm that guarantees safe exploration, at the cost of
sub-optimal exploration. This algorithm has been shown to
perform better exploration than classical exploration meth-
ods, frequent updates make it computationally expensive.
Inspired from [2] and [3] is the Safety Handling Exploration
with Risk Perception Algorithm (SHERPA) [4]. Developed
to comply with model-free algorithms, SHERPA enforces
safety of exploration by searching the current set of actions
for which the safety of undertaking is proven earlier, with

limited risk perception by the agent. A drawback is once again
the large computation time required by the algorithm which
makes it unfeasible for online applications. Polo and Rebollo
[5] propose a RL algorithm that uses a previously defined
safe policy which is assumed to be sub-optimal, to learn a
policy that is near optimal. B. Zuo et al. [6] propose a Q-
learning based navigation algorithm for autonomous systems
that shows good performance and learning for safe navigation
in an unknown environment. The concept of Q-learning has
been used to trace an optimal path for navigation in grid-
based environments [7]. The Q-learning approach is found
to be effective for autonomous navigation in an unknown
environment with relatively good real-time performance and
reduced complexity [6], [7].

The goal of this paper is to provide a RL algorithm using
Q-learning for navigating an unknown environment, with a
focus on on-line performance. To ensure safety of the agent
during the learning phase, SHERPA is used to determine the
safety of a proposed action for a given situation, while on-line
performance is addressed by reducing the dimensionality of
the learning problem to a minimum. The inclusion of SHERPA
results in a safe exploration algorithm, which performs entirely
on-line avoiding off-line training and with limited a-priori
knowledge of the agent dynamics, and which constitutes the
main contribution of this work.

The rest of the paper is structured as follows. Section II
presents the fundamentals of RL, and introduces Q-learning
and SHERPA. Section III, presents the learning environment
and quadrotor agent used to test the approach. Section IV
presents two algorithms: a base Q-learning algorithm and
the same algorithm augmented with SHERPA. Results of the
application of the algorithms are included. Section V compares
the two algorithms in light of the results. Finally, section VI
concludes.

II. FUNDAMENTALS

In RL, learning comes from direct interaction with the
environment modeled as a Markov Decision Process (MDP): at
each time ¢ the agents selects action a;, observes a transition
from previous state s; to the next state s;;;, and receives
a reward feedback r;. The reward determines the intrinsic
desirability of the transition, what is good in an immediate
sense. Rewards and transitions are used to update the policy
m, which defines the agent’s behaviour by mapping each state
to an action. Given the policy and the discount 3, the value
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function, V™ (s) represents the value of states, i.e. the sum
of discounted reward attainable from each state. The value
function specifies what is good in the long run, the long term
desirability of states after taking into account those that are
likely to follow given the policy.

A. Q-learning

Q-learning is an off-policy, model-free RL algorithm [8],
[9], i.e. it can learn the optimal policy, irrespective of the
policy the agent is following and without a model of the MDP,
as long as there is no bound that is placed on the number of
times an action is executed. In its simplest form, Q-learning
can be represented by one-step Q-learning, defined by

Q(s,a) < Q(s,a) +n (r+ fmax,Q(s',a) — Q(s,a)) (1)

where @ is the action-value function, 0 < [ < 1 is the
discount factor and 7 is the learning rate. () indicates the sum
of discounted return that can be obtained when selecting action
a in state s, so that he optimal policy consists of selecting the
action with the highest value in each state.

B. SHERPA

SHERPA [4] defines a new control strategy that stems from
a generalization of already known techniques (collision avoid-
ance and reachability analysis) dedicated to the exploratory
problem. SHERPA makes a distinction between the Fatal State
Space (FSS) and the Safe State Space (SSS), and defines a new
category of states; the lead-to-fatal (LTF) states. LTF states are
those that are not fatal but, when encountered, will lead the
agent to end up in the FSS with probability of one. The main
goal of SHERPA is then to avoid these states. SHERPA, adopts
an intermediate strategy between model-based and model-free
learning: a bounding model of the agent is used to to estimate
and bound the evolution of the agent in near time, but not to
perform value iteration. Depending on the estimates, SHERPA
promotes those actions that are more likely to provide safety
of exploration.

III. PROBLEM SETUP

This section presents the simulation environment, and the
RL algorithm designed to allow the agent, representing a
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Fig. 2: The simulation environment is 12m x 12m in area. The
circle, with a line indicating the heading, represents the agent,
which is initialized at the position indicated by the star. The
grey blocks surrounding the environment are obstacles. The
black dot represents the goal. When the agent reaches within
0.1m of the goal, it is reinitialized in the upper corridor.

quadrotor, to safely explore such environment. The quadrotor
model is presented as well.

Figure 2 shows the simulation environment to evaluate the
Q-learning algorithm: a corridors ending in a room where the
goal is located. The task of the quadrotor agent is simply to
reach the goal, while navigating safely, i.e. without colliding
with the boundaries of the environment. Each episode starts
with the agent in the upper corridor of the experiment, and
ends after of 50 timesteps, during which the agent will try to
reach a goal position in the room at the end of the corridor.
Whenever the agent is successful in doing so, it is randomly
reinitialized in the upper corridor.

The non-linear, two dimensional bounding model of the
quadrotor is described by

i = 1D i1 cos + L cost @)
[m] [m]

i = — 1D g1 g sind + —L-sing ©
[m] [m]

where [c] is the interval of damping coefficient ¢ and [m] is
the interval of mass m:

[m] = [0.3440.516]kg [c] = [0.721.08] x 10—5%9

T is the thrust generated by the rotors whose direction
of application is specified byf#. The direction of the applied
thrust is decided by the action to be executed. An action that
suggests the agent to turn right will induce a thrust at an angle



perpendicular (90° or 270°) to the direction the agent is facing.
The thrust used to control the quadrotor is of 16N, equal
to 80% of the total thrust 7},,x=20N. To compute the real
dynamics of the quadrotor, the ‘true’ model was obtained from
the bounding model by selecting for each of the parameters
its mean value.

The direction of motion 6 is selected according to the 3
actions defined below:

o Action L: the agent turns left by 90° and move forward.
« Action R: the agent turns right by 90° and move forward.
o Action F: the agent moves forward in the direction it is
facing.
The set of available actions can thus be defined as a €
{Left, Right, Front}. If the agent collides with an obstacle
or the boundaries, it bounces backwards of 5cm.

IV. ALGORITHM

This section presents two RL algorithms for safe exploration
and their results when applied to the quadrotor task of the
previous section. The first algorithm presented uses pure Q-
learning. Safety is addressed by implementing a direct reward
that will teach the agent which actions is the safest. In order
to accelerate learning, a simplified state representation based
on distances from obstacles is adopted. The second algorithm
augments previous control with SHERPA, which evaluates the
safety of actions through interval estimation of the dynamics,
and provides backups options to the agent.

A. Reward

Two different types of rewards are used in this paper, with
the double objective of enforcing safety and reaching the goal.
Direct reward is assigned depending only according to state-
action pairs. For example, in figure 4, the agent is in the state
s = (123). The safest action that can be executed in this state
is the action of moving forward (action Front). If the agent
moves forward, it receives then a relatively large reward (+5),
while turning left, which corresponds to the least safe option,
will give it the least reward (+0). The intermediate action of
turning Right, yields a moderate reward of +1. By means of
direct reward, the agent can learn to avoid collisions without
any actually occurring. If nonetheless a collision does occur,
an indirect reward of -7 is assigned to further reinforce safe
behaviour. Finally, a +10 reward is assigned when the goal is
reached. The reward assigned is then r=rq + 75 + 7.

B. State representation

In order to reduce the otherwise large number of states-
action pairs, a local state inspired from [14] is proposed that
represent the agent’s perception of its surroundings. The states
are defined on the basis of the distance of the agent from the
obstacles. It is assumed that 3 directional sensors are mounted
on the agent, providing readings of the distance to the obstacles
in 3 specific directions: front (F), left (L) and right (R).
Additionally, a proximity sensor. A schematic representation
of the agent and of its sensors is shown in figure 3.
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Fig. 3: Schematic representation of sensors.
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Fig. 4: A sensor measurement example.

On the basis of the sensor readings, a 3 element world
vector s = (LRF)T is created, whose components order the
distances of the agent from the obstacle in the three directions
left, right and front. The direction whose distance from the
nearest obstacle is the greatest is represented by integer ‘3’;
the direction closer to obstacles is represented by ‘1’; the
remaining distance is indicated by ‘2’. Figure 4 shows an
example where the state vector is given by s = (1,2,3):
closest to obstacles on left distance, furthest at the front, and
in between the two distances at right. By discretization of the
states of the environment, it is possible to reduce the otherwise
very large environment into only eight states.

C. Q-learning Algorithm

Figure 5 shows the Q-learning controller and the different
types of reward. As mentioned earlier, the reward is shaped
as to promote actions that are less likely to cause collisions;
therefore, as time increases, the higher the value of an action
state pair, the safest it is. In order to take advantage of this,
the following modified e-greedy policy is implemented:

e An initial value €=0.7 is assigned for the first episode;
« with probability €, a random action is selected; otherwise,



% State HQ-ValuesH Action Agent H System

reward #* Indirect reward

Fig. 5: Controller Architecture with Q-learning.

action ay, is taken with softmax probability
eQ(s,a)/7
Z?il eQ(S;al)/T

where temperature 7 is updated every episode as T <—
7-0.9 down to a minimum of 0.001;

« at the start of episode 10, 20 and 30, € is updated as
e+ e—0.2

« starting from episode 40, actions are selected greedily.

P(ay) =

The above policy is used to dynamically balance exploration
and exploitation. In the unknown environment, exploration is
necessary; however, the softmax approach increases exploita-
tion and therefore safety with time. The softmax approach
uses a temperature variable 7. Higher 7 cause the actions to
be almost equiprobable, while lower 7 increase the chance
of selecting the action with the highest value. Eventually, a
greedy action selection is adopted.

1) Results of the Q-learning Algorithm: The results of the
Q-learning algorithm for a series of 100 episodes are pre-
sented. The algorithm is tested in the simulation environment
of figure 2 assigning the reward as above. The results are
given in table I for different combinations of learning rate n
and discount factor 3. It can be observed that the algorithm
does not entirely prevent collisions. This is due to the fact that,
even though the reward is shaped as to do so, the agent selects
a significant number of random actions in the first 40 episodes.
A greedier policy might reduce the number of collisions but,
in general, relying on reward alone does not guarantee safety.

TABLE I: Comparison of results of the Q-learning algorithm
for different values of 7 and 8 run for 100 episodes

l

[ 7=03, B=0.5 | 1=0.5, B=0.7 | n=0.9, p=09 |

Random actions 877 848 830
Greedy actions 4123 4152 4170

Collisions 146 139 126

Goal reached 28 32 27
Total reward 21120 20980 20971

The following consideration must be made for the learning
rate 7). Adopting the relative representation of the environ-
ment s = (LRF)T means that distinct absolute states are
represented by the same vector state. Figure 6 shows how
increasing 7 leads to fluctuations when updating the action-
value function Q(s, a). Therefore an intermediate value n=0.5
is chosen for this application.

Consider again figure 6. Regardless of the learning rate
adopted, the agent learns the safest policy. E.g., since obstacles
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more marked fluctuations are observed.



are the most distant at the right (indicated by the integer 3),
action “right” is the safest, which is reflected in the Q-function.
Nonetheless, a significant number of unsafe actions needs to
be explored before this result can be achieved, which lead
to collisions as reported in table I. In the real world, such
collisions can be fatal for the agent and should be avoided.

D. Q-learning with SHERPA
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Safety
Assessment
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’ Agent H System
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J

Fig. 7: Controller Architecture with Q-learning and SHERPA

SHERPA can be added to the previous algorithm to increase
safety of the agent during the learning stage: figure 7 shows
the augmented controller architecture. SHERPA works in
exploration mode, and in backup mode. In the exploration
mode, SHERPA evaluates the safety of the proposed action.
In the backup mode, backups are generated for the proposed
action.

In exploration mode, SHERPA verifies the action a, pro-
posed by the Q-learning algorithm for safety in the exploration
mode. The boundaries of next state [x,] are predicted using
interval analysis, and used to perform a two safety check. The
first check consists of verifying if the interval [z, is within the
safe area of the environment. The history of sensor readings
is consulted to ensure the quadrotor will not collide with the
walls at its next position. For example, if the nearest obstacle is
detected to be at 0.5m, and the computed interval [x,,] is within
this distance, the action is safe. If this check fails, SHERPA
assigns a negative reward equal to -5 to the agent. Then, it
proposes a new action from the set of available actions and
evaluates its safety. SHERPA switches then to backup mode.

If action a,, passes the first check, a second one is made for
the existence of a backup from predicted state [z,]. A backup
is essentially a safe option in the event none of the normal
actions a € {Left, Right, Front} are accepted by SHERPA
when in z,. In this mode, the action set of the agent is aug-
mented as follows. First, the quadrotor has the possibility to
move backwards, so that a, € {Left, Right, Front, Back}.
Second, a different amount of thrust between 0 and 7,,,, can
be selected.

Backups are checked as follows. A random chain of actions
of variable length is generated. Starting from predicted state
[zp], the bounding model provided by (2) and (3) is used to
predict the boundaries of the state during the application of the
actions. Sensor information is checked again to ensure that the
agent keeps at distance from the obstacles. Multiple backups
are tested, until a fixed number of iterations is reached. If a

valid backup is not found by then, SHERPA discards action
ap, assigns negative reward, and proposes a different initial
action.

1) Results of Q-learning with SHERPA: The Q-learning
algorithm augmented with SHERPA is tested during 100
episodes, with 8 = 0.7 and = 0.5. Figure 8a shows the
corrective negative reward issued by SHERPA during these
episodes. It is considerably high in the exploring phase of the
agent, i.e. the first 40 episodes. This is to be expected, as
random actions are often selected. The punishment decreases
with time as the policy becomes more and more greedy;
nonetheless, negative rewards are issued even during the ex-
ploitation phase. This means that in some iterations, SHERPA
will prevent the action suggest by the Q-value function, even
when this is the “optimal” action. Figure 8 shows the effect
of the corrective reward on Q-values. Compared to the base
algorithm, Q-values do not approximately converge when
using the same learning rate. However, the Q-values for the
best actions in the particular states are still higher than the
others, so that although the values themselves do not converge,
the optimal policy is still found.

The main benefit of implementing SHERPA can be appre-
ciated from table II: the agent with the augmented algorithm
does not incur in any collision. This means that SHERPA is
able to keep the agent safe during the exploration phase of the
algorithm. It can be seen that the agent has executed a backup
action 40 times. If required, SHERPA is able to find at least
one backup action for the agent.

[ Parameter [ Value |
Number of collisions 0
Number of actions corrected 365
Number of times a safe action was not found 40
Number of times a backup was not found 0

TABLE II: Results of the Q-learning algorithm with SHERPA
for n=0.5 and $=0.7 for a run of 100 episodes

V. COMPARISON OF RESULTS

This section compares results of the Q-learning algorithm
with and without SHERPA during the two runs of 100 episodes
previously shown.

Figure 9a illustrates the comparison between Q-learning
with and without SHERPA on four aspects: simulation time,
number of times the goal is reached, number of collisions,
and cumulative reward. Q-learning is computationally less
intensive and this is illustrated in figure 9a where the Q-
learning algorithm takes a fraction of the time that is re-
quired than when SHERPA is used. This is not surprising,
as SHERPA must execute additional checks and iteration
to determine the safety of actions and to generate backups.
Comparing the number of successful runs, the agent reaches
the goal more often with SHERPA than without. Therefore,
for this application, SHERPA increments the efficiency of the
controller. This is due to the fact that SHERPA corrects a
large number of undesirable actions. This can be seen from
figure 9b, which presents the total number of greedy and
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Fig. 8: SHERPA assigns negative rewards during the en-
tire simulation, including during the exploitation phase. This
causes considerable, but temporary reduction in Q-values.

random actions, and the number of corrected actions when
including SHERPA: roughly one half of the random actions are
corrected. As a result, not only SHERPA prevents collisions,
as the figure shows, but prevents the agent from wasting
timesteps by attempting unsafe actions. Finally, the cumulative
reward obtained during 100 episodes is slightly lower when
using SHERPA. This is due to the corrective, negative reward
assigned. Figure 10 shows a comparison of the reward obtained
per episode for the two algorithms. It can be noticed how
the reduction in reward caused by SHERPA is concentrated
in the initial episodes and is considerably less significant
during exploitation. Furthermore, regardless of the reduction
in reward, the performance of the algorithm is not reduced but
increased, as shown in figure 9a.

Comparison of results over 100 episodes

T
- Q-Learning only
[—1Q-Learning + SHERPA

250

200 |- | 1: Time Elapsed (minutes) J
2: Numbers of times goals is reached
3: Number of obstacle hits

4: Cumulative reward obtained/100
150 1

100 1

50 1

(a) The four aspects of comparison: computation time, number of times
the goal is achieved, number of collisions, and total reward.

Comparison of results over 100 episodes

10000

I Exploration (e-greedy actions)
[ Corrected actions

[ Exploitation (greedy actions)
8000 1

9000

7000 1

6000 - 1

5000 1

4000 [ 1

3000 1

2000 [ 1

1000 1

ol

(b) Comparison of greedy, random and corrected actions.

Fig. 9: Comparison of results for the Q-learning algorithm
with and without SHERPA

VI. CONCLUSIONS

This paper presents an application of Reinforcement Learn-
ing (RL) with safe exploration to an autonomous agent. The
agent represents a quadrotor with the task of reaching an
unknown goal position inside the environment. While doing
so, the agent must avoid collisions with the walls surrounding
the environment.

In order to do so, two algorithms are designed and evaluated.
The first one is based on Q-learning. Direct reward is used
to teach safe action to the controller, in combination with a
very simple state representation, and a small action set, to
accelerate learning. Although the state-action values are shown
to fluctuate depending on the learning rate adopted, the policy
is shown to quickly converge to the safest one. Nonetheless,
collisions are reported during the initial episodes of learning,
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due to the random actions performed during exploration.

The second algorithm evaluated is an augmented version
of the first, to which the Safety Handling Exploration with
Risk Perception Algorithm (SHERPA) is added. SHERPA
uses interval analysis to perform near-time predictions and
evaluations of actions. Only actions that are considered safe
are accepted. In the event that no actions are accepted, backups
are generated, using an augmented action set.

Comparing the two algorithm, the inclusion of SHERPA
increases the computational effort for the controller by several
times; however, the augmented algorithm is shown to com-
pletely prevent collisions, which in turn has the benefit of
reducing ineffective actions, thus improving the number of
successful iterations as well.

Several improvements on the paper are possible. A larger
action set could be implemented to increase the learning
space of the agent. An altitude control for the agent could be
included to evaluate safe exploration in a three dimensional
plane. Also, the proposed approach could be applied in a
real world experiment, in order to investigate the effect of the
reality gap. Nonetheless, the approach presented in this paper
constitutes a promising result for safe exploration in model-
free RL, with a focus on limited computational requirements.
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