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Abstract—Increasing use of heuristic algorithms in various
fields of science causes numerous modifications of the original
algorithms in need for better performance and efficiency. The
main problem of heuristics is time required to find optimal
solution. For this purpose, we propose to use parallel processing
in the initial phase of heuristic methods to decrease computing
time. Implemented technique models migration of individuals
by adjusting initial population to required conditions. Proposed
approach is simulating parallel processes that take place in
human brain while solving tasks. In this case, human intelligence
is working parallel on various aspects of the problem to compare
them in the end before final decision. Proposed approach is
simulating this parallelization of thinking threads in the process
of optimization. Presented experimental tests have been carried
out and discussed in terms of advantages and disadvantages.

I. INTRODUCTION

Artificial intelligence methods are more often used in
current technology trends. Continuous modifications and im-
provements of existing methods allow not only to improve
precision and reduce run-time, but also to gain a lot more
flexibility. Flexibility is based on the general and multi-tasking,
which contributes to the fact that one algorithm with minimal
changes can be applied in several different purposes.

Mathematical optimization is a branch of mathematics
that involves finding the minimum or maximum value (called
global extremes) for a given function in a specific range.
The problem of finding the extremes depends mainly on the
type of the analyzed function. G.B. Dantzig presented Simplex
Algorithm [1]. This problem dates back to the sixteenth and
seventeenth century, when Fermat and Lagrange proposed a
formula developed for identifying optimum of functions. Then,
Gauss and Newton proposed the first iterative methods for
finding solutions for the specified optimization problems. It
was not until the end of the first half of the twentieth century,
the theory of optimization began to gain popularity among
scholars and various applications in technology and science.

Popularity of optimization methods was caused by the
discovery of more and more numerous applications - from
finding extremes, the knapsack problem and the theory of
graphs to many other with much more practical aspects. In
various areas, more and more complex functions have been
created, which contributed to the departure from the classical
optimization methods at the expense of genetic algorithms and
heuristics that rely on finding approximate solutions. These
types of algorithms are included not only in the optimization
theory but also in computational intelligence that includes

methods for the analysis and processing of diverse information.
To this day they find numerous applications along with other
methods of computational intelligence, eg. for AGC of multi-
area power system [2]. Another important aspects are 2D and
3D graphics processing. In [3], was presented the use of the
firefly algorithm for the purpose of image compression. Again,
in [4], [5] the authors presented different approaches to 3D face
recognition. In [6], the idea of a rapid classification of images
is presented.

Other important elements of computational intelligence are
neural networks, where heuristics can be used as learning
algorithms [7]. In contrast, in [8], the authors described a
novel memristor training scheme for such structures. In [9]
the authors analyzed the effects of uncertainty parameters and
pulse to the global stability of delayed neural networks. For
computational intelligence algorithms, knowledge is an impor-
tant element. Based on the provided knowledge, systems are
trained for classification. There are situations that knowledge is
incomplete, then the knowledge base should be supplemented.
One of such technique is to supplement by generating new
samples on the basis of existing one as discussed by Mleczko
et al. [10]. Example of classification by similar network is
shown in Brivinskas et al. [11] where the classification is based
on EEG signals. Computational intelligence of various types
is also used in games. The authors of [12], [13], [14] describe
the structure of devoted agents for multi-playing game and
single-player games.

A drawback of heuristics is time required to find optimal
solution. To increase their efficiency and reduce operating
time, it is important to reduce the amount of operations on
the way to final solution. However it is not always possible,
i.e. for large scale optimization problems we are not able to
reduce sufficiently object model. Therefore we need to develop
another approach, efficient in calculations. Our idea presented
in this article is devoted to parallelization of information pro-
cessing. Parallel processing is a topic that is recently growing
together with the improvements in computational machines.
This approach allows for a new modeling applied in different
topics, where we are able to distribute tasks between available
threads and therefore speed up processing. This type of parallel
processing can be profitable for algorithms implemented for
game tree search [15] and surface modeling method [16].
Use of parallelization proved to be very beneficial in digital
information processing, where in various data base systems
the amount of information exceeds computational powers of
regular approaches and therefore needs devoted processing



Fig. 1. Graph of the Six-Hump Camel Function.

[17].

In this article, we present experimental research on a
modification of heuristic algorithm by application of parallel
processing for the purpose of reducing operation time. Pro-
posed approach introduces separation of information between
threads, which are used for local search, and at the end for
final decision results of calculations are compared to choose
the best solution. This approach varies in efficiency due to the
amount of CPU cores involved in actions. This article is to
discuss possibility of parallelization of heuristic methods and
results in efficiency depending on number of involved CPU
cores.

The approach we discuss in this article is connected with
human perception, i.e. we often say that somebody has an
ability to think of various things parallel. Our approach is based
on divisions of the input object into small parts to be presented
for the algorithm executed on various cores. This action is
somehow similar to various senses of humans, where we can
estimate objects looking at them, hearing them, smelling them,
etc. Similarly we can also compare the approach to humans
working in a group, where each member has a devoted part of
the task to do. In the proposed approach applied heuristics are
executed on various parts of the input functions to be compared
in the end to find the global optimum among them.

II. HEURISTIC APPROACH TO THE OPTIMIZATION
PROBLEM

Building more and more sophisticated methods and algo-
rithms associated with creating complex functions or equations
is a visible trend in evolutionary computation in the recent
years. We can see the development of new algorithms simulat-
ing various animals during hunt or adaption to environmental
conditions. In this article we discuss one of the new heuristic
algorithms developed to simulate whales while hunting krill.
Our approach is examined on three test functions.

A. Test Functions

Optimization algorithms are tested using mathematical
functions for which the minimum or maximum value is very

Fig. 2. Graph of the Levy Function N. 13.

Fig. 3. Graph of the Styblinski-Tang Function.

difficult to find for the classic methods. Mainly the reason
for these difficulties is the shape of test function. One of the
classics used in examinations are valley-shaped functions due
to the numerous hills, where on ups and downs computational
methods can easily get lost. In the test of parallel heuristic
approach we have used:

Six-Hump Camel Function, which is described as

fC(x1, x2) = x21

(
4− 2.1x21 +

x41
3

)
+ x1x2 + x22(4x

2
2 − 4).

(1)
Fig. 1 presents this function on a rectangle x1 ∈ [−3, 3] and
x2 ∈ [−2, 2]. This has six local minimums of which only two
are global at (0.0898,−0.7126) and (−0.0898, 0.7126) equal
−1.0316.

Levy Function N. 13, which is another test function
with many local minimums. Similarly to previous one it has
the surface usually interpreted as a landscape of mountains
with numerous peaks. Example presented in Fig. 2 was



depicted in the search space [−10, 10] × [−10, 10] according
to equation

fL(x1, x2) = sin2(3πx1) + (x1 − 1)2[1+

sin2(3πx2)] + (x2 − 1)2[1 + sin2(2πx2)],
(2)

where we have only one global minimum fL(x1, x2) = 0 at
point (x1, x2) = (1, 1).

Styblinski-Tang Function is a third in the group of functions
representing landscape and depressions in the ground. Fig. 3
presents this function in the area of a rectangle [−5, 5]×[−5, 5]
according to equation

fS−T (x1, x2) =
1

2

2∑
i=1

(x4i − 16x2i + 5xi), (3)

where we one global minimum fS−T (x1, x2) = −78, 33198
at point (x1, x2) = (−2.9035,−2.9035).

B. The Whale Optimization Algorithm - classic approach

One of the last heuristic algorithms is the Whale Optimiza-
tion Algorithm (WOA) described by S. Mirjalili and A.Lewis
in [18]. WOA is inspired by behavior of humpback whales and
the strategy of bubble-net hunting. Humpback whales prey on
smaller fish close to the surface creating bubbles. In recent
years, two maneuvers were observed and called upward-spiral
and double-loops [19].

The algorithm assumes that the humpback whale is rep-
resented by a point x in solution space. An individual can
locate their prey and surround it. The prey is considered to
be the best solution in the current iteration t of the algorithm,
to which every other individual will be heading. Movement
of the humpback whale in search of prey is described by the
following equation

xt+1 = xt − α
∣∣∣2rxtbest − xt∣∣∣ , (4)

where xtbest is the best adapted individual in the iteration, r is
a random value between [0, 1]. Parameter α is calculated as

α = a(2r − 1), (5)

where a is coefficient linearly reduced at each iteration from
2 to 0.

During the movement, humpback whales explore the area
at random, therefore parameter α can be used to search for
prey. The authors assumed that if |α| < 1 humpback whales
move toward prey. Otherwise, they move toward a randomly
selected neighbor. This behavior is modeled by

xt+1 = xtrand − α|2rxtrand − xt|, (6)

where xtrand means random humpback whale in t iteration.

In a situation where humpback whale is near the prey, a
strategy is applied. It consists two steps – shrinking encircling
mechanism and spiral updating position. The first step is mod-
eled as a reduction in the value of a parameter a in equation (5).
The second step is to calculate distance d between individual
xt and prey xtbest and simulation helix-shaped movement of
humpback whales using the following equation

xt+1 = d(xt, xtbest) exp(bl) cos(2πl) + xtbest, (7)

Algorithm 1 Whale Optimization Algorithm
1: Start,
2: Define number of individuals in population, number of

iterations tmax, fitness function f and value of parameter
b,

3: Create an initial population randomly,
4: Find best individual in population xbest,

# Search for the best solution among all located points in
the current iteration by comparing values of the function

5: t := 0,
6: while t < tmax do
7: for each individual x in population do
8: Reduce value of parameter a,
9: if p < 0.5 then

10: if |a| < 1 then
11: Move individual using (4),
12: else
13: Select a random neighbor xrand,
14: Move individual using (6),
15: end if
16: else
17: Move individual using (7),
18: end if
19: end for
20: for each individual x in population do
21: if f(x) < f(xbest) then
22: Replace xbest with x,
23: end if
24: end for
25: t++,
26: end while
27: Return xbest,
28: Stop.

where b is a given parameter defining shape of a logarithmic
spiral and l is a random parameter in [0, 1]. The model assumes
that there is a 50% chance to choose one of strategies for each
humpback whale in each iteration. The full algorithm is shown
in Algorithm 1.

III. PARALLELIZATION BY MANIPULATING INITIAL
POPULATION - PROPOSED INNOVATIVE APPROACH

For practical applications, the cost of optimization using
heuristic algorithm will depend upon desired size of solution
space, and a particular test function. Very often it happens that
time required to find the optimal solution is very long. For this
purpose, parallel processing may be appropriate.

In Algorithm 1 - classic version of WOA, individuals
in initial population are found randomly over entire solution
space. In case of functions where there is a large number of
deep local minimums - like for presented test functions, the
risk of getting stuck is high. As a remedy to limited ability
to move population from local to global minimum a common
approach is to use a larger number of individuals and larger
number of iterations. Unfortunately these do not guarantee
finding the optimum for given parameters. Moreover, the larger
solution space, the chance to find the global minimum is
smaller.

Let us think how animals plan strategies for survival in



natural conditions. Most of animals stick together in groups,
which increases their chances of survival (safety – a large herd
allows them to avoid the attacks of other animals). Similarly,
humpback whales do not live around the ocean but in specific
areas. Of course, there is a chance that some individuals
may be separated from the herd, but they are just selective
cases. Humpback whales migrate, depending on the time of
the year. In the summer period, humpback whales reside in
colder waters, and migrate to warmer in winter, therefore we
can see them i.e., at Atlantic Ocean at the coast of South Africa
from June to October and in other months they move up the
Globe. This situation can be modeled for the need to increase
the chance of obtaining a solution in a much shorter time.

Imagine that the initial population chooses one particular
area in the solution space, which is the most attractive at the
moment (assume that the area of potential solution are cooler
waters during the summer period). Finding such an area is
based on the division of the entire solution space on pc parts,
where pc i.e. can be the number of processor cores. Suppose
that solution space for the function f is [a1, b1]×[a2, b2]. Such
space can be divided into n different rectangles, for example
by dividing the space of one variable. For this purpose, the
interval can be written as the sum of pc smaller intervals in
the following manner

[a1, b1] =

pc−1⋃
i=0

[
a1, a1 + (i+ 1)

b1 − a1
pc

]
. (8)

In this way, the solution space can be represented as

[a1, b1] =

pc−1⋃
i=0

([
a1, a1 + (i+ 1)

b1 − a1
pc

]
× [a2, b2]

)
, (9)

and this is the sum of pc intervals of the solution space.

Humpback whales are looking for the coolest area, so
instead of starting to generate the entire population consisting
of n individuals in one step, we can lessen the space of
solutions to generate the initial population. For this purpose,
for each of space division, a random population consisting of
n
pc humpback whales is created. Each individual is assessed
relative to the fitness function f . The best adapted humpback
whale in each interval is selected. Each of them is compared,
in order to select the best - and thus a smaller division of the
solution space, where potential solution may be found. In this
way, we obtain an interval of solutions – only in this range
developed parallel version of heuristic method will be executed
to find a solution.

In the proposed method, parallel processing has an im-
portant part. The solution space is divided depending on the
number of processor cores. On each of the cores, one thread
is created, which is responsible for a particular area. This
solution allows to reduce the searched area and the number
of operations performed by heuristics due to the smaller
number of individuals. The newly developed parallel method
is presented in Algorithm 2.

IV. EXPERIMENTAL RESEARCH AND PERFORMANCE
RESULTS

For experimental research we have implemented origi-
nal version of WOA and the proposed parallel modification

Algorithm 2 Parallel analysis of the solution space for the
initial population

1: Start,
2: Define solution space, number n of individuals, number t

of iterations and fitness function f ,
3: Detect number pc of processor cores,
4: Divide solution space using (9),
5: Create an array of pc threads,
6: for each part of solution space do
7: Create a thread,
8: end for
9: for each thread do

10: Create a temporary population of n/pc individuals at
random,

11: end for
12: Select a thread in which the best adapted individual is

located,
13: Replace original solution space with the space of the

thread,
14: Create a random population composed of n/pc individuals

in new solution space,
15: Return the newly created population,
16: Stop.

described in Section III using C# language. Both of them
were tested using test functions from Section II-A. Tests
were carried out on quad-processor 64-bit Intel Core i5-4460
clocked at 3.20 GHz. Aaverage accuracy of solutions and
average execution time of algorithm for input parameters have
been selected as comparison parameters. The original WOA
algorithm and its parallel modification were examined for 2
and 4 CPU cores, for each of test functions (see equations
(1), (2) and (3)) with specific parameters, running 30 tests
in each experiment. Then, average scores were calculated by
applying arithmetic mean. Results for a population of 400
individuals and 200 iterations are shown in Table I. For each

TABLE I. EXPERIMENTAL OPTIMIZATION RESULTS

Classic WOA Parallel WOA Parallel WOA

Cores 1 2 4
Individuals 400 400→200 400→100
Iterations 200 200 200

Six-Hump Camel Function
Average time [ms] 152 98 63

Obtained point (-0.099;0.6824) (0.0943;-0.723) (-0.0987;0.73)
Approximate solution -1.0238 -1.0307 -1.029

Levy Function N. 13
Average time [ms] 275 134 101

Obtained point (0.9978;0.9987) (1.0002;0.92) (1;1)
Approximate solution 0.0004 0.0079 0

Styblinski-Tang Function
Average time [ms] 189 121 98

Obtained point (-2.8972;-2.9034) (-2.9011;-2.9081) (-2.9892;-2.9198)
Approximate solution -78.3316 -78.3319 -78.1972

test function, operation time is reduced when the amount of
CPU cores is increased. Obtained solutions are almost accurate
for proposed novel parallel modification using 4 CPU cores. In
case of original algorithm, and modification for 2 CPU cores,
the results are less precise.

Results depend on number of iterations, and mean errors
shown in Fig. 4 (population composed of 100 individuals,
modification tested for 4 CPU cores). The mean error was



Fig. 4. The mean error measured for the accuracy of experimental results for the classic version of the algorithm (left) and newly proposed parallel version
of the algorithm (right).

Fig. 5. The average amount of computing time for a number of iterations
for 100 individuals.

determined by the following formula

|f(xex)− f(xobt)|, (10)

where xex is the exact solution and xobt is obtained solution.
Based on graph analysis, we can say that obtained solutions are
much more precise for proposed technique where the biggest
mean error was 0.36 achieved for Styblinski-Tang Function.
For comparison, the method without modification achieved
error equal to 1.23 with the same parameters, which is 3.4
times less precise solution.

As we conclude from the analysis that efficiency of the
proposed modification depends on the usage of processor
cores as shown in Fig. 5 - Fig. 7. The time of processing
increases exponentially for both configurations of involved
CPU cores with a population below 500 Individuals. Moreover,
tests carried out for a population of 500 individuals showed
that average time increases in a linear way.

V. CONCLUSION

The article presents an application of newly proposed
technique of manipulation of initial population in a heuristic
algorithm based on parallel processing. Conducted tests have
shown that the use of proposed method can significantly reduce

Fig. 6. The average amount of computing time for a number of iterations
for 300 individuals.

Fig. 7. The average amount of computing time for a number of iterations
for 500 individuals.

execution time of the algorithm in various optimization prob-
lems. Moreover, reducing solution space in the initial phase of
the algorithm will help the method to quickly converge to the
extreme individuals.

The tests were carried out on three functions with different
surface landscape. The newly proposed algorithm assumes that
individuals are generated in a random way what may cause that



solution space will be reduced to such an extent that a global
solution will be easier to find using even less individuals.
Similarly to this it is possible to find difficulties in parallel
method, however in the early stage of the research we can say
that proposed modification has a positive impact on calcula-
tions. In future work we will focus on more efficient divisions
into subspaces for each thread i.e. by flexible estimation of
borders that may influence even faster convergence to functions
extremes and also consider other computing architectures like
these involving on GPUs that shall enable far more efficient
parallelization even faster than when run on a CPU.
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