
A New Fast Large Neighbourhood Search for
Service Network Design with Asset Balance

Constraints
Ruibin Bai

School of Computer Science
University of Nottingham Ningbo China

Telephone: +86-574-88180278
Email: ruibin.bai@nottingham.edu.cn

John R. Woodward
School of Computing

Science and Mathematics
University of Stirling, Scotland.

Email: john.woodward@cs.stir.ac.uk

Nachiappan Subramanian
Nottingham University Business School

The University of Nottingham Ningbo China
Email: nachiappan.subramanian@

nottingham.edu.cn

Abstract—The service network design problem (SNDP) is a
fundamental problem in consolidated freight transportation. It
involves the determination of an efficient transportation network
and the scheduling details of the corresponding services. Com-
pared to vehicle routing problems, SNDP can model transfers and
consolidations on a multi-modal freight network. The problem is
often formulated as a mixed integer programming problem and
is NP-Hard. In this research, we propose a new efficient large
neighbourhood search function that can handle the constraints
more efficiently. The effectiveness of this new neighbourhood
is evaluated in a tabu search metaheuristic (TS) and a GLS
guided local search (GLS) method. Experimental results based
on a set of well-known benchmark instances show that the new
neighbourhood performs significantly better than the previous
arc-flipping neighbourhood. The neighbourhood function is also
applicable in other optimisation problems with similar discrete
constraints.

I. INTRODUCTION

The SNDP is widely considered as the core problem of
the freight transportation planning for less-than truck load
transport and express deliveries where consolidation is neces-
sary to improve the efficiency. It involves the determination
of a cost-effective transportation network and the services
which it will provide, while satisfying the constraints related
to demand diversities both geographically and temporally,
network availability, assets capacity, etc. The SNDP is strongly
NP-Hard (Ghamlouche et al., 2003) and hence solving the
problem of decent sizes to optimality is generally not practical.
In fact, the SNDP is generally of large-scale, due to the size of
potential network (defined by the number of nodes, the number
of arcs and the number of commodities to be delivered). This
is particularly the case when the formulation is based on a
time-space network in which each node and each arc has a
copy in each period of the scheduling horizon (see Fig. 1).

Various heuristic and metaheuristic approaches have been
applied to this problem and substantial progress has been
made (Crainic and Kim, 2007; Bai et al., 2012). However,
most current research in this area has focused on various
intelligent high-level search strategies but analysis of the
problem solution structure and its constraints is very limited.
These approaches do not satisfy real-world requirements either
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Fig. 1: An example of a time-space network with 3 nodes and
7 periods.

in solution quality or in computational time. This is because
the SNDP contains some difficult constraints and a flow
distribution subproblem, generally referred as the capacitated
multicommodity min-cost flow (CMMCF) problem, which
is very expensive to solve with an iterative metaheuristic
approach. This motivates us to develop more efficient meta-
heuristics for this important and challenging problem. In this
paper, unlike the other approaches, we proposed and studied a
new larger neighbourhood that exploits the special structure of
the SNDP constraints and has much better reachability due to
the implicit constraint handling. The experiments on two basic
metaheuristic approaches show that the new neighbourhood is
very effective and could be used to develop more efficient
algorithms for the SNDP.

The remainder of the paper is structured as follows: section
II provides a brief introduction to the SNDP and an overview
of the research in freight service network design. Section
III presents the arc-node based mathematical formulation for
SNDP and section IV discusses the neighbourhood structure
used in the previous studies. Section V describes the proposed
k-node neighbourhood operator whose performance is evalu-
ated in Section VI through a TS method and a GLS method.
Section VII concludes the paper.



II. PROBLEM DESCRIPTION AND LITERATURE REVIEW

The SNDP is an important tactical/operational freight trans-
portation planning problem. It is of particular interest for less-
than truck load transport transportation and express delivery
services, where consolidation of deliveries is widely adopted
in order to maximise the utilisation of freight resources
(Crainic, 2000). The SNDP involves the search for optimal
or near-optimal service characteristics, including the selection
of routes and the vehicle types for each route, the service
frequency and the delivery timetables, the flow distribution
paths for each commodity, the consolidation policies, and the
idle vehicle re-positioning, so that legal, social and technical
requirements are met (Wieberneit, 2008).

The SNDP differs from the capacitated multicommodity
network design (CMND) problem, a well-known NP-Hard
problem, in that it has an additional source of complexity
due to the required balance constraint for freight assets in
order to ensure that vehicle routes are contiguous and that
vehicles are in the correct positions after each planning cycle.
The presence of both this constraint and the flow conservation
constraint makes the problem extremely challenging for many
neighbourhood based optimisation methods. The remainder of
this section provides a brief overview of the previous research
into SNDP. More comprehensive reviews can be found in
(Crainic, 2000; Crainic and Kim, 2007; Wieberneit, 2008).

Service network design is closely related to the classic
network flow problems (Ahuja et al., 1993). Early work
in this field includes (Crainic and Rousseau, 1986; Powell,
1986). Crainic et al. (2000) investigated a hybrid approach for
CMND, combining a TS method with pivot-like neighbour-
hood moves and column generation. Ghamlouche et al. (2003)
continued the work and proposed a more efficient cycle-
based neighbourhood structure for CMND. Experimental tests,
within a simple TS framework, demonstrated the superiority
of the method to the earlier pivot-like neighbourhood moves
in (Crainic et al., 2000). This approach was later enhanced
by adopting a path-relinking mechanism (Ghamlouche et al.,
2004).

Barnhart and her research team (Barnhart et al., 2002) ad-
dressed a real-life air cargo express delivery SNDP. The prob-
lem instances are characterised by their large sizes and the ad-
dition of further complex constraints to those which are in ex-
istence in the general SNDP model. A tree formulation
was introduced and the problem was solved heuristically
using a method based upon column generation. Armacost
et al. (2002) introduced a new mathematical model based on
an innovative concept called the composite variable,
which has a better Linear Programming (LP) bound than other
models. A column generation method using this new model
was able to solve the problem successfully within a reasonable
computational time, taking advantage of the specific problem
details. However, it may be difficult to generalise the model to
other freight transportation applications, especially when there
are several classes of services being planned simultaneously.

Pedersen et al. (2009) studied more generic SNDP in

which the asset balance constraint was present. A multi-start
metaheuristic, based on TS, was developed and tested on a
set of benchmark instances. The TS method outperformed a
commercial MIP solver when computational time was limited
to one hour per instance on a test PC with a Pentium IV
2.26GHz CPU. Andersen et al. (2009) compared the node-arc
based formulation, the path-based formulation and a cycle-
based formulation for SNDPs. Computational results on a set
of small randomly generated instances indicated that the cycle-
based formulation gave significantly stronger bounds than the
other two and hence may allow for much faster solution of
problems. More recent work by Bai et al. (2012) attempted
to further reduce the computational time and investigated
a guided local search based (GLS) hybrid approach. The
computational study, based on a set of popular benchmark
instances, showed that GLS, if configured appropriately, was
able to obtain better solutions than TS but with less than two
thirds of the computational time. However, GLS in that study
was based on an arc-flipping neighbourhood which sometimes
leads to poor solutions. Barcos et al. (2010) investigated an
ant colony optimisation approach to address a (simplified)
variant of freight SNDP. The algorithm was able to obtain
solutions better than those adopted in the real-world within a
reasonable computational time. Andersen et al. (2011) studied
a branch and price method for the SNDP. Although the
proposed algorithm was able to find solutions of higher quality
than the previous methods, the 10-hour computational time
required by the algorithm poses a great challenge for practical
applications.

It can be seen that very limited research has been done
to investigate more on efficient neighbourhood structures to
tackle the difficult constraints and expensive flow distribution
subproblems. The goal of this paper is to address this gap
by studying a new neighbourhood structure for SNDP. The
effectiveness of the new structure is evaluated in two meta-
heuristic approaches (TS and GLS) for a set of well-known
SNDP benchmark instances.

III. THE FREIGHT SNDP MODEL

The problem of concern in this paper can be formulated in
several ways. We used a node-arc based model described in
(Pedersen et al., 2009) and also present it here for complete-
ness. The list of notation used in the model is given in Table
I.

Let G = (N ,A) denote a directed graph with nodes N and
arcs A. Let (i, j) denote the arc from node i to node j. Let
K be the set of commodities. For each commodity k ∈ K,
let o(k) and s(k) denote its origin and destination nodes,
respectively. Let yij be boolean decision variables, where yij
= 1 if arc (i, j) is used in the final design and 0 if it is not
used. Let xk

ij denote the flow of commodity k on arc (i, j).
Let uij and fij be the capacity and fixed cost, respectively, for
arc (i, j). Finally, let ckij denote the variable cost of moving
one unit of commodity k along arc (i, j). The SNDP can then
be formulated as follows:



TABLE I: List of notations used in the SNDP model

Notation Meaning
N The set of nodes.
A The set of arcs in the network.
G = (N ,A) Directed graph with nodes N and arcs A.
(i, j) ∈ A The arc from node i to j.
uij Capacity of arc (i, j).
fij The fixed cost of arc (i, j).
K The set of commodities.
o(k) The origin (source) of commodity k ∈ K.
s(k) The sink (destination) of commodity k.
dk The flow demand of commodity k.
ckij The variable cost for shipping a unit of

commodity k on the arc (i, j).
xk
ij The amount of flow of commodity k on the

arc (i, j).
yij The network design variables. yij = 1 if arc (i, j)

is open and 0 if it is closed.
x The vector of all flow decision variables, i.e.

x =< x0
00, . . . , x

k
ij , ... >.

y The vector of all design variables, i.e.
y =< y00, ..., yij , ... >.

N+(i) The set of outward neighbouring nodes of node i.
N−(i) The set of incoming neighbouring nodes of i.
bki The outward flow of commodity k. bki = dk if

i = o(k), bki = −dk if i = s(k) and 0 otherwise.
z(x,y), z(s) The objective of SNDP model, which represents

the sum of the fixed cost and the variable cost
for given solution vectors x and y, or expressed
in terms of a potential solution s.

g(s), g(x,y) The objective function which is actually solved,
including a penalty for infeasibility, expressed in
terms of a potential solution s or the decision
variable component vectors x and y of s.

min z(x,y) =
∑

(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij (1)

subject to ∑
k∈K

xk
ij ≤ uijyij ∀(i, j) ∈ A (2)∑

j∈N+(i)

xk
ij −

∑
j∈N−(i)

xk
ji = bki , ∀i ∈ N ,∀k ∈ K (3)

∑
j∈N−(i)

yji −
∑

j∈N+(i)

yij = 0 ∀i ∈ N (4)

where xk
ij ≥ 0 and yij ∈ {0, 1} are the decision variables.

The network capacity constraint (2) ensures that the maximum
capacity of arc (i, j) is not violated. The flow conservation
constraint (3) ensures that the entire flow of each commodity
is delivered to its destination, where N+(i) denotes the set
of outward neighbours of node i and N−(i) the set of
inward neighbours. bki is the outward flow of commodity k
for node i, so we set bki = dk if i = o(k), bki = −dk if
i = s(k), and bki = 0 otherwise. Constraint (4) is the asset-
balance constraint, which is missing from the standard CMND
formulation, as discussed in section II and which ensures the
balance of transportation assets (i.e. vehicles) at the end of

each planning period.
For a given design variable vector y =< y00, ..., yij , ... >,

the problem becomes one of finding the optimal flow distri-
bution variables. Constraint (4) is no longer relevant and the
flow must be zero on all closed arcs, so only open arcs have
to be considered in the model. Let A denote the set of open
arcs in the design vector y, then flow distribution variables
(xk

ij) for all open arcs ((i, j) ∈ A) can be obtained by solving
the following capacitated CMMCF problem, where xk

ij ≥ 0

∀(i, j) ∈ A, k:

min z(x) =
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij (5)

subject to ∑
k∈K

xk
ij ≤ uij ∀(i, j) ∈ A (6)∑

j∈N+(i)

xk
ij −

∑
j∈N−(i)

xk
ji = bki , ∀i ∈ N ,∀k ∈ K (7)

IV. A REVISIT OF PREVIOUS HEURISTIC APPROACHES

In the previous efforts (Pedersen et al., 2009; Bai et al.,
2012), neighbourhood search functions were primarily based
on single arc state-flipping (or referred as arc adding/dropping)
with the flow distribution handled separately either heuris-
tically (based on a residual graph) or optimally by solving
the corresponding capacitated CMMCF problem using an LP
solver. Interested reader is referred to (Pedersen et al., 2009)
for more details of this neighbourhood structure.

However, one drawback of this neighbourhood is its inabil-
ity of maintaining solution feasibility in terms of asset-balance
constraints. For a feasible solution satisfying the asset-balance
constraints, flipping the state of a single arc will typically gen-
erate an infeasible solution (i.e. violating constraint (4)). Let us
take a simple network in Fig. 2 as an example. In the current
configuration (Fig. 2.(a)), the network consists of 8 open arcs
(and 4 closed arcs) and is asset-balanced since, for each node,
the number of incoming arcs equals to the number of outgoing
arcs. Using the neighbourhood function in (Pedersen et al.,
2009; Bai et al., 2012), one could generate 12 neighbouring
solutions. Unfortunately none of them is feasible due to asset
balance constraint violations. For example, opening arc (1,5)
will lead to vehicle imbalance at both nodes 1 and 5. Similarly,
closing arc (2,1) will lead to asset-balance constraint violations
at nodes 1 and 2. In (Pedersen et al., 2009; Bai et al., 2012),
this constraint violation issue was addressed by using a special
feasibility-recovery procedure at the end of each local search
phase. Although effective in finding a feasible solution, the
method may suffer from performance issues when feasibility-
recovery procedure leads to large increase in costs, and hence
inferior solutions.

Another major drawback of the arc-flipping neighbourhood
function is the reachability in the search space. Observa-
tions from experimental tests in (Bai et al., 2012) show that
considerable number of neighbourhood moves are rejected
during the search and local search methods (both TS and
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Fig. 2: An illustration of the reachability issue of the arc-
flipping neighbourhood. The statuses of the thicker arcs are
changed during the neighbourhood move.

GLS) tend to get stuck at local optima. It appears that this
neighbourhood function struggles to reach certain regions
of the search space regardless of the number of iterations
permitted. This observation explains why the “multiple starts”
used in (Pedersen et al., 2009; Bai et al., 2012) is effective. In
fact, this can be illustrated by the network in Fig. 2. Assume
that the network shown in Fig. 2.(b) is a better feasible solution
than Fig. 2.(a). Moving from the solution in Fig. 2.(a) to
the solution depicted in Fig. 2.(b) requires closing two arcs
4→3 and 3→2 and opening arc 4→2. Since only once arc
can be modified at each neighbourhood move (excluding arcs
that are modified during the flow redistribution procedure),
in theory it is possible to move to the neighbouring solution
in Fig. 2.(b) through 3 successive operators. In practice the
success rate of such a move could be extremely low since
the first two moves will result in asset imbalance at all three
nodes involved and the penalty for this constraint violations
can prevent the intermediate solutions from being accepted. In
addition, if the flow redistribution during any of these three
moves is infeasible, the search will not reach solution depicted
in Fig. 2.(b) from Fig. 2.(a). This explains why the multi-start
was required in the previously proposed algorithms.

V. THE PROPOSED k-NODE NEIGHBOURHOOD

In this section, we describe the proposed new neighbour-
hood which was originated from the idea of paired-route-
flipping. The main purpose is to maintain the feasibility of
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Fig. 3: An illustration of the paired route-flipping neighbour-
hood. Solid lines are open arcs and dashed ones are closed
arcs.

the solution during the search by changing the statuses of two
carefully selected routes. Each route is a sequence of arcs
representing vehicle moves over time. We describe this idea
in the following subsection.

A. The paired route-flipping

In particular, instead of flipping an arc, we identify a set of
arc-flipping operations with automatic feasibility satisfaction
in terms of the asset-balance constraint. Fig. 3 illustrates
this arc-flipping operator. The solid lines represent open arcs
and dotted arcs denote closed arcs. The paired-route-flipping
operator involves simultaneously changing the statuses of two
routes which form a cycle but have opposite statuses (i.e. one
closed and one open). Although this neighbourhood operator
can guarantee satisfaction of asset-balance constraints, iden-
tifying such a pair of routes is not trivial. On contrary, it is
much easier to focus on nodes rather than arcs, leading to our
k-node neighbourhood structure which we describe in the next
subsection.

B. The k-node neighbourhood

In this neighbourhood, a subset of k nodes out of all
the nodes are selected and arcs incident upon these nodes
are considered for changes. Note that in order to prevent
evaluating a candidate solution many times, we require that
the change of arcs should involve exactly k nodes rather than
a subset of them. We focus on the small and medium sized
neighbourhoods. Large neighbourhoods (e.g. k > 4) are not
considered since it is impractical to evaluate them.

Fig. 4 illustrates the k-node operator when k = 2, 3 and 4
respectively. It is not difficult to see that when k=2, a feasible
neighbour may exist only if both arcs connecting the two nodes
have a same status (i.e. either both closed or both open).
If one of them is open and the other is closed, no feasible
neighbouring solution exists.

When k = 3, the maximum number of arcs between these
nodes is 6. For a feasible current solution s, we denote
design variables for arcs from a0, a1, ..., a5 as y0, y1, ..., y5
respectively. Including the current solution s, the maximum
number of neighbouring solutions for 3-node operator will
be 26 = 64. However, not every neighbouring solution will
be feasible in terms of asset-balance constraint (4). For any



 

1 1 2 2 

open arc closed arc 

 a0 

a1 

a2 

a3 
a5 

a4 

0 1 

2 

 
0 

2 3 

1 
a0 

a1 
a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

a11 

Fig. 4: An illustration of k-node operator when k = 2, 3, and
4 respectively.

neighbouring solution s′, to satisfy asset-balance constraint,
the following constraints should be respected, each of which
corresponds to one of the three nodes under consideration
(we denote the corresponding design variables in s′ for arcs
a0, a1, ..., a5 as y′0, y

′
1, ..., y

′
5 respectively).

y0 + y2 − y1 − y3=y′0 + y′2 − y′1 − y′3 (8)
y1 + y4 − y0 − y5 = y′1 + y′4 − y′0 − y′5 (9)
y3 + y5 − y2 − y4 = y′3 + y′5 − y′2 − y′4 (10)

Note that any of the two conditions will be sufficient to
ensure feasibility since the third condition can be obtained
from the other two conditions. Taking into account these two
conditions, the maximum number of asset-balanced neighbour-
ing solutions for s will be 61 = (63-2).

Similarly one can work out the 4 conditions to be satisfied
for candidate solutions when k = 4. Again, only 3 out the
above 4 conditions are active and the other one is redundant.
For a medium sized network of 60 nodes, the number of
subsets of nodes with cardinality of 4 is C4

60 = 487635. For
each node subset, the maximum size of the neighbourhood
is 212 − 3 = 4096 since there are maximum of 12 arcs
between these nodes and 3 active constraints. Considering
the time taken to solve the flow distribution subproblem for
each of these candidate solutions in the neighbourhood, it is
impractical to efficiently evaluate neighbourhoods larger than
k = 4. Even with k = 4, it could still be very slow to
have complete evaluation of the candidate solutions. Faster
neighbourhood search procedures are required.

C. Speeding Up the Neighbourhood Search

In this section, we discuss ways that could speed up the
neighbourhood search. In the previous neighbourhood struc-
ture, there may be solutions which can be discarded directly
without ascertaining their objective values. Firstly, given a
solution s and one of its neighbouring solutions s′, if too
many arcs are closed in s′ compared to s, there is very
little chance that the flow on these arcs can be redistributed
among the remaining network. It is therefore not necessary to
solve the CMMCF sub-problem. Similarly if a neighbouring
solution s′ has too many open arcs than the original solution,
it is not necessary to evaluate this solution either since the
fixed cost would increase dramatically, resulting in a poor
solution. These two “extreme” cases are dealt by adding cut-
set inequalities and a heuristic rule respectively which we now
discuss

Let Nk be the set of k nodes selected in the k-nodes
neighbourhood and Ak be the set of arcs that are participated
by any of two nodes from N−K. For a given k, the maximum
number of arcs incident with these k nodes is P 2

k = k(k− 1).
For each of node i ∈ Nk, we define the following cut-sets Si

and Ti:

Si = {Nk\i}, Ti = {N\Si} (11)

Then the following aggregate capacity demand inequalities
should be satisfied.

Capst > Demandst ∀s ∈ Si,∀t ∈ Ti,∀i ∈ Nk (12)
Capts > Demandts ∀s ∈ Si,∀t ∈ Ti,∀i ∈ Nk (13)

In addition, the following set-cuts are defined the correspond-
ing inequalities are valid for each node i ∈ Nk.

S′
i = N+

i , T ′
i = {N\S′

i} (14)
Caps′t′ > Demands′t′ ∀s ∈ S′

i,∀t ∈ T ′
i ,∀i ∈ Nk (15)

Capt′s′ > Demandt′s′ ∀s ∈ S′
i,∀t ∈ T ′

i ,∀i ∈ Nk (16)

In the case of an “excessive” number of open arcs in
s′ compared to s, the following condition is used to check
whether s′ will be evaluated or discarded. Neighbours that do
not satisfy this condition will be discarded.∑

a∈Ak

fa × y′a ≤
∑
a∈Ak

fa × ya + 2× fk (17)

where fk is the average fixed cost of the arcs in Ak that
are involved in this neighbourhood move. (too informal) We
discard a neighbouring solution if it contains 2 more open arcs
than the original solution, evaluated in terms of the average
fixed costs.

The number of nodes required for k-node neighbourhood is
at least 2. For a given input k (≥ 2), a neighbouring solution
can be generated by making changes to arcs participated by
exactly h (2 ≤ i ≤ k) nodes.



For every neighbouring design variable vector y′, the proce-
dure first checks whether asset-balance constraint is respected
by this vector. If not, y′ is discarded and the next vector
is considered. The asset-balance constraint is checked in the
following way. When h = 2, as discussed in the previous
section, y′ is feasible only if two arcs participated by the
two nodes have a same status (i.e. both open or close). When
h = 3 or h = 4, one can check the asset-balance at each
node using conditions (8-10) and (11-14) respectively. When
k > 4, the size of the neighbourhood increases significantly.
It is impractical to evaluate the neighbourhood when k > 4
because of expensive CMMCF solution calls required in the
neighbourhood search. Therefore in our experiment, we set
k = 4.

Once a neighbouring design variable vector y′ satisfies the
asset-balance constraint, we check it against the inequality
conditions (16-21) to filter design variable vectors that are
deemed either infeasible or less interesting. After this, the
CMMCF procedure is called to find a feasible flow if it exists.
If the corresponding node set ns is tabued and aspiration
criterion is not met, this solution is overlooked. Otherwise,
it is compared against the initial solution and best solution so
far. If a candidate solution improves the initial solution, the
procedure returns the first-improvement solution. Otherwise,
it returns the best solution (s∗) in the current neighbourhood.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the k-node
neighbourhood against the current best approaches based on
the arc-flipping neighbourhood. We chose tabu search and
guided local search for comparisons as both approaches have
previously been applied to this problem and have shown good
performance.

A. A Tabu search approach with k-node neighbourhood

We firstly implement a basic TS method with the proposed
k-node neighbourhood function (denoted as TS k-node) to
evaluate its performance. We compare it against a multi-start
TS method given in (Pedersen et al., 2009) and a tabu assisted
multi-start GLS method described in (Bai et al., 2012). Both
algorithms use the arc-flipping neighbourhood function.

The pseudo-code of TS k-node algorithm is given in Al-
gorithm 1. The inputs of the algorithm include a feasible
initial solution s0, the objective function of the problem z(.),
the maximum number of nodes allowed in the neighbour-
hood generation k, and the maximum length of the tabu
list TL. In our experiment, we set k = 4 to keep the
size of the neighbourhood relative small so that it can be
evaluated relatively efficiently. We used a fixed length tabu
list TabuList which is maintained on the first-in-last-out
basis. The maximum length is set to TL = 20 after some
initial tests on a subset of the benchmark instances. Because
the proposed k-node neighbourhood is based on node sets
rather than arcs, the tabu list contains the node set which
leads to the adoption of the current solution returned by
the procedure FirstDescent(s′, z(.), k). The procedure

Algorithm 1 A basic TS with k-node neighbourhood
input An initial feasible solution s0, the objective function
z(.), k, tabu length TL.
Initialise the TabuList, the current solution s′ = s0, and the
best solution sb = s0.
while stopping criterion is not met do

s′, ns← FIRSTDESCENT(s′, z(.), k) ▷ Get the
first-descent solution and the node set ns

if z(s′) < z(sb) then
sb = s′ ▷ Update the best solution

end if
TabuList.Add(ns) ▷ Add the corresponding node set to

the TabuList
if (TabuList.Length > TL) then

TabuList.RemoveFrist ▷ Maintain the TabuList
end if

end while
return sb

repeatedly calls the FirstDescent(.) to search for a first-
decent neighbouring solution which is not in the tabu list until
the stopping criterion is met. In this case, the procedure stops
when the maximum allowed time is exhausted. This was set
to 2400s minus the amount of time taken to create the initial
feasible solution.

B. A guided local search with k-node neighbourhood

We also implemented a basic GLS method with the pro-
posed neighbourhood. The pseudo-code of the algorithm is
given in Algorithm 2. GLS is a metaheuristic designed for
constraint satisfaction and combinatorial optimisation prob-
lems (Voudouris and Tsang, 2003). The underlining idea is
to take advantage of information gathered during the search
to guide it and enable it to escape local optima. GLS adopts
a transform objective function which includes a penalty to
penalise “unattractive” features in a candidate solution. We
denote pr as the current penalty for the presence of a given
feature r in the current solution s, and Ir(s) is an indicator
variable such that Ir(s) = 1 if the candidate solution s
contains feature r and Ir(s) = 0 otherwise. λ is a scaling
parameter between the original objective function z(s) and
the aggregated feature penalties. Since λ is problem instance
dependent and is difficult to tune directly, it was estimated by
λ = αg(s∗)/

∑
r Ir(s

∗) where s∗ is the current best solution
and α is a parameter that is less problem-dependent than λ.
At each GLS iteration, the proposed k-node neighbourhood
function FirstDescent(.) was used to find a first-descent
solution except that the TabuList in FirstDescent(.) was
set to empty.

In order to have a fair comparison, both the TS and GLS
start from a same initial feasible solution for each problem
instance. Similar to TS k-node, the stopping criterion was
2400 seconds of computational time, minus the time spent
for generating an initial feasible solution and the size of the
neighbourhood is set to k = 4. The GLS parameter was set to



Algorithm 2 Pseudo-code for a basic guided local search with
new neighbourhood function.

input an initial feasible solution s0, an original objective
function z(s), a set of features R, the cost hr associated
with each feature r ∈ R and a scaling parameter λ.

output an improved solution s′.
1: foreach r ∈ R, set pr := 0
2: initialise s ← s0 and Ir(s), set g(s) = z(s) + λ ×∑

r prIr(s)
3: while stopping criterion is not met do
4: s←FIRSTDESCENT(s, g(s), k) ▷ Get the first

descent solution with regard to g(s)
5: for all r ∈ R do
6: utilr(s) = Ir(s)× hr

1+pr

7: Find r with maximum utilr, set pr ++
8: end for
9: end while

10: return s′ ← best solution found according to the original
objective function z(s).

α = 0.05 based on a preliminary experiment on a number of
representative instances.

C. Computational results and discussions

TABLE II: Computational results for a TS k-node and GLS k-
node, in comparison with two previous algorithms; TS arc-flip
(Pedersen et al., 2009) and TS MGLS (Bai et al., 2012).

Inst. TS arc-flip TA MGLS TS k-node GLS k-node
c37 102919 99622 98498 98567
c38 150764 143867 142770 143190
c39 103371 102833 101931 103010
c40 149942 143839 141475 147209
c45 82533 79895 80032 80355
c46 128757 124454 124873 126474
c47 78571 78302 78393 79282
c48 116338 115836 115939 118838
c49 55981 55986 55551 56137
c50 104533 102017 102838 103662
c51 54493 54708 54177 54642
c52 105167 105423 105047 106833
c53 119735 116915 117638 117570
c54 162360 156008 157810 157925
c55 120421 118894 119609 119470
c56 161978 159427 160096 160162
c57 49429 49457 49210 49271
c58 63889 62774 62947 63503
c59 48202 47728 47477 47738
c60 58204 58046 58015 58408
c61 103932 102216 102391 102356
c62 157043 144755 145397 145148
c63 103085 99726 100099 100019
c64 141917 136727 137518 136795

Table II presents the computational results by the TS and
GLS with the proposed neighbourhood function in compar-
ison with the latest metaheuristics for this problem. TS in
(Pedersen et al., 2009) was run on a Pentium IV 2.26GHz
PC with 3600 seconds CPU time. All others were run on a

PC with 1.8GHz Intel Core 2 CPU, single-threaded and a
2400-second time limit in conjunction with CPlex12 as the
linear programming solver. The experiments were based on
a set of benchmark instances drawn from (Pedersen et al.,
2009). This data set consists of 24 instances of different
sizes (nodes, arcs, commodities) and distributions of fixed
cost, variable cost and capacity. From instance c37 to c64,
the problem size increases steadily. For each instance, 10
independent runs were conducted and their average results
are reported. The best results among the three approaches
are highlighted in bold. It can be seen that even within
very basic TS and GLS framework, the new neighbourhood
function is able to produce very competitive results. Both the
TS method in (Pedersen et al., 2009) and the tabu assisted
multi-start GLS method (TA MGLS) in (Bai et al., 2012)
used a multi-start framework to diversify the search. It can
be seen that the proposed neighbourhood evaluated in a basic
TS, performed better than the TS method in (Pedersen et al.,
2009). It also outperformed TA MGLS for many instances,
particularly small instances (c37-c40). For large instances (e.g.
c61-c64), TS k-node was slightly inferior to TA MGLS. This
is probably caused by longer computational time taken by each
FirstDescent(.) procedure call for larger sized prob-
lems which leads to significant increase in CMMCF solution
time. A possible improvement for this algorithm is then to
develop some heuristic flow distribution procedure to reduce
the number of CMMCF calls. In terms of the performance
of GLS k-node, it outperformed the multi-start TS with arc-
flipping neighbourhood for 18 out 24 instances. Compared
with TA MGLS which is much sophisticated, GLS k-node
was inferior for most instances but obtained better results for
instance C51 and C57. GLS k-node is generally competitive
when the problem size is small. For large instances, each
FirstDescent(.) call is expensive and hence impedes the
search significantly. This is compounded with influence of the
transformed objective function g(s) used in GLS that leads to
poor solutions since local optima were not reached when the
computational time is not sufficient. This also explains why
TS k-node was able to obtain better solutions than GLS k-
node in general although both of them started from the same
initial solutions and used exactly the same neighbourhood
function. Nevertheless, through these two experiments, the
new neighbourhood function has shown it effectiveness by
producing very promising results, obtaining the new best-
known results for many instances. This is largely attributed to
its better reachability because of larger neighbourhood sizes
and abilities to maintain feasibility. Contrary to many other
neighbourhood operators, the proposed new neighbourhood
operator uses the constraint violations to their advantage
by ignoring lots of infeasible solutions. Compared with the
previous neighbourhood function, the superiority of the k-node
operator was demonstrated by the superior results obtained
both by the basic GLS and basic TS without the multi-start
mechanism which was crucial in a previous hybrid method
TA MGLS in order to prevent the search from getting stuck
at local optima.



VII. CONCLUSTIONS AND FUTURE WORK

Service network design is the core problem for freight trans-
portation network planning and optimisation. The problem is
strongly NP-Hard and is particularly challenging due to the
problem scale and complex constraints. Differing from the
previous studies for this problem which have been focusing
on more effective top-level search strategies, this research
proposed and studied a novel neighbourhood structure that
permits simultaneous changes of multiple arcs incident upon
k given nodes but maintains the solution feasibility throughout
the search. The new neighbourhood, evaluated in the context of
two metaheuristic approaches, showed better reachability than
the existing arc-flipping neighbourhood and produced some
of the best known results for a set of benchmark instances.
As the proposed neighbourhood can also be taken advantage
of in conjunction with more sophisticated metaheuristics and
even better results are therefore anticipated. In addition, the
proposed neighbourhood structure could be used for other
network problems with similar discrete equality constraints.
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