
Hardware Implementation of Social-Insect-Inspired
Adaptive Many-Core Task Allocation

Matthew Rowlings, Andy M. Tyrrell, Martin A. Trefzer
Intelligent Systems Group, Department of Electronics, University of York, York, YO10 5DD, UK

Email: mr589@york.ac.uk, andy.tyrrell@york.ac.uk, martin.trefzer@york.ac.uk

Abstract—As many-core systems scale into the hundreds of
nodes, design-space exploration becomes an infeasible approach
due to the many parameters that need to be optimised to produce
a design that fits both the application’s requirements and the
device constraints. When recent hardware platform problems
such as Dark Silicon, device variation and post-manufacture
failures are also considered, then a classical design methodology is
even harder to achieve. Instead, systems will need to continuously
adapt to their operating environment and device parameters.
Our previous work has shown that task allocation based on
social insect colonies is an effective and efficient approach to
tackling the problem of task-to-node mapping in an autonomous
and adaptive fashion. In this paper we verify the approach
in hardware by implementing the bio-inspired task allocation
in a many-core consisting of 100 Microblaze processing nodes
connected via a Network on Chip (NoC) with the distributed
intelligence embedded within the NoC routers. We show that
this adaptive model can be implemented in hardware with a
very small hardware overhead of 3% that scales linearly despite
the huge number of processing cores on the FPGA chip. Thus
this work shows that social-insect inspiration is a effective way
of implementing a hardware “nervous system” that will allow
systems to autonomously tackle the problems that ever smaller
device implementation technologies bring with them.

I. INTRODUCTION

As the advancement of digital implementation technology
starts to embrace the limitations enforced by the breakdown
of Dennard Scaling [1], we see a shift towards many-core
systems as a feasible solution to the problem of avoiding Dark
Silicon[2]. The many-core paradigm divides the computing
task between many processing cores across the chip, where
typically each core will have varying degrees of hardware
specialism and performance characteristics. These cores are
interconnected within a single device using a Network on Chip
(NoC) [3] [4]; an interconnection scheme based on conven-
tional networking where routers and channels are provided
for communication between nodes. Many node topologies,
interconnect options and constraint optimisations are possible
[5], giving the hardware engineer a powerful platform for
implementing systems that could be made dark silicon tol-
erant. This flexibility comes with its own engineering caveats
however: the large number of parameters will require problem
and system analysis to ensure that systems implemented within
NoCs fit their requirements and may necessitate the need
for heuristical approaches such as [6][7][8] to optimise the
design space; this is especially relevant when we consider the
extra thermal and power constraints imposed on the design
by dark silicon. This approach also suffers as the analysis

is done at design time and so cannot be adapted should the
operating conditions or properties of the chip change during
operation. However such flexibility is a key requirement for
supporting future many-core system design paradigms such as
dynamic task allocation, in field self-repair and autonomous
online optimisation [9].

Large social insect colonies also require a wide range of
important tasks to be undertaken to build and maintain the
colony and in most nests there are many thousands of workers
available to offer their assistance to ensure the expansion and
survival of the colony. However, there is a crucial equilibrium
between the number of workers performing each task that
must not only be maintained but must also continuously adapt
to sudden changes in environment and colony need. What is
most fascinating is that social insects can sustain this balance
without any centralised control and with colony members that
have relatively little intelligence when considered on their
own. Due to this simplicity and evident scalability it would
seem that social insects have evolved an interesting scalable
approach to task allocation that could be applied to very large
many-core systems.

We have previously shown that social-insect inspired task
allocation can achieve adaptive, self-optimising task allocation
in a many-core systems [10], as well as dynamic routing [11]
and fault tolerance [12]. This paper takes the simulated model
from this prior work and presents a hardware implementation
of the task allocation model, including some scalability veri-
fication by scaling the many-core up to 100 processing cores
from 36. Firstly the details of the bio-inspiration is outlined,
followed by how this is implemented within the Network on
Chip. Finally the results of some task allocation experiments
are discussed and a comparison between the hardware imple-
mentation and the simulation model is considered.

II. SOCIAL-INSECT INSPIRED TASK ALLOCATION

A. Many-Core Task Mapping

Deciding which task a node should be doing in a many-
core system is a fundamental part of the multi-objective design
space exploration involved in many-core system design. The
node-to-task mapping will affect many key constraints of
the system design, even for homogeneous many-cores. For
example, a poor mapping may result in excessive communi-
cation overhead through longer communication paths between
nodes in the data processing flow, or increased thermal load
if busy nodes are clustered together and even limited system



throughput if not enough nodes are assigned to tasks on the
critical path. Thus an ideal task allocation needs to optimise
topologies with both a geometrical and an application graph
focus. This becomes an even harder problem once adaptation
is supported within the task allocation model as changing the
task of one node will have both an upstream and downstream
effect on other nodes in the data-flow. If classical heuristical
approaches are used in an adaptive context then huge number
of different task mapping scenarios must be modelled, which
is clearly not very scalable and would be a limiting factor as
many-cores reach the size of hundreds and thousands of nodes.

B. Emerging Scalability

To tackle this scalability problem our approach emerges the
task allocation mapping at runtime by taking inspiration from
one of Nature’s self-organising complex systems, the social
insects, with a specific focus on ant colonies in this paper. In-
deed there are many parallels to be made; each member of the
colony has to decide what task it should be undertaking at any
one point and, of particular interest to building highly scalable
systems, no methods of global organisation or coordination of
work exist in the colony. In order for a colony to survive its
members must work together as there is a wide range of tasks
that are required to be undertaken, ranging from tasks inside
the nest such as feeding and rearing of the young brood,
nest expansion and maintenance tasks to scouting for and
retrieving food from outside of the nest. Many models of task
allocation have been explored by biologists [13] and models
vary between species depending on factors such as colony
size and sociability, capabilities of individuals and the typical
environment of the species habitat. In our previous work
[10] we highlighted the suitability of Gordan’s network-based
models to the task allocation problem as it abstracts away
from the underlying methodologies of interactions between
members of a colony, instead building a model based on
the patterns of interactions between members [14]. This is
more easily and efficiently translated into hardware as our
biological inspiration does not need to be “ant-correct” at each
node, instead we monitor the properties of packets that a node
encounters (priority, rate, destination) rather than any of the
actual data contained within the packet.

C. Hardware Realisation

This allows us to implement a very simple threshold based
decision model at each node, resulting in a dynamic network
analogous to Gordon’s models presented in [15]. Each node
in the many-core contains a simple 5-port router (N, E, S, W
and internal node) and hardware monitors are added to each
input port to track what task each packet is destined for. When
the number of times a task is observed exceeds a threshold
then a task switch decision is made and communicated to the
node, as shown in Figure 1. This maps very efficiently to
digital hardware as this is essentially several comparators and
counters. The circuit shown in Figure 2 is implemented within
each router for each task and thus simplicity is fundamental
to allow a scalable implementation. The task suggested from

this intelligence is fed into the node’s processing core that
uses this information to inform its current processing task,
in our case it immediately switches to the suggested task
but there are many other ways that this information could
be used. This architecture of pulses, counters and thresholds
bears similarities to the spiking neural networks seen in the
autonomic nervous systems of many animals. The crayfish for
example uses a very simple neuronal circuit to decide whether
it needs to escape and evade predators based on the spiking
input of sensory hairs on the tail of the crayfish [16]. By
adding further inputs and expanding this hardware-efficient
decision circuitry, we can endeavour to eventually provide
each router with an analogous nervous system that makes
complex decisions regarding the local aspects of the many-
core’s network behaviour autonomously.

1

1 2 3

1

1 2 3

2

1 2 3

2

1 2 3

a)

c)

b)

d)

Fig. 1. Task switch decision algorithm for an example with three tasks. a)
When a packet arrives at the router the router inspects what task the packet is
destined for. The router then increments an internal counter of the destination
task of the packet. b) If a task counter exceeds the task switch threshold then
the decision is made to change (or maintain) to that task and the application
node is informed. c) All of the counters are then reset d) The router then
starts the task switch process again

& n

a.

rst
+1

co
u

n
t 

v
al

u
e

thresh value
&

1
b. c. d.

Fig. 2. The embedded hardware to initiate a task switch. First the task number
is extracted from the packet header as the header passes through the router and
compared to a task number (n in this case) (a). This is then used to increment
a counter (b) of the number of packets of this task that has moved through
the router, the value of which is compared to the task switch threshold (c). If
the number exceeds this threshold then a flag is raised (d) which sets a status
register connected to the node’s processing core with the suggested task. All
counters are then reset and this process starts again, thus if the network load
changes later on in time then another task can pass the threshold and cause
the task switch.

III. NETWORK ON CHIP

A. NoC Design

A key interest of our investigation is the scalability of
our task allocation scheme in real many-core systems. To
represent the very high core count of many-core systems in
the near future we have created a 10x10 many-core platform



on a Xilinx Virtex-6 LX760 FPGA. Each node in the many-
core consists of a custom NoC router and a MicroBlaze
Micro Controller System (MCS)[17]. The Microblaze MCS
was chosen due to the general purpose nature of the processor,
the C programming support and the simple to extend external
IO bus. The NoC interface (I port on the router) is currently
attached to this IO bus, as is the task suggestion from the
intelligence but in the future hardware accelerators could also
be added, allowing heterogeneity to be easily added to the
NoC. The 100 processors are arranged in a grid, with an extra
Microblaze attached to the N boundary input of the most
north-west processor; this processor is purely for setting up
the experiments and collecting results. The nodes currently
simulate an application by writing and reading data packets to
the NoC and waiting for a set period to simulate processing
time.

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE PE PE

Virtex-6 FPGA
MicroBlaze

Fig. 3. Illustration of our 100 processing element (PE) many-core, showing
the MicroBlaze responsible for managing the experiments and the single
FPGA that the many-core is implemented within. Each PE is a MicroBlaze
MCS microcontroller clocked at 100MHZ with 16KB of RAM.

Our custom NoC router is shown in Figure 4. It has five
external ports, one to each cardinal neighbour and one to the
associated processing node. There is also an internal configu-
ration port that allows the nodes to change the router settings,
including the routing tables and task thresholds. Indeed this
port can be accessed by any node in the network with the
correct packet, enabling some interesting interaction experi-
ments in the future such as nodes disabling traffic being routed
to them when they are constantly busy by directly changing
their neighbours’ routing tables. These ports are connected
via a six-channel switch, allowing full duplex communication
across all ports if such a traffic profile happens. There is also
a round robin arbitrator that feeds a controller responsible for
reading the routing tables and setting up the switch when a
packet arrives. To keep the hardware resource requirements
of each NoC router as small as possible, wormhole routing

Arbitrator

West Port

North Port

Internal Port

East Port

South Port

Router Config
 Port

Intelligence

Router 
Control

Fig. 4. Layout of the NoC router. There are five duplex routing ports and
an internal configuration port. The switch supports a maximum of six data
transfers simultaneously and is controlled by the controller module which
is responsible for reading the routing tables and setting up the switch. The
intelligence module is connected into this and currently comprises of three
of the units shown in Figure 2. Each of the 5 input ports contains a three
byte FIFO that allows the packet ID to be read before the packet is routed,
allowing deadlock to be detected and handled by routing the packet down an
alternative channel if the same ID is present on the desired output channel,
as shown in Figure 5.

was used for sending data across the network, a deviation
from our simulation model presented in [10]. This limits the
amount of buffering required at each router and thus saves
FPGA embedded memory blocks.

B. Deadlock Handling

Wormhole routing however is very susceptible to deadlock
[18], especially given the dynamic nature of our system as
each task switch may invalidate the routing tables. Therefore
we need to detect and handle deadlocks whilst also still
fulfilling our scalability requirements, meaning that we cannot
use any techniques that rely on global analysis of the entire
network, constrains the routing decisions we can make (such
as restricting the turns that can be made at a certain node) or
that use many hardware resources (such as the extra buffering
required by virtual channels). Figure 5 illustrates the approach
we have taken which aims to exploit the adaptivity of the
many-core. Packets have a header that includes an unique,
two byte ID. The input FIFOs on the router ports reads and
stores this ID before passing the packet to be routed by the
control logic. If this ID already exists on one of the other
ports then the packet has looped around and would deadlock
if routed the same way. Thus it is routed out on a different
port and so shall take a different path through the network.
This is repeated should the packet return as the ID is not
cleared until the its tail End of Packet marker (EOP) passes
through the deadlocked ports. This means that eventually the
packet is (potentially incorrectly) routed to the internal port,
ultimately relieving the deadlock but requiring the packet to
be resent by the node that temporarily accepted the packet or
for the node to perform a temporary task switch to the task of
the deadlocked packet. This not only provides a decentralised,
low overhead manner of handling deadlock but also provides



West Port

North Port

East Port

A B 1

A
B

1

2 C D

Fig. 5. Example of deadlock detection and handling, only three ports are
short for clarity. There are two packets in the router, packet 1 is destined for
a task 1 node and has a header of 1AB; packet 2 is for task 2 and its header
is 2CD. Packet 1 has arrived at the West port and the routing table dictates
that it is to be routed North. Packet 2 has arrived on the East port and the
routing table says it should be routed back out on the East port. Now during
packet 1’s journey it ends up being routed back to this node and so arrives
back on the North input. The routing table wants the packet the be routed
North, but it is currently in use. This would lead to a deadlock as the packet
cannot progress, however we see that the ID 1AB matches in both the North
and West inputs and so we now automatically take the second option, routing
out on the West port. This is free and so we route the packet that way and
alleviate the deadlock. N.B. if the packet ID did not match then we would
wait for the North port to be free to send.

TABLE I
HARDWARE RESOURCE REQUIREMENTS FOR THE 10X10 NOC

Standard NoC NoC with Intelligence % Difference
Sequential
Logic:

73,875 76,392 3.41%

Combinatorial
Logic:

108,506 112,104 3.32%

Memory: 408 408 0%

us with several potential monitors and controls that a future
router intelligence module could be attached into to.

C. Network Routing Setup

Finally, by allowing nodes to change their processing task
any preset routing tables will be invalid as soon as a task
switch happens. As we are not tackling the problem of
updating the routing tables dynamically in this paper, we
instead initialise the routing tables non-optimally and allow
the network to adapt its task mapping to the non-optimal
routing pattern. We have also re-introduced the concept of
node “hunger” from our previous work. When a node is
busy processing data it sets a flag that informs its immediate
neighbours that it currently does not want to receive packets,
this is now integrated with the deadlock avoidance mechanism
to avoid routing in the direction of a busy neighbour and
instead pick an alternative port by the same manner that the
deadlock avoidance does.

IV. EXPERIMENTAL RESULTS AND COMPARISON

Using the hardware platform described in the previous
section, we have repeated the experiments that we undertook in
the simulation presented in [10]. As with these previous task
allocation experiments, two application scenarios were used
for the experiments: one representing a balanced application

TABLE II
APPLICATION MODEL SETTINGS. THESE DETERMINE WHEN A PACKET IS

GENERATED, AS EXPLAINED IN SECTION IV AND FOR EACH OF THE
APPLICATION GRAPHS SHOWN IN FIGURE 6 AND 7

Scenario 1 Scenario 2
Task: 1 2 3 1 2 3
Ratio: 1 1 1 1 4 1
Rate: 50ms 0 0 50ms 0 0
Packets Required: 0 1 1 0 1 1
CPU Time: 1ms 1ms 1ms 1ms 5ms 1ms
Packet Size: 1KB 1KB 1KB 1KB 1KB 1KB

and the second an application bottleneck where the ratio of
each tasks are not equal. The application graphs for these
scenarios are shown in Figure 6 and 7. Packets from Task
1 nodes are generated at a fixed rate of one every 50ms,
whilst Task 2 and 3 nodes do not send a packet out until
they have received a packet with their task as the destination -
this introduces causality into the model and is a more realistic
processing stream. These and the other experiment parameters
are summarised in Table II.

1 2

3

Fig. 6. Application graph for the first scenario. This represents a simple
balanced processing application resulting in balanced traffic profile across the
network, perturbed only by the network topology.

1

2

3

2 2 2

Fig. 7. Application graph for the second scenario. A data pipeline with a
parallel stage is represented here whereby there are four times as many task
two nodes as task one or three nodes. This can represent a typical many-core
streaming application with a stage that is massively parallel, all data rates are
kept the same as in the previous, balanced application graph shown in Figure
6 aside from CPU time for Task 2 nodes as shown in Table II. This scenario
effectively increases the load on Task 2 nodes.

Figure 8 shows the distribution of average packet latencies
over 100 runs of the first task scenario. The tasks are randomly
allocated to nodes and this mapping changes between runs, but
for the first two schemes we pre-load the routing tables with
optimal routing patterns for each task. As task switching is not
used in the first two schemes these routing tables remain valid
for the entire experiment and the optimal pathways mean that
no deadlock is present in the first case. The second case does



10
20
30
40
50

Average Packet Traversal Times for Scenario 1

Task 1
(3.87)

Task 2
(3.46)

Task 3
(1.62)

Task 1
(3.85)

Task 2
(2.81)

Task 3
(1.61)

Task 1
(2.30)

Task 2
(2.25)

Task 3
(1.57)

Task 1
(2.61)

Task 2
(2.07)

Task 3
(1.84)

0

1

2

3

4

5

6

No Task Switching No Task Switching
with Hunger Flag

Task Switching Task Switching with
Hunger Flag

A
ve

ra
g
e 

P
ac

k
et

 T
ra

ve
rs

al
 T

im
e 

(m
s)

Fig. 8. Average packet traversal times of 100 runs of the first application scenario, with the medians given in brackets. The first two cases do not have
any adaptive task switching but do have routing tables pre-loaded with optimal routing directions. The last two case do have adaptive task switching, but
have random routing tables which can cause long paths and deadlock with wormhole routing. Despite this we see the network adapt to the random routing
directions to recover a better median performance and a much tighter distribution to the first two cases. In the final case the hunger flag causes too much
variation in the network for it to stabilise quickly, as discussed in Section IV. The skew of Task 3 packets is due to Task 1 nodes (their destination) being the
initiator of the data-flow as the only task that sends data at a fixed rate, so the network is relatively quiet when data is sent back to it.

10
20
30
40
50
60

Average Packet Traversal Times for Scenario 2

Task 1
(2.09)

Task 2
(3.12)

Task 3
(1.51)

Task 1
(2.02)

Task 2
(2.93)

Task 3
(1.54)

Task 1
(2.15)

Task 2
(1.58)

Task 3
(1.44)

Task 1
(2.01)

Task 2
(1.70)

Task 3
(1.55)

0

1

2

3

4

5

6

No Task Switching No Task Switching
with Hunger Flag

Task Switching Task Switching with
Hunger Flag

A
ve

ra
g
e 

P
ac

k
et

 T
ra

ve
rs

al
 T

im
e 

(m
s)

Fig. 9. Average packet traversal times of 100 runs of the second application scenario, again the medians are given in brackets. The high number of Task
2 nodes relative to Task 3 nodes mean that it is possible for Task 3 nodes to be the bottleneck (depending on the random initial task allocation), resulting
in a larger distribution for packets from Task 2 nodes. The adaptive task allocation alleviates this bottleneck at a slight sacrifice of Task 1 packet latency,
implying that less active Task 2 nodes may task switch to take up the Task 3 packets at the bottlenecks. Again the hunger flag causes too much variation in
the network for it to stabilise quickly.



have the “hunger” flag enabled and so nodes can inform their
neighbours that they are busy, causing some of the bottlenecks
that cause the spread in the distribution to be alleviated. The
intelligence currently only picks the next best routing choice
(as preloaded into the tables) and this can cause deadlock. The
deadlock recovery scheme will ultimately mean that packet is
sunk at some point, but it will have a temporary impact on the
network as can be seen by the fluctuation in the time domain
average shown in graph (b) of Figure 10.

When we enable the task switching we see a similar
improvement to the distribution as we saw in the simulation
undertaken in [10]. Despite the task mapping and the routing
tables being randomly issued for this case (optimal routing
tables would be quickly rendered useless by the task switch-
ing), the network autonomously adapts its task topology to
more optimal mappings as dictated by the random routing
tables. This is clearly shown in graph (c) of Figure 10 as at
first the average latencies are very poor (four times as long),
but as the network adapts we see this improve until it is of
similar performance to the schemes with pre-loaded optimal
routing tables. What is interesting is that the hunger flag now
introduces a huge amount of variation into the network as seen
in the final case. Without the “next best choice” preloaded into
the routing tables, packets are routed in a random manner and
so they not only cause deadlocks as with the no task switch
case, but also can cause the task mapping to adapt to the
temporary diversion and thus require a far longer time for the
network to “settle down” to a stable task mapping or it may
even not be able to settle down at all.

The different application topography of the second scenario
requires a more complex traffic pattern that the network
shall have to adapt to. As Figure 9 shows, the adaptive task
allocation manages to achieve this. With the first two schemes
there is a delay for task 2 packets due to the high ratio of task 2
nodes trying to sink to task 3 nodes. The adaptive scheme can
reduce this imbalance by possibly swapping idle task 2 nodes
to task 3, indeed this is shown by the larger distribution of
task 1 nodes, although the range between the medians remain
much smaller than for the non-adaptive schemes. Again we
see the hunger flag introduces too much of a dramatic routing
change and the spread is very large; indeed given the longer
CPU time of task 2 nodes this is somewhat expected as more
nodes are likely to be in their “hunger” state.

V. COMPARISON WITH SIMULATION MODEL

The most fundamental difference between the hardware
implementation and our previous simulation model (aside from
the scaling from 36 to 100 nodes) is the routing technique:
the simulation had used store and forward whilst for an
efficient implementation we have moved to wormhole routing
as discussed earlier in Section III. As a fundamental part of
our intelligence model is observing the pattern of packets
flowing through a node, wormhole routing has introduced
some significant changes in network behaviour. For example,
in the simulation model we showed how fault tolerance is
easily achieved with the adaptive behaviour as a failed node

will no longer sink packets destined for it and so an increase in
packets for that node are introduced into the network that the
other nodes can then react to. For wormhole routing however,
it is unlikely that a packet is sent in its entirety before the
head is accepted and so in our fault case we instead have
many heads of packets moving around the network, making
the network more vulnerable to deadlock and causing a limited
response in the router as it can only accept four packets
concurrently. These packets will then not be cleared due to
the faulty node and the limited impact on each router’s task
counter threshold means that the necessary task switch will
not happen until these packets completely deadlock.

Another difference introduced by wormhole routing is the
lack of buffering at the node level: a packet can only be routed
once it is accepted at a node and up until this time its tail is
holding the routing path, preventing other packets from using
this path. Our previous packet switching used some small
buffers at each router, meaning that instead it took a number
of packets to block a routing path and so a larger proportion
network dynamics are limited to neighbour-neighbour inter-
actions which our intelligence model is highly optimised for.
This can be seen when the time domain representations of the
packet latencies given in Figure 10 and Figure 11 are compared
directly. Although for different random start task topologies,
it is seen that in the non task switching case the wormhole
experiment has a high latency at the start. This is due to the
first packet blocking subsequent packets until it is routed, after
which the second packet does the same etc. This effectively
enforces a time-slicing of network traffic as the nodes will not
receive their packet, and therefore process it, until a blocking
packet is finished. As all the rate parameters and processing
times are the same for all nodes, resulting in that the next time
a node is ready to send a packet it will have delayed enough
from the first time to send it without waiting on the blocking
packet (which will have already been sunk in the time the
node was busy processing).

VI. CONCLUSIONS

Through hardware implementation we have shown that our
social-insect-inspired task allocation is a viable approach to
adaptive task allocation in many-core systems and we have
also demonstrated the scalability of such an approach by
increasing the number of nodes in the platform by nearly three
times to 100 nodes, yet whilst maintaining a tiny hardware
overhead of 3% that scales linearly with the number of nodes.
However we have also discovered how a hardware implemen-
tation inevitably alters the underlying network dynamics and
introduced patterns that the intelligence model cannot react
to in the same manner as prior experiments. Despite this,
decentralised task allocation which emerges from a far from
optimal routing scheme is still observed and our intelligence
model easily allows addition of extra local signal monitors that
can exploit other dynamics that wormhole routing offers up to
us. Indeed we have shown in our previous work that many
biological models of task allocation exist and all models have
some degree of sensory integration and evaluation, thus our



0
3
6
9

12
15

(a) No Task Switching

0
3
6
9

12
15

(b) No Task Switching with Hunger Flag

0
3
6
9

12
15

(c) Task Switching 

0 200 400 600 800 1000 1200 1400
0
3
6
9

12
15

(d) Task Switching with Hunger FlagP
ac

k
et

 T
ra

ve
rs

al
 T

im
e 

(m
s)

Comparison of Packet Traversal Times

Packet Number

Fig. 10. Average packet traversal time represented in the temporal domain. A
run from one of the 100 runs was chosen and a moving average was applied
across the raw latencies of each packet. The same seed is used for each run
of the different schemes and so the random starting topology and preloaded
random routing tables are consistent across each scheme in this graph. Two
effects are clear: the wormhole routing induced improvement in latency at the
start as it enforces time-slicing of packets (discussed in Section V) and also
the greater amount of time required for the hunger flag enabled schemes to
stabilise and how they destabilise later on.

0
200
400
600
800

1000
(a) No Task Switching

0
200
400
600
800

1000
(b) Task Switching (TS)

0
200
400
600
800

1000
(c) TS with Neighbour Hunger

0 1000 2000 3000 4000 5000
0

200
400
600
800

1000
(d) TS with Hunger and RoutingP

ac
k
et

 T
ra

ve
rs

al
 T

im
e 

(u
s)

Comparison of Packet Traversal Times

Packet Number

Fig. 11. The average packet traversal time represented in the temporal domain,
from the simulation presented in our previous paper[10]. The difference in
network dynamics between packet switched and circuit switched routing is
clear to see when the two charts are compared directly.

current set of abilities of the distributed intelligence is only
the baseline for fully adaptive many-core systems.

VII. FURTHER WORK

The Microblaze MCS provides an IO interface to the micro-
processor that makes it very suited to the addition of embedded
hardware accelerators. This would add heterogeneity to the
many-core and so is of significant interest. Indeed the correct
emergence of “generalist and specialists” members is observed
as a fundamental part of the survival of some species of social
insect and so our intelligence model can also take inspiration
from this aspect as heterogeneity makes the problems of task
allocation and routing problems even harder to design with a
design-space exploration.

In addition to extra NoC sensory inputs to the intelligence
model the hardware system also allows us to supplement the
NoC information with information about the platform, such
as thermal or power information, which will allow our many-
core to be fully adaptive to Dark Silicon imposed constraints.
Indeed this does not and should not be information at a global
level; embedded sensors such as ring oscillators, results of
CRC checking or even information on the processing load of
neighbours to allow a node to detect when it is starting to push
its local processing envelope and the network should react and
adapt accordingly.

ACKNOWLEDGEMENTS

This work was supported by funding from the Department
of Electronics and an EPSRC DTA award.

REFERENCES

[1] R. Dennard and V. Rideout, “Design of ion-implanted MOSFET’s with
very small physical dimensions,” Solid-State Circuits, IEEE Journal of,
vol. 9, no. 5, pp. 256–268, 1974.

[2] H. Esmaeilzadeh and E. Blem, “Dark silicon and the end of multicore
scaling,” in Proceedings of the 38th Annual International Symposium on
Computer Architecture, 2011, pp. 365–376.

[3] L. Benini and G. D. Micheli, “Networks on chips–a new SoC paradigm,”
Computer, 2002.

[4] A. Hemani, A. Jantsch, S. Kumar, and A. Postula, “Network on chip:
An architecture for billion transistor era,” in IEEE NorChip Conference,
2000.

[5] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding Research Problems in NoC Design: System, Microarchi-
tecture, and Circuit Perspectives,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, pp.
3–21, jan 2009.

[6] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration,” ACM Transactions on Design
Automation of Electronic Systems, vol. 12, no. 3, pp. 23–es, aug 2007.

[7] K. Srinivasan, K. Chatha, and G. Konjevod, “Linear programming based
techniques for synthesis of network-on-chip architectures,” in IEEE
International Conference on Computer Design: VLSI in Computers and
Processors, 2004. ICCD 2004. Proceedings. IEEE, 2004, pp. 422–429.

[8] U. Ogras and R. Marculescu, “Energy- and Performance-Driven NoC
Communication Architecture Synthesis Using a Decomposition Ap-
proach,” in Design, Automation and Test in Europe. IEEE, 2005, pp.
352–357.

[9] G. Tempesti, “Graceful Design,” International Innovation Issue 140, pp.
76 – 78, 2014.

[10] M. Rowlings, A. Tyrrell, and M. Trefzer, “Social-Insect-Inspired Adap-
tive Task Allocation for Many-Core Systems,” in 2016 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2016, pp. 911–918.

[11] ——, “Social-Insect-Inspired Networking for Autonomous Load Opti-
misation,” Procedia CIRP, vol. 38, pp. 259–264, 2015.



[12] ——, “Social-Insect-Inspired Networking for Autonomous Fault Toler-
ance,” in 2015 IEEE Symposium Series on Computational Intelligence.
IEEE, dec 2015, pp. 1198–1205.

[13] C. Anderson and D. McShea, “Individual versus social complexity,
with particular reference to ant colonies,” Biological Reviews (of the
Cambridge Philosophical Society), pp. 211–237, 2001.

[14] D. Gordon, “The organization of work in social insect colonies,” Nature,
1996.

[15] D. Gordon, B. Goodwin, and L. Trainor, “A parallel distributed model
of the behaviour of ant colonies,” Journal of theoretical Biology, 1992.

[16] P. Simmons and D. Young, Nerve cells and animal behaviour, 3rd ed.
Cambridge University Press, 2010.

[17] Xilinx Inc, MicroBlaze Micro Controller System v1.4 (PG048), 2013.
[18] P. Mohapatra, “Wormhole routing techniques for directly connected

multicomputer systems,” ACM Computing Surveys (CSUR), vol. 30,
no. 3, pp. 374–410, 1998.


