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Abstract—Recent work has shown that computational sub-
strates made from carbon nanotube/polymer mixtures can form
trainable Reservoir Computers. This new reservoir computing
platform uses computer based evolutionary algorithms to op-
timise a set of electrical control signals to induce reservoir
properties within the substrate. In the training process, evolution
decides the value of analogue control signals (voltages) and the
location of inputs and outputs on the substrate that improve the
performance of the subsequently trained reservoir readout.

Here, we evaluate the performance of evolutionary search
compared to randomly assigned electrical configurations. The
substrate is trained and evaluated on time-series prediction using
the Santa Fe Laser generated competition data (dataset A). In
addition to the main investigation, we introduce two new features
closely linked to the traditional reservoir computing architecture,
adding an evolvable input-weighting mechanism and a reservoir
time-scaling parameter.

The experimental results show evolved configurations across
all four test substrates consistently produce reservoirs with
greater performance than randomly configured reservoirs. The
results also show that applying both input-weighting and time-
scaling simultaneously can provide additional tuning to the task,
improving performance. For one material, the evolved reservoir
is shown to outperform – for this task – all other hardware-
based reservoir computers found in the literature. The same
material also outperforms a simple evolved simulated Echo State
Network of the same size. The performance of this material is
reported to be both consistent after long time-periods and after
reconfiguration to other tasks.

I. INTRODUCTION

The future of conventional computing depends upon over-

coming some fundamental engineering hurdles, such as deal-

ing with an exponential growth in design complexity, the

physical limits of transistor size, overcoming the processor-

memory transfer (von Neumann) bottleneck, and satisfying

an increasing desire for massively parallel, low-power, robust

and fault-tolerant computing. The field of Unconventional

Computing provides a unique insight into non-standard forms

of computation where many of these engineering hurdles can

be reduced, or avoided. In this work, we present an unconven-

tional computing system where computation is extracted from

a physical substrate in response to signals selected through

artificial evolution. The substrate performing computation re-

quires almost no design expertise, no separate memory entities,

has natural parallelism, and requires little power (mW).

The theoretical framework of the proposed hardware-based

Reservoir Computer is derived from two disciplines of re-

search; Evolution in Materio and Reservoir Computing. Evo-

lution in materio attempts to evolve physical computational

machines from often design-less and unconstrained materials

through computer controlled evolution [1]. Similar conceptual

ideas can be seen in and around the cybernetics movement

of the 1940s through pioneering cyberneticians such as Gor-

don Pask and Stafford Beer (see [1]). However, not until

Thompson [2] exploited the low-level physics of silicon-based

electronic devices through computer controlled evolution was

it so distinctly demonstrated. Thompson’s work showed that

blind evolution could harness the unknown physical properties

of modern electronic devices to create often unusual solutions.

Harding et al. [3] continued this work, refining the technique

and introducing new substrates, such as a liquid crystal display,

magnetic quantum dots, a crystal lattice and an optical device.

More recently, the EU-funded NASCENCE project [4] devel-

oped new evolvable nanosystems and unconventional hardware

interfaces, including carbon nanotube based composites (with

static and dynamic structures), disorganised gold-nanoparticle

networks, and a bespoke computing platform [5]–[8]. The

field of Reservoir Computing was originally conceived from

two complementary independent investigations; designing a

computational model for real-time continuous cortical micro-

circuits (Liquid State Machine) [9], and an efficient technique

for training discrete artificial recurrent neural networks (Echo

State Networks) [10]. After its inception, the reservoir model

emerged as a potential computational model for many dynam-

ical systems and has been applied to several systems, such as

a bucket of water [11], optoelectronic and photonic systems

[12]–[14], and memristive networks [15], [16].

In this paper, we compare the performance of evolutionary

search versus random search to configure substrates into

functional reservoir computers. To configure a substrate into

a working reservoir a variety of parameters exist, such as the

placement of task inputs and outputs on the electrode array

interfacing the material, the placement of additional stimula-

tion (referred to as control signals) and the voltage value of

those signals. In previous work the values and choices of these

parameters have been evolved using an evolutionary algorithm.

Here we evaluate if there is a computational advantage to

using evolution compared to just using randomly assigned

parameters. The assumption that evolution is efficient at creat-

ing reservoirs in materio is currently unproven. Configuration



through random search has been documented only once in

the evolution in materio literature, using Harding’s evolvable

Liquid Crystal Display [17]. In that work, Harding concluded

that using random search alone was not sufficient to create

the desired non-linear functions for that particular hardware

platform. This assumption appears to have carried forward to

other platforms within the NASCENCE project without further

investigation. Conducting a separate investigation into random

search for this new computational machine is necessary as

there are fundamental differences in hardware and training

methods.

After the evaluation of the search method, we introduce

two new features based on counterparts found within simulated

reservoirs: (i) Input weighting, a new input encoding analogous

to traditional neural network input weighting where the input

is directed to multiple locations on the substrate (with an

assigned weight/scaling factor) rather than to a single location;

(ii) Time scaling, a time-scale parameter that allows the search

process to adapt the response of the material towards the time-

scales of the task, reducing the mismatch between the natural

time-scale of the material and the time-scale of the task.

II. RESERVOIR COMPUTING MODEL

The reservoir model presents us with an abstract theory of

computation that allows us to extract and exploit real-time

computation from an analogue system. The model used is

derived from the sub-fields Echo State Networks and Liquid
State Machines.

The echo state network approach has become a simple

and efficient training mechanism that removes the often

cumbersome, internal gradient-descent based training used in

traditional recurrent neural networks. In echo state networks,

the discrete state of each neuron can be mathematically repre-

sented as an “echo” of its input and state history. This flavour

of reservoir typically consists of a fixed random network of

sigmoidal neurons exhibiting certain desirable properties, such

as sparse connectivity and a fading memory (the echo state
property [10]). The network is input-driven by a one- or multi-

dimensional signal and its collected neuron activations are

trained using a simple linear readout layer. Despite removing

the internal training mechanism, echo state networks are found

to be very competitive, simplifying the training process and

avoiding expensive update cycles experienced in traditional

recurrent networks.

The liquid state machine approach emerged as a model of

computation for real-time adaptive (learning) computational

systems. The motivation arose from a desire to create a

model that could more accurately describe the continuous-

time computational processes of biological neural networks

compared to the Turing and other attractor-based models. For

the purposes of our application, there are attractive features

of this model, discussed in [18]: (i) heterogeneous behaviour

can increase computational power; (ii) a non-linear projection

of the input into a high-dimensional state space (similar to a

kernel function) can theoretically lead to a universal function
approximator, if the Separation and Universal approximation

property is present; (iii) computational functions are “liquid”,

encompassing continuous time and states, rather than exhibit-

ing discrete finite states, leading to a unique generalisation ca-

pability; (iv) the computational model promotes and provides

a framework for “the invention of radically different artificial

computing devices that exploit, rather than suppress, inherent

properties of diverse physical substances” [18].

Combining the theory and practices from both approaches,

we can conveniently apply the reservoir model on an evolv-

able substrate given three requirements: (i) a material that

can exhibit desirable dynamical properties (fading memory,

separation, and the universal approximation property) either

naturally, or when given perturbation via external stimulus;

(ii) a method of observation to access and separate localised

states of the system; (iii) a mechanism to linearly combine

and train states to perform a desired computational task. This

new evolvable hardware-based reservoir computer was first

demonstrated in [19].

The reservoir model can represent any excitable non-linear

medium that produces a high-dimensional projection of the

input u(.) into reservoir states x(.). In a conventional echo

state network, the reservoir state update equation x(n) is

represented as:

x(n) = f(Winu(n) +Wx(n− 1) +Wfby(n− 1)) (1)

where the weight matrices (Win,W,Wfb) are collections of

sparse connection weights to inputs (Win), outputs (Wfb

feedback connections), and internal neurons (W ). The final

trained output y(n) is given when the reservoir states x(n)
are combined with the trained readout layer Wout:

y(n) = Woutx(n) (2)

A reservoir primarily acts as an adaptable non-linear filter,

performing non-linear functions on input data that can be

subsequently extracted using a trained linear readout. This

simplification of the training process avoids the inefficiencies

of classical recurrent network training, but also implies the

reservoir should be sufficiently rich to project the input into

a high-dimensional space and therefore approximate many

functions. This is sometimes referred to as the “kernel quality”:

the ability to separate features within the input (known as the

separation property), or the functional degrees of freedom that

exist in the reservoir (known as the universal approximation
property) [20].

To apply the reservoir model to our system, we have to adapt

the state update equation (1) to represent an observed state

of the system. The observed reservoir state x(n) combines

the continuous (t) material and the discrete (n) observation

function as:

x(n) = Ω(E(u(t), uconfig(t))) (3)

where Ω(n) is the observation of the macroscopic material

behaviour (converted from analogue to digital), and E(t) the

microscopic material function when driven by the input u(t)
and other evolved control signals uconfig(t) (converted from

digital to analogue).



These additional control signals uconfig(t) are used to

tune the electrical characteristics of the material. This can

be viewed as perturbing the material into different dynamical

regimes through the manipulation of electrical pathways. The

hypothesis is that evolved control signals, and the placement

of inputs and outputs, can alter the quality of the reservoir,

tuning properties such as the separation, approximation and

echo state property of the material function E(t).

III. RESERVOIR PARAMETERS

When designing a reservoir some level of expertise is

required to set parameters to task-dependent values. These val-

ues directly affect the reservoir’s internal dynamics, memory,

and general responsiveness. In an unconventional reservoir,

manipulating the same desirable properties may require ad-

ditional, and somewhat different parameters and techniques.

For example, in an optoelectronic system it may require the

tuning of a bias that controls the non-linearity of a signal

modulator [21]. The unique parameters used in our in materio
system describe the role and value of each electrode, for

example, is an electrode assigned to be an input, output,

or a control signal. These flexible parameters are selectively

chosen through evolution to improve the performance of the

readout layer. This follows the evolution in materio hypothesis

that applying external stimuli, or some means of configura-

tion (structural or electrical) can favourably manipulate the

substrate’s computational ability to solve a task. In addition

to these parameters, we introduce here two new evolvable

features from the traditional reservoir model, and evaluate if

any significant performance boost can be acquired.

A. Input Weighting

The standard input mechanism used in the evolution in ma-
terio technique is to assign each input to a single electrode. In

this experiment, we change the one-for-one input mechanism

(Fig. 1a) to a one-to-many input mechanism (Fig. 1b) where

the task input is supplied to multiple electrodes on the material,

each being multiplied by some weight. This technique is more

typical of the traditional reservoir computing method, where

each input source is connected to the network via an input

weight matrix Win (see eqn.(1)). No experimental data, or

discussed intuition on this type of input mechanism, is shown

in the evolution in materio literature. The hypothesis here

is that adding multiple signal sources could promote more

complex interactions, activating regions where the material

may be electrically weakened, or isolated from the input.

The input weights for our system are chosen through

evolution and are bounded between [−5V, 5V]. When input-

weighting is used, the control signals are not used. This is due

to current hardware limitations on the size of the electrode

array (12 electrodes). In total, evolution is restricted to 5

weighted inputs at any one time on the electrode array. In

an ideal scenario, using both a weighted input mechanism

and controls signals may be desirable, but not realistic on the

current size of array.

B. Time Scaling: The Leak Rate Parameter

The ability to adjust the temporal response of the reser-

voir in respect to both the input and desired output can be

advantageous. A simple example is to adjust the internal

time-scale of the reservoir to the sampling rate at which

the data was collected [22]. Time-warping invariant ESNs

(TWIESN) do this when sampling from continuous data to

discrete data overcoming common time-warping problems

within recognition tasks [23]. Multiple time-scaling methods

have been investigated for reservoir computing, including input

and output re-sampling and time-scaling at precise points

within the state collection, e.g. before and after any non-

linearity is introduced [24].

In our physical reservoir system, the material will function

at a natural time-scale which may or may not be adaptable.

Developing a method to match the material and task time-

scales could offer additional improvements in performance.

To adjust the time-scale of the proposed reservoir system, we

apply and adapt an external Leak Rate parameter derived from

Leaky Integrator Echo State Networks (LI-ESN) [22], [24]. To

fit the practicalities of the system, leaky integration has to be

performed after the observation function. This effectively turns

the leak rate parameter α into a simple adjustable digital low-

pass filter, producing a smoothing effect which controls the

speed of the reservoir’s dynamics. This filtered reservoir state

is:

x̃(n) = (1− α)x(n− 1) + αΩ(E(u(t), uconfig(t))) (4)

The parameter α has a range between [0,1]; it neither retains,

nor leaks beyond the original boundaries of x(n). When time-

scaling is not used, α = 1, and eqn.(4) reduces to eqn.(3).

IV. EXPERIMENTAL SET-UP

The evolutionary training and evaluation of the material

is conducted on a digital computer (see Fig. 2). The com-

puter communicates with the material through two National

Instruments Data Acquisition (DAQ) cards. The output DAQ

card converts the evolved configuration into analogue voltages

(task input and control signals) and digital control signals

(describing the signal mapping). At the same time, the input

DAQ card is set to receive analogue voltages. The number

of input signals recorded by the card determines the number

of reservoir states available from the material. Both input and

output cards route to a 16 × 16 cross-point switch that converts

the evolved mapping into the final electrode configuration.

A. Materials

In this experiment we investigate four substrates provided

to us by the NASCENCE project. The first two test substrates

consist of Single-Wall Carbon Nanotubes (SWCNT) with con-

centrations of 0.53% and 1% (w.r.t. weight) mixed with poly-

butyl methacrylate (PBMA). The third consists of a SWCNT

concentration of 0.1% mixed with poly-methyl methacrylate

(PMMA). Each substrate is dissolved in anisole with approx-

imately a 20ml mixture dispensed onto the electrode array,

which is then heated until dry. A gold resistor array is used
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Fig. 1: Examples of the two input mechanisms used; a) configuration through static voltages (based on evolution in materio
technique), and b) using multiple weighted inputs to various locations on the array (based on reservoir model). In the input-

weighting scheme each input ui(n) is multiplied by a weight stored in the genotype.

as the fourth (control) substrate. The array is patterned onto

a glass slide using etch-back photo-lithography. The resistor

array was found to be a competitive reservoir when applied to

other benchmark problems in [19].

V. TIME-SERIES PREDICTION

In this experiment we have chosen a time-series prediction

benchmark often used in reservoir computing literature. The

task is to predict the next value of the Santa Fe time-series

Competition Data (dataset A)1. This dataset holds original

source data recorded from a Far-Infrared-Laser in a chaotic

state. In the training process the first 5000 values of the

dataset are used. This is sub-divided into three sets: 2500

values for the reservoir weight training process (training set),

1250 for the evaluation of each trained reservoir (validation

set), and 1250 values to re-evaluate the final evolved reservoir

(test set). The first 50 values of each sub-set are discarded

as an initial washout period. Before applying the datasets

to the material, a simple evaluation of task complexity was

conducted. When comparing the original input and output of

the test set, i.e. E(u(n), ytarget), a Normalised Root Mean
Squared Error (NRMSE) = 0.9771 was achieved. Using the

linear model (y = Woutu(n)) trained on the target ytarget
an NRMSE = 0.9241 was achieved. These results imply a

significant level of additional processing is required by the

material to reduce the NRMSE.

VI. TRAINING PROCESS

A. Representing a Material Configuration

The mapping that constitutes an electrical configuration of

the material is represented as a digital, 22-gene (genotype)

string of integers and floating-point numbers. The first 12

genes in the genotype hold the functional role of each electrode

on the array, i.e. whether an electrode is an input, output, or

1Dataset available at [25] and directly through MATLAB’s Neural Network
Toolbox Sample Data Sets: http://uk.mathworks.com/help/nnet/gs/neural-
network-toolbox-sample-data-sets.html

an additional control signal/weighted input. The next 4 genes

represent the floating-point values for each control signal, or,

the weight value if the input-weighting mechanism is used.

An additional 4 inactive genes are added to allow evolution to

dynamically select the size of the reservoir, i.e. the number of

material states in use. The final two genes in the genotype hold

the floating-point value for the time-scaling parameter (α) and

the weight value for the one input that is always required.

The reservoir model provides flexibility in how many output

electrodes (reservoir states) can form the task output. This

differs from the evolution in materio technique where the

number of output electrodes is predefined and task-dependent:

an individual electrode will typically form one task output.

To let evolution exploit this flexibility we have added inactive

genes to the genotype. To implement this in hardware, we use

all available channels on the 16-channel cross-point switch.

This leads to a maximum of 4 inputs (or 4 control signals)

and a maximum of 10 outputs that can be re-routed from the

DAQ cards to the electrode array. When combined with the

task input and ground signal, this creates a pool of 16 possible

connections that can be mapped onto each electrode on the 12

electrode array. This collection of all possible connections is

stored in the genotype as active and inactive genes. Here is

an example of two individuals that have different genotypes in

the same population: The first genotype consists of a ground

connection, the task input, 3 control signals and 7 output

electrodes – these represent the 12 active genes mapped to the

electrodes. The remaining unassigned connections, i.e. the 1

control signal and 3 outputs are stored as inactive genes. The

second individual’s genotype consists of a ground, 5 inputs

(using the input-weighting scheme) and 6 output electrodes,

leaving 4 redundant output connections stored as inactive

genes.

B. Training the Material

The evolutionary algorithm used to find task-specific signal

mappings is based on a mutation only (1 + 4) evolutionary
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Fig. 2: The reservoir training process. (1) Material is stim-

ulated by input(s) and control signals provided by computer

controlled evolution. The readout layer Wout is trained on the

training set. (2) The material is stimulated with the validation
set. The trained readout is combined with the electrode read-

ings and the reservoir is evaluated to give its fitness (error).

(3) A new population is created from the reservoir readout

and material configuration producing the smallest error. The

process repeats until the maximum number of generations is

reached. (4) The final evolved reservoir is re-evaluated on the

test set, providing the final reported test error.

strategy (ES). This is compared to random search, where each

configuration is a random initiation of the genotype selected

from a uniform distribution of the minimum and maximum

values possible for each gene. In both searches, a maximum

of 750 fitness evaluations are conducted per run, for 10 runs.

Each set of 10 runs typically takes 5 hours to complete for

each material.

Other training techniques to find material configurations that

create reservoir behaviour could be considered. Examples from

evolution in materio include differential evolution [26], [27],

particle swarm optimisation [27], genetic algorithms using

crossover and mutation [7], [28], and global and local search

[29].

The overall training process features four signposts (see

Fig.2):

1) Reservoir Creation: The material configuration held

in the genotype is loaded onto the cross-point switch,

establishing communication between the DAQ cards

and the material. The material is stimulated and the

output response is trained on the training set using

Ridge Regression (with Tikhonov regularisation) to

create the output weights Wout:

Wout = ytargetX
T (XXT + βI)−1 (5)

where ytarget(n) is the teacher signal, I the identity

matrix, X the collected state matrix, and β the reg-

ularisation parameter. The material configuration and

TABLE I: The minimum and mean test error (NRMSE) for

both search methods across 10 runs. (Standard deviation in

brackets.)

Material Evo Min. Rnd Min. Evo Avg. Rnd Avg.

PMMA 0.1% 0.416 0.522 0.443 (.011) 0.651 (.106)

PBMA 0.53% 0.440 0.519 0.454 (.011) 0.656 (.111)

PBMA 1% 0.242 0.439 0.306 (.056) 0.489 (.042)

Resistor 0.498 0.582 0.536 (.023) 0.756 (.082)

trained weights are then reapplied and the reservoir is

evaluated on the validation set. The trained output of

the reservoir is given by y(n) = Woutx̃(n). The pro-

cess is repeated for every individual in the population.

2) Reservoir Selection: The validation set error of each

individual is compared. The reservoir producing the

lowest error is selected and compared to the global

best solution. If the error is below the global, the new

reservoir becomes the parent and passes its genotype

onto the next generation.

3) Create a New Population: A new population is cre-

ated from the parent reservoir using a single random

mutation. The mutational function on the genotype

depends on a mutation probability assigned to: a one-

for-one swap between active genes (20%), replace an

active gene with an inactive gene (20%), or, adjust the

value of the control signal/input weight/time-scaling

parameter α (60%) using Gaussian noise (bounded by

the min/max voltage range).

4) Final Reservoir Assessment: Once evolution is com-

pleted, the global best configuration and trained readout

Wout is reloaded and reapplied. The material is then

evaluated on the test set, giving the final reported

NRMSE. This last stage tests the reservoirs general-

isation to new data and its configuration stability, i.e.

its repeatability and consistency of behaviour to the

same configuration and stimulus.

VII. EXPERIMENTAL RESULTS

In all substrates tested, evolution outperforms random search

(see Table I). The results for the SWCNT/PBMA 1% material

tend to outperform the other materials using both random and

evolutionary search. On average, using random search with the

SWCNT/PBMA 1% material still outperforms the best evolved

resistor configuration. This result is significant when compared

to the results found in the previous experiment [19] where the

performance gap between the configured resistor and the con-

figured materials was smaller than anticipated. These results

also suggest improved reservoir performance/computational

ability with a SWCNT density around the percolation thresh-

old of 1%, as stated in [5].

The results for the newly introduced input-weighting and

time-scaling features shown in Fig. 3 are somewhat mixed.

When only applying the input-weighting mechanism, error im-

proves on average compared to no features being used. When
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time-scaling; (B) control signals and time-scaling; (C) input-
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combining both input-weighting and time-scaling the best
runs improve significantly, but the same improvement is not

consistent across all runs. Despite only a 150 generations being

performed, the best case found has an average improvement

of 15%, and the worse case an improvement of 3%. The most

notable performance increase is seen in the SWCNT/PBMA

1% material which already far outperforms the others. This

implies both input-weighting and time-scaling can refine and

tune both poor and good performance material reservoirs.
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Fig. 5: A graph of the percentage change in error from the

original evolved test set NRMSE of 0.195 over different time

periods. This is shown for the best reservoir found with

the SWCNT/PBMA 1% material using both time-scaling and

input-weighting.

However, applying time-scaling by itself does not, on average,

always offer an improvement in performance. This suggests

some interesting relationship between time-scaling and the

input-weighting mechanism that requires further investigation.

Fig. 4 shows a single evolutionary run of each material using

both input-weighting and time-scaling.

As a final experiment, a small consistency test was con-

ducted showing the materials’ change in performance over

time. As the material is passive with a static structure,

reproducing the same behaviour without large fluctuations

in performance is assumed. The possibility of any drift in

performance with time should be taken into consideration for

any future applications, and in particular where the system

is argued as a robust solution. In this consistency experiment,

three separate sets of re-evaluations are carried out on the best

performance reservoir found. Each evaluation set consists of

100 reassignments of the configuration and the trained readout

after a time period of: i) an hour, ii) one day and iii) one

week. Before the last set, the material was evolved several

times to solve a different computational task. Fig. 5 shows

the percentage change, i.e. % change = (new error – initial

error) / abs(initial error)) × 100), between the first evolved

error (NRMSE=0.195) and after each time-period. The results

show average error after a time-period of a week increased

by 10.6% from the initial NRMSE of 0.195 to 0.2157. This

simple experiment provides an insight into the materials’ drift

in performance over time; an in-depth investigation into this

phenomenon is still required.

VIII. COMPARISON TO OTHER RESERVOIR SYSTEMS

The proposed system, in the context of other reservoir

systems, shows very competitive results. Table II shows a com-

parison between the in materio reservoir, simulated/numerical

reservoirs and hardware reservoir computers. Three evolved
(simulated) echo state networks (ESNs) are also provided. The

evolvable parameters for these networks are; the spectral ra-
dius (controlling fading memory and dynamics), input scaling



TABLE II: Comparison table of other reservoir computing

systems, with our system highlighted.

Reservoir Type NMSE NRMSE Res. Nodes

Echo State Network (evolved) 0.009 0.098 50

Echo State Network [30] 0.018 0.134 50

Optoelec. (numerical) [31] 0.02 0.141 200

Optoelec. (numerical) [32], [33] 0.022 0.148 200

Mackey-Glass Oscillator [34] 0.023 0.151 50

In materio Reservoir 0.038 0.195 7

ESN (evolved and sampled) 0.042 0.205 7 (50)

Echo State Network (evolved) 0.055 0.235 7

Optoelec. (experimental) [32], [33] 0.106 0.326 200

Optoelectronic [13], [34] 0.123 0.35 400

(tuning non-linearity of the tanh neurons) and leak rate (time-

scaling). Each evolved network uses the same evolutionary

process and number of evaluations as the material. Two

variations of these ESNs are also given; two networks where

every node is used (i.e. 7 or 50 neurons), and a 50 node ESN

with 7 nodes randomly sampled to form the trainable states.

Table II shows that the in materio (SWCNT/PBMA) reser-

voir outperforms all of the experimental optoelectronic reser-

voirs found in the literature on this task, with a significant

reduction in the number of states used. The SWCNT/PBMA

reservoir also outperforms the evolved 7 node ESN and the

evolved/sampled 50 node ESN. The relationship in perfor-

mance between the sampled and non-sampled networks could

provide an insight into how the reservoir might scale with

more electrodes, e.g. if the same relationship exists, a 50 node

SWCNT/PBMA reservoir could produce an NRMSE < 0.098.

IX. DISCUSSION OF THE RESERVOIR MODEL

In contrast to the output technique used in evolution in
materio, the reservoir derives its output from the cumulative

behaviours of multiple electrodes. The readout layer is used

to selectively choose and separate interesting output signal

patterns. This output mapping could lead to several advan-

tages: (i) a layer of abstraction that extends the material’s

“programmability”; (ii) provide a more robust/fault tolerant

output; (iii) suggest an output mechanism that can scale with

hardware and task complexity; (iv) offer the opportunity to use

multiple observation methods to define the task output, i.e. an

output could combine electrical, thermal, optical and many

more types of observation. However, a possible disadvantage

to the reservoir implementation is a desire for more observable

states, and therefore a more fine-grained observation mecha-

nism to fully extract the materials computational complexity.

The conventional reservoir model, despite its advantages

and suitability, does possess limitations; reservoirs sometimes

deal poorly with simultaneous multiple time-scales [35]. A

number of suggestions and demonstrations as to how this

can be solved are discussed in [36], [37], such as creating

hierarchical and modular reservoir systems. Implementing an

extendible structure in hardware is an intriguing concept for

several reasons; not only can it solve issues with time-scaling

but it could result in a larger reservoir system with vast

reservoir/material diversity. This diversity could come from

multiple materials exhibiting different reservoir properties. A

system like this could, in some sense, complete the vision

of Miller’s high-performance analogue computer made up

of evolved materials that form functional primitives [1]. To

extend the current system, both input-weighting and time-

scaling would be useful features in implementation.

Tuning the dynamics and fading memory of our in materio
reservoir is a difficult task resolved by evolving suitable

material configurations. However, if configuration alone is

not sufficient to induce the desired internal dynamics, other

options can be explored from the reservoir computing litera-

ture. Theorem 1.2 in [18] states that Liquid State Machines

overcome the limitation of a fading memory if feedback is

allowed to flow from the readouts back into the system. This

is also a prominent mechanism found in Echo State Networks,

as shown in eqn.(1). Feedback, and the flow of information in

both directions, is a property often found exploited by the

architecture of the neocortex [38]. Adding feedback to our

system is an interesting avenue worth pursuing.

X. CONCLUSION

To understand and exploit the underlying physics of sub-

strates requires a suitable computational model. Here we

suggest and demonstrate the Reservoir Computing model as

a possible candidate. The reservoir model combined with the

evolution in materio technique observes, exploits and gives

rise to different macroscopic material behaviours with no

pre-knowledge of the system. It translates these behaviours

through a trained linear output layer into a meaningful task

output.

In this paper, we have demonstrated that configuring a

material with random search is inefficient; evolution clearly

provides a computational advantage across all the substrates

investigated. However, a wider investigation is still required

into what training algorithms could best be used to discover,

or induce reservoir properties from materials. We have also

introduced two new features (time scaling and input weighting)

that were found to, in general, improve performance over the

original technique. This improvement is greater in materials

already possessing good reservoir properties, suggesting ad-

ditional fine tuning of in materio reservoirs is possible. The

results on the prediction task demonstrate competitive perfor-

mance compared to other unconventional reservoirs, despite

a large reduction in observable reservoir states. A simple

consistency experiment also suggests the evolved solutions

experience only a small drift in performance despite long

time-periods and training on unrelated tasks. Finally, we have

discussed a number of future modifications to the system,

suggesting many routes to exploit the full advantages of this

new substrate-based reservoir computing system.
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