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Abstract—Pattern recognition algorithms have been applied
in the surface electromyography (sEMG) based hand motion
recognition for their promising accuracy. Research on proposing
new features, improving classifiers and their combinations has
been extensively conducted in the past decade. Meanwhile, the
feature projection methodology, has been routinely exploited
between the phases of feature extraction and -classification.
However, limited publications have been seen addressing the
feature selection, which is a vital alternative in dimensionality
reduction for pattern recognition. Recent development of SEMG
acquisition devices have contributed to more signal capturing
sites or even detection arrays of high density in the application.
In this paper, the memetic evolutionary method named bacterial
memetic algorithm (BMA) has been adopted as the feature
selection strategy for SEMG based hand motion recognition. A
case study of 4 subjects in long-term use has been conducted to
demonstrate the feasibility of the proposed strategy, that com-
parable recognition accuracy with reduced computation cost has
been achieved. A further discussion on the feature redundancy
and inter-subject use has also been demonstrated based on the
experimental results derived from BMA based feature selection.

Index Terms—Electromyography, Hand Motion, Pattern
Recognition, Feature Selection, Bacterial Memetic Algorithm

I. INTRODUCTION

The human-machine interfaces (HMlIs) of prosthetic hand
control have been extensively researched in the past few
decades. For prosthesis users, intuitiveness, higher success
rate, low latency and less adaptation cost are the prior concerns
to be fulfilled [1]. In details, the premise of an ideal control
is crafted by the accurate recognition of users’ intention,
the imperceptible delay between the execution of mechanical
extremity and the employment of users’ residual limb, and
the consistent feasibility for long-term use. Among various
feasible approaches, surface electromyography (SEMG) based
pattern recognition for prosthetic hand control has been widely
investigated for its most promising performance to meet the
mentioned criteria [2]. The aim of such methodology is

to distinguish users’ intention of hand movement through
classifying the SEMG signals exerted from forearm muscle
contractions. Let alone the emphasis on preprocessing of
captured physiological signals [3] or the post-processing of
decision stream generated by the classifier [4], increasing
high accuracy and improved feasibility have been frequently
published and witnessed within the framework of pattern
recognition in academia [5].

Among all the progress, most of intensive research and
improvement are reported in typical pattern recognition strate-
gies regarding the combination of new feature descriptions
and evolved classifiers. Similar to other pattern recognition
based problems, the application in SEMG based hand motion
recognition is highly dependent on the feature extraction phase
and would be essentially improved when appropriate feature
representations are adopted [6]. Recent studies have also urged
the interests towards the clinical scenario, especially the robust
usability [7], to which a selected group of distinguishable
and repeatable features might be a potentially elementary
solution for the purpose of long-term use. However, despite the
elaborate comparisons among features extracted in different
domains like time (TD), frequency (FD) and time-frequency
(TFD) [8], limited publications have addressed the issue on
feature selection.

Oskoei et al. [9] considered the feature subset selection
instead of exploiting the ensemble for a 4-channel and a
6-channel system respectively, in which the limited number
of channels has constrained the redundancy to overcome,
and furthermore the research was targeting at improving the
inferior classifier for repeated sessions. Much as the inspiring
consideration of feature selection a decade ago, it is now more
essential to be combined with recently developed SEMG acqui-
sition device design, which has contributed to more equipped
channels in application. Thus intuitively, more physiological
information could be captured by the system with an increased
number of available channels. Despite the informative patterns



brought in by extra signal sources, the extraction of more
features could be time-consuming, and a redundant pooled
feature set sometimes degrades the recognition performance
with imported outliers. Retrieving the most discriminating
feature subset while keeping the computation complexity and
the loss of information balanced has become an emerging
topic. Phinyomark et al. [10] evaluated a group of candidate
features captured by 5 electrodes and stated the superfluity
and redundancy of TD features. In spite of the constructive
discussion, the selection part was neither focusing on the
capturing system with multiple detection sites nor long-term
use targeted. Thus a further investigation on the selection and
utilization of optimal feature subset for desired scenarios still
remains an open topic.

In order to exploit the most of feature selection, proper
methodology is required to cope with the natural complexity of
the SEMG patterns. The weighted sum of electrical quantity of
motor units (MUs) forms the captured EMG signal, which is
influenced by various biological factors like the size of MUs
with their corresponding patterns of employment, activation
and firing rate, and muscle fibers’ type, size and state within
it [11]. Because of either revealed or unknown physiological
contributions, nonlinearity and multimodality are brought to
SEMG related problems, which is also the case for feature
selection in SEMG based hand motion recognition. Nature
inspired evolutionary optimization algorithms are suitable for
such searching problems with proven global optimization ca-
pabilities. This paper underlies the feature selection in SEMG
based hand motion recognition for long-term use, utilizing the
evolutionary technique of bacterial memetic algorithm (BMA).
A case study of 4 subjects has been conducted to demonstrate
the effectiveness of the incorporated strategy.

The remaining of the paper is organized as follows. Section
Il presents the details of the BMA. Section III describes
the applied scenario of hand motion recognition with testing
settings. Section IV presents the experimental results with
corresponding discussion and finally Section V concludes the

paper.
II. BACTERIAL MEMETIC ALGORITHM

The BMA is a memetic evolutionary technique inspired by
the nature of microbial evolution[12]. This heuristic algorithm
combines the evolutionary method and the local search strat-
egy to make the best of both concepts. An early study on the
adopted bacterial evolutionary algorithm has been applied in
the feature selection on the fitting problem, in exclusion of the
memetic approach [13]. However conventional evolutionary
algorithms, in most cases, suffer from the low convergence
rate. To alleviate this situation, the memetic algorithm (MA)
[14] is adopted to apply local search procedure within each
evolutionary cycle. Bacterial mutation, gene transfer and the
application dependent local search routinely constitute the
main operators of the BMA process. In feature selection of
SEMG based hand motion recognition, the goal is to find
the optimal or at least quasi-optimal combination of different
features from each individual channel. The BMA is adopted

instead of other evolutionary methods in the feature selection
for its local search ability regarding to each channel embedded
in our system.

A. Encoding and Evaluation

The optimization problem is essentially encoded in the
evolutionary form of candidate solutions. And every candi-
date solution is represented by a bacterium (chromosome)
to be optimized. In the initialization operation, a total of
N;nq individual bacteria are created as the whole population
to be processed in the following stages. The chromosome
length of each bacterium is first randomly initialized within
a predefined interval and filled with a trial of non-negative
integers. In our case of feature selection, each integer in the
chromosome represents the index of an individual from the
pooled SEMG features of all channels. Features denoted by
chromosomes will be retrieved for the performance evaluation
(routinely named with the terminology fitness function)
in each evolutionary memetic cycle. The chromosome with
the best evaluation result in the last cycle is exported as
the optimal feature set. In our feature selection problem, the
recognition accuracy obtained from the retrieved features and
the predefined classifiers stands for the fitness.

Inspired by previously mentioned publications, in our appli-
cation the chromosome length is variable and modified with
fixed probability P, in each bacterial mutation and gene
transfer operation to explore a broader search space. Referring
to the prior knowledge of the scenario, the size of a constrained
search space is controlled by lower and upper boundaries of

chromosome length.
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where N is the total number of candidate features, and ng
and ny, represent the upper boundary and lower boundary of
the chromosome length.

An alternative constraint is to combine the penalty function
(regularizer) on the chromosome length in the evaluation. To
constraint the complexity of the model, the regularized fitness
function is adopted [15]. The evaluation is closely related to
the application and will be explained in details in Section III.
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where o, is the fitness of i-th bacterium ¢;, NV is the size of
testing data, f(x) is the classification function which outputs
the category, (z,t) is the sample from the testing domain 7',
ly is the chromosome length, ny is the upper boundary of
chromosome length, X is the regularization parameter and ()
is the Kronecker delta function.
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Fig. 1. Mutation operation in BMA

B. Bacterial Mutation

BMA searches for the global optimum through mutation
in the chromosome, which imports new information in a ran-
domly selected space. Similar to other evolutionary algorithms,
individuals from the population are mutated, evaluated and
replaced (preserved).

The mutation operation is performed for all N;,q chro-

mosomes one by one in each cycle. The mutation starts
with the duplication of the objective chromosome for N¢jope
times. Then a random length of [, is generated to indicate
the segments to be mutated in the chromosome. Despite the
mutation in the clones, the 1-st clone remains the same as
the unaltered source chromosome in this stage. The evaluation
operation is conducted on each chromosome and the source
one is replaced by the one with the best result whereas the
inferior ones are waived. In our application, the mutation
epoch of one bacterium is set as adaptive to its length to
guarantee that all the segments are mutated at least and only
once in every generation. During the mutation process, the
length of each chromosome varies by [.; or remains unchanged
according to the predefined probability P,,. The mutation
operation and length modification is illustrated in Fig. 1, where
Ncione = 3, lpm, = 2, Iy = 1, Eva is the fitness function of
accuracy and a larger Fva is preferred in the selection.

C. Local Search

After the mutation, the local search operators will ran-
domly function on the individuals from mutated population

with a probability of Pj;. A predefined local search space
is explored to find the best neighboring solution of one or
grouped segments. Memetic algorithms incorporate the local
search operation to accelerate the whole searching process.
The chance of local search needs to be carefully designed to
balance the acceleration of the convergence and the avoidance
of the local optimum.

In our case, the prior knowledge is the physiological factors

influencing the exerted sEMG signals and the anatomical
deformation of the forearm muscles for certain hand gestures.
For each feature in the searching space, its index possess
two properties of SEMG acquisition site and the extraction
strategy. Naturally the local space is defined with either fixed
channel or fixed extraction domain. Depending on the design
of signal acquisition system, which is either muscle targeted
or muscle untargeted, two different views can be generalized
in the local search protocol. For a fixed channel in untargeted
SEMG capturing system, only features extracted from the same
signal source can be viewed as the candidates. It is intuitive
that certain hand gestures only involve the contraction of
certain muscles, and it is more reasonable to compare the
acquired information for the same motion intention. While the
muscle untargeted detection normally cover an overlapped area
with muscle synergies, a muscle targeted way only gathers the
SEMG signals from certain muscles with negligible influence
by others. In this situation, the candidate group of channels
will be enlarged by those who are related to the same motions.
For a fixed domain only the features computed in the same
domain like FD or others are included for the selection because
of their own characteristics to facilitate different physiological
conditions. As indicated in previous research, spectral features
are good indicators for muscle fatigue and the entropy based
indices perform robustly under circumstances where small
contraction and noise are included [8]. In the end of each local
search, the chromosome is replaced by the alternative with the
best evaluation performance in its defined neighborhood.

D. Gene Transfer

Mutation and local search are followed by the operation
of gene transfer, which allows the segment flow between
two bacteria. The goal of the mutation and local search is
to explore the unknown searching space and bring in new
beneficial information while gene transfer aims to preserve
the incorporated features instead of introducing new features
through passing them to multiple bacteria within the popula-
tion.

First the population is divided into two sorted halves, a
superior set and an inferior set, according to the evaluation
results. Then one bacterium is randomly picked from both
superior and inferior halves as the transfer candidates. A
group of segments with predefined length of [, from the
source bacterium are assigned to pointwise matches in the
destination bacterium. This process mimics the infections
of the bacteria and will be repeated for N;,; times in each
generation. During the gene transfer, the chromosome length is
also modified with the fixed probability, however in a different
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way from the mutation operation. The difference between
the two modifications lies on the concept that gene transfer
only preserves the existing information without incorporating
unseen features. To preserve the improvement of the destina-
tion bacterium, the updated population will be divided again
according to another evaluation after each transfer. The gene
transfer process including the length modifications is shown
in Fig. 2, where lsy = 1, [; = 1 and the chromosome length
randomly remains the same.

III. FEATURE SELECTION IN SEMG BASED HAND
MOTION RECOGNITION

A. Hand Motion Recognition

A typical process of sSEMG based hand motion recog-
nition is illustrated in Fig. 3. The sEMG signals are first
acquired by electrodes covering the forearm muscles. After
the preprocessing of raw input, segmentation is conducted
over the signal stream to provide either separate or overlapped
windows for further process. Features are then extracted from
the data and dimensionally reduced by principal component
analysis (PCA), later fed to the classifier to generate the
decision streams of the consecutive windows. Consequently
the hand motions are executed by prosthetic devices based on
the recognition results. In this research, we focused on the
phase between feature extraction and classification. Despite
the feasibility of PCA in the dimensionality reduction, it still
requires the calculation of all named features to exploit the
most of the information. However, with the increase in the
number of detection sites, the computation cost would heavily
hinder the real-time performance in clinical use. An alternative

e
Raw SEMG - SEMG Slgna_ls Wlndowln.g
- Preprocessing Segmentation
Feature
Decision S Extraction
ccision tr_eam Classification g—
Postprocessing
Dimensionality
Reduction

Fig. 3. sEMG based hand motion recognition flowchart

is to use the feature selection strategy instead of the feature
projection, which could be done in offline environment. The
best trade-off is to achieve a comparable recognition accuracy
with reduced computation complexity to a certain extent.

B. Testing Scenarios

The sSEMG signal acquisition system proposed in [16] was
utilized in this research. The specification of the system
includes 16 bi-polar sEMG sites embedded in the sleeve, with
the gain of 3000 and the ADC resolution of 12 bits. The SEMG
signals are captured with the sampling frequency of 1kHz and
common mode noises removed first, then Butterworth band-
pass filtered between 10Hz and 500Hz, and filtered by the
notch filter to remove the power line noises.

Four healthy subjects were employed in the experiment to
carry out the capturing paradigm in 7 days out of consecutive
14 days comprising multiple trials for day of trial. A total of
nine motions (hand at rest, hand open, hand close, index finger
point, fine pinch, wrist flexion, wrist extension, supination,
pronation) were identified in the recognition problem. During
the capturing stage, the subjects were instructed to repeat a
random displayed sequence of motions as shown in Fig. 4.
Each of the motion was conducted and lasted 10 seconds in a
steady contraction. The everyday donning/doffing, which leads
to electrode shift, is considered not only in inter-day trials but
also the intra-day trials. To preliminarily consider the influence
of muscle fatigue, one of the subjects was instructed to exhaust
his strength between consequent session without donning and
doffing of the sleeve.

In the experiments we exclude the transient phase between
two motions and only evaluate the feature selection of station-
ary signals during hand motion conduction. The overlapped
windowing strategy was adopted to segment the SEMG signal
stream with a window length of 250ms and an increment
of 50ms. The most prevalent Hudgins’ TD features [17] in
combination with 4-th order autoregressive (AR) coefficients
were adopted as the baseline feature options, the total number
of which is 128. The detailed definition of other included
features can be referred to in the review paper on sEMG
feature [8]. The multi-class linear discriminant analysis (LDA)
was adopted as the classifier for its simplicity.

The current research mainly focuses on the long-term use,
thus the evaluation result in BMA is obtained from inter-day



Fig. 4. From left to right, top to bottom: a. SEMG acquisition hardware
including electrodes embedded sleeve and processing circuit b. 9 motions to
be recognized c. display of 16 channels’ sSEMG samples [16]

trials of the same subject. Here the source domain and the
target domain are two disjoint set which consist of labeled
SEMG signals captured on separate days. Besides the inter-day
test, the test on fatigue, which is another physiological issue
affecting the recognition accuracy in long-term application. To
fulfill the fatigue simulation, the subject for fatigue test was
informed to exhaust the strength as much as possible between
each trial within the same day.

IV. EXPERIMENTS AND DISCUSSION
A. Experimental Results

The evaluation results (convergence) of the same subject
with different parameter settings are depicted in Fig. 5. It
can be seen that the evaluation has reached a quasi-optimal
performance with around the 10 generations of evolution and
searching in both settings. The number of evaluation times
is 177278 and 191046 respectively. No obvious differences
in convergence or accuracy are witnessed in the comparison,
which indicates that the application of BMA in this specific
SEMG based feature selection is not sensitive to the parameter
settings.

The detailed properties of all bacteria after the entire
evolutionary process are illustrated in the Table I. It should
be noted that the average evaluation result for all bacteria
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Fig. 5. Evaluation in BMA with different parameter settings

TABLE I
SELECTED FEATURE SUBSET EXAMPLES

Indices of selected features Number | Evaluation accuracy %

510 13 18 20 22 25 33 41 44 45
49 56 57 63 66 76 82 84 91 92

96 113 122 123 25 97.5249

3610 13 18 20 25 26 37 44 53
58 59 63 71 72 83 91 92 96 110

112 122 23 97.0442

5610111316 17 19 20 22 25
27 29 313334 354144454952
55 58 63 65 76 82 84 87 88 91 92 41
103 104 111 113 122 123 124 128

97.8989

5681113151617 18 19 20 22
24 26 27 29 43 44 53 56 58 76 82

84 91 92 97 101 105 119 121 123 32 97.0976

121113182022 26 30 37 44
53 58 63 71 76 83 92 96 99 110

118 122 123 128 25 96.2785

including the omitted ones is 97.0922 + 0.6028% that almost
every individual would perform comparable results to each
other. It can be inferred that the redundancy or overlapping
exists among the candidate features to be exploited.

A further enumeration of corresponding channels of selected



Enumeration of selected features from corresponding channels
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Fig. 6. Enumeration of features selected from each individual channel

features is shown in Fig. 6. Here the statistics is based on
the pooled subset selection of the whole population, where
each of the bacteria has reached a promising evaluation result.
An approximately similar chance of involvement for all the
channels is observed, which implies the feasibility in adopting
all the detection sites, but with limited features from each of
them for computation reduction.

The experiments for inter-day feasibility were conducted
in comparison with PCA based dimensionality reduction, as
shown in Fig. 7. In BMA feature selection, first two days’
labeled data were utilized in the feature selection stage as the
training set and evaluation set respectively. The LDA classifier
was later trained by the labeled selected features extracted
from the sSEMG signals on the first day and adopted for
pseudo (offline) inter-day application. The PCA based solution
calculated the projection matrix on the first two days’ data
and tested for the same domain. The test on the fatigue data
captured from one of our subjects was following a similar
routine but in inter-trial instead of inter-day way. Between
each trial, the subject was informed to exhaust the strength
as much as possible to cause muscle fatigue, which would
be another critical issue to impede the recognition accuracy
in long-term use. It can be seen that the BMA based method
leads to an increase of near 1% in the error rate for inter-day
experiments, which is rather small when compared to the %
reduction at least in the number of extracted features shown
in Table II, which would largely reduce the computation.
A further reduction is expected because only limited 128
candidates were adopted in the experiments. However, the
result already revealed the efficiency of the BMA based
feature selection. When considered the fatigue test, the reduced
extracted features through BMA even outperformed the whole
feature set PCA based method in both computation cost and
average accuracy, shown as the last error bars in Fig. 7, despite
the large degradation by both methods in this scenario.

The last but not the least, the inter-subject test was prelimi-
narily conducted to investigate the feasibility of the transfer of
feature selection between different subjects. The best subset of
candidate feature from each subject was applied to the other
two subjects. A comparable and even improved performance

TABLE II
TRADE-OFF BETWEEN FEATURE REDUCTION AND AVERAGE ACCURACY
ON INTER-DAY TEST AND FATIGUE TEST

Number of extracted features | Average accuracy %
Subject No.
BMA PCA BMA PCA
1 41 128 90.9900 | 92.0355
2 33 128 98.7061 98.8129
3 37 128 92.5389 | 93.7976
4 (fatigue) 30 128 63.8651 62.9725
60— EMPCA based feature
oL T 1
0

| | | .
Subject Subject2 Subjectd Subject4 for fatigue test

Fig. 7. Recognition error rate comparison of features selected with BMA and
PCA
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Fig. 8. Recognition error rate comparison of selected features for inter-subject
use

of the inter-subject feature set transfer could be seen in Fig.
8 utilizing the feature subset selected from other subjects.

B. Discussion

The development of SEMG capturing device will inevitably
bring more deployed capturing electrodes, and moreover the
utilization of high-density SEMG sensing array. The computa-
tion cost for feature extraction will largely increase with the
scale of detection sites. In this research, we addressed the
importance of feature selection and the feasibility of BMA
as the implementation method. The experimental results have
demonstrated the quick convergence and less sensitive to the



parameter setting of BMA in our application, which would be
beneficial with the inclusion of a lot more features extracted
in FD or TFD. The redundancy exists in the TD features as
indicated in the demonstrated selected feature sets, which is
in accordance with the published result from [18]. It has been
pointed out that features with maximum class separability,
robustness and less computational complexity are desirable in
the real-time clinical use. Regarding the evaluation results of
our selected feature set, another property should be considered
in the future is less redundancy.

The long-term usability is always demanded in clinical
environment. In our application, the inter-day test achieved
a computation reduction in the feature extraction stage while
preserving a comparable performance. Specifically, the subject
2 had a superior performance over others as seen in Fig. 7,
because this subject had more experience in the SEMG captur-
ing. Besides the inter-day changes, the intra-day performance
is also a critical metric for long-term use. The preliminary
test results on the intra-day fatigue data have shown the
plausible improvement of BMA based feature selection over
PCA based feature projection. A possible explanation for the
improved recognition accuracy might be the variety of severe
physiological changes. Some selected features instead of the
whole feature pool might be more robust to such inconsistency
lead by muscle fatigue. However, because of the single subject
employed, it remains to be determined whether the assumption
holds when a more reasonable group of subjects are involved
under a dedicated experimental protocol. It has shown that
the PCA-based feature reduction outperforms the BMA-based
one with 1%, which is because of the additional information
despite the redundancy and increased computation cost.

Feasible feature transfer between subjects is naturally de-
sired to reduce the burden of extra computation. Our exper-
imental results have shown that the selected feature subset
could be shared in common between different individuals. In
our experimental protocol, all the subjects were informed to
place the electrodes with a rough reference, which provided
similar coverage of muscles for SEMG extraction. In that
case, the electrode shift became less important in impeding
the recognition rate when compared to muscle fatigue. It
can be expected that, feature selection would function better,
in combination with more standard capturing paradigm. As
a promising result, the feature subsets selected from other
subjects can be incorporated in the population initialization
phase to obtain an extra neighborhood for the optimum or at
least the quasi-optimum.

V. CONCLUSION AND FUTURE WORKS

In this paper, the BMA based feature selection in sSEMG
based hand motion recognition is investigated to achieve a
comparable recognition accuracy with a reduced cost of fea-
ture extraction. A promising trade-off between the reduction
of computation cost and the comprising in recognition rate has
been seen in the experiments. The potential of feature selection
in inter-subject use is also shown at an early stage.

In our future work, we will focus on the utilization of
selected feature subset to improve the recognition accuracy
in real-time scenario. Structure extraction strategies would
be applied to enhance the efficiency of local search. The
potential of feature selection for inter-subject use will be
further investigated as well.
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