
Empirical Analysis of A Tree-based Efficient
Non-dominated Sorting Approach for

Many-Objective Optimization

Xingyi Zhang1, Ye Tian1, Ran Cheng2 and Yaochu Jin3
1Institute of Bio-inspired Intelligence and Mining Knowledge,

School of Computer Science and Technology, Anhui University, Hefei 230039, China
2School of Computer Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom

3Department of Computer Science, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Email: xyzhanghust@gmail.com; field910921@gmail.com; ranchengcn@gmail.com; yaochu.jin@surrey.ac.uk

Abstract—Non-dominated sorting has been widely adopted
in evolutionary multi-objective optimization. Many approaches
to non-dominated sorting have been proposed to improve its
computational efficiency, but unfortunately, most of them still
suffer from high computational cost, especially when the number
of objectives becomes large. A tree-based efficient non-dominated
sorting approach, termed T-ENS, has been recently developed
by us for many-objective optimization, where a tree structure
is adopted to represent solutions, such that the non-dominance
relationship between solutions can be easily inferred from the
position of the solutions in the tree, thereby considerably reducing
the number of comparisons between solutions belonging to the
same non-dominated front. To validate the computational effi-
ciency of T-ENS, this paper provides a detailed empirical analysis
by comparing T-ENS with the state-of-the-art approaches, in
particular when the number of objectives is larger than three
and the population size becomes large. Empirical results indicate
that the T-ENS is well suited for evolutionary many-objective
optimization and large-scale multi-objective optimization, where
either the number of objectives or the population size is large.

I. INTRODUCTION

Pareto-based approach is one main mechanism for envi-
ronmental selection in evolutionary multi-objective optimiza-
tion algorithms (MOEAs), in which non-dominated sorting
has been considered as the most effective technique. Among
many others, NSGA-II [1] and SPEA2 [2] are two rep-
resentative MOEAs for solving multi-objective optimization
problems (MOPs) that adopt non-dominated sorting for en-
vironmental selection. Recently, increasing efforts have been
devoted to MOPs with more than three objectives, often
known as many-objective optimization problems (MaOPs),
where non-dominated sorting has also been adopted as the first
criterion for environmental selection, often being combined
with a second convergence-related criterion to increase the
selection pressure. Examples of MOEAs for MaOPs using
non-dominated sorting as the first selection criterion include
HypE [3], PICEA-g [4], GrEA [5], NSGA-III [6], RVEA [7]
and KnEA [8], among many others.

However, most non-dominated sorting approaches suffer
from high computational cost, especially when a very large
population is used (for large-scale multi-objective optimiza-
tion) or the number of objectives is large. Typically, it is also
necessary to use a larger population for solving MaOPs than

MOPs. Since non-dominated sorting needs to be performed
at each generation, Pareto-based MOEAs will become highly
time-consuming for solving MaOPs or large-scale MOPs.

Due to the crucial role of non-dominated sorting in the
design of effective Pareto-based MOEAs, much research work
has been dedicated to the improvement of computational effi-
ciency of non-dominated sorting since the first non-dominated
sorting algorithm was suggested in [9]. The non-dominated
sorting method reported in [9] has a time complexity of
O(MN3) and a space complexity of O(N), where M is the
number of objectives and N is the number of solutions to be
sorted. Roughly speaking, existing improved non-dominated
sorting algorithms can be divided into the following five
categories.

The first category includes two non-dominated sorting
approaches, known as fast non-dominated sort [1] and better
non-dominated sort [10]. In these approaches, for each solution
p in the population, the number of solutions that dominate
solution p is countered, which is denoted by Np. Meanwhile,
all solutions that solution p dominates are recorded in a set de-
noted by Sp. Once this is complete, all solution whose Np = 0
are assigned to the first non-dominated front. Then, for each
solution q in set Sp of solution p in the first front, Nq = Nq−1.
Any solution q whose Nq = 0 is consequently assigned
to the second non-dominated front. This process continues
until all solutions in the population are assigned to a non-
dominated front. Compared with the non-dominated sorting
approach suggested in [9], the time complexity of the fast
non-dominated sort has been significantly improved, achieving
a complexity of O(MN2). The reduction of complexity lies
in the fact that any two solutions need to be compared only
once for calculating Np and Sp. The better non-dominated sort
is an improved version of the fast non-dominated sort, which
takes advantage of the symmetry and transitivity properties
of Pareto dominance to reduce the number of comparisons
between solutions. However, the worst case time complexity of
the better non-dominated sort is still the same as the fast non-
dominated sort. Both sorting methods have a space complexity
of O(N2).

The idea in the second category of non-dominated sorting
approaches consists of following steps. First, find all non-
dominated solutions in the population to be sorted and assign



them to the first front F1. Second, remove the solutions
assigned to F1 and determine the non-dominated solutions in
the remaining population, which are assigned to the second
front F2; then repeat this procedure until all solutions are
assigned to a front. Most of existing non-dominated sorting
approaches belong to this category, e.g., quick sort [11], non-
dominated rank approach [12], sorting based algorithm [13],
immune recognition based algorithm [14], arena’s princi-
ple [15], deductive sort [16] and corner sort [17], including
the first non-dominated sorting approach suggested in [9].
The main difference between the second category of non-
dominated approaches lies in the strategy to reduce the number
of comparisons between solutions in determining the solutions
belonging to each non-dominated front. For instance, deductive
sort reduces the number of comparisons between solutions
by inferring some dominance relationships between solutions
based on the recorded comparison results, while corner sort
saves comparisons between solutions by ignoring the solutions
dominated by a non-dominated solution selected from the
corner solutions.

The third category of non-dominated sorting adopts the
divide-and-conquer strategy developed by Kung et al. [18] for
non-dominated sorting. The first attempt was made by Jensen,
termed Jensen’s sort [19]. Jensen’s sort holds a time complexity
of O(NlnM−1N), which is computationally very efficient for
MOPs with two or three objectives. Unfortunately, this sorting
approach has two main weaknesses. The first weakness is
that it does not work efficiently when there are more than
three objectives. The second weakness of Jensen’s sort is that
it fails to work when two solutions have exactly the same
value in any of their objectives. To address this issue, Fang
et al. [20] suggested a new divide-and-conquer based non-
dominated sorting approach. Fortin et al. [21] also developed
an improved version of Jensen’s sort to address the second
weakness without increasing the time complexity and space
complexity.

The fourth category of non-dominated sorting methods are
developed for steady-state evolutionary algorithms, where only
one solution in the parent population is updated at one time.
The main idea is to determine the dominance relationship of
the updated population by taking advantage of the known
dominance relationship in the parent population. Two non-
dominated sorting approaches belonging to this category have
been reported, one termed efficient non-domination level up-
date approach [22], and the other M-front [23].

The fifth category is to sort solutions in the population in
an ascending order according to one of the objectives before
the non-dominated sorting is performed. One unique property
of pre-sorting the population is that in a sorted population, a
solution can never be dominated by solutions ranked behind
it. Consequently, solutions to be assigned to a front needs only
to be compared with those that have already been assigned to
a non-dominated front, which can spare a large number of un-
necessary comparisons between solutions. Based on this idea,
an efficient non-dominated sorting approach, called efficient
non-dominated sort (ENS) was proposed in [24]. The ENS
has been demonstrated a significant performance enhancement
for MOPs with two or three-objective MOPs, its efficiency
will decrease as the number of objectives increases despite
that the superiority still exists compared with the state-of-

the-art non-dominated sorting approaches. For addressing this
issue, two ideas were recently developed on the basis of the
ENS. The first one is to adopt the approximate non-dominated
sorting and an approach using this idea termed A-ENS was
suggested for many-objective optimization [25]. In A-ENS,
the dominance relationship between two solutions is deter-
mined by a maximum of three objective comparisons, hence
the complexity of A-ENS is independent of the number of
objectives, while did not lead to the performance deterioration
of MOEAs. The other idea is to reduce the large number
of non-dominance comparisons between solutions in solving
MaOPs and a tree based non-dominated sorting approach
T-ENS was proposed using this idea [26]. In T-ENS, the
information about the objectives to be used for identifying the
non-dominance relationship is recorded in the nodes of the
tree, by which a large number of non-dominance comparisons
between solutions can be inferred. As a result, only a sub-set
of the solutions, rather than all, that have been assigned to a
non-dominated front needs to be compared, thus the T-ENS
can save a large number of comparisons between solutions in
the same front. Table I presents a summary of the state-of-the-
art of non-dominated sorting methods, where the population
to be sorted contains N solutions and M objectives.

In this work, we empirically verify the computational
efficiency of T-ENS by comparing it with five state-of-the-
art non-dominated sorting approaches. Two typical scenarios
where non-dominated sorting is required are considered in
empirical experiments. In the first scenario, we consider the
non-dominated sorting to obtain a set of reference points
uniformly distributed in the Pareto front, which are essential
for some test problems, e.g., DTLZ7. The set of reference
points is required in the calculation of some widely used
performance metrics, such as GD [27] and IGD [28]. In the
second scenario, we compare these non-dominated sorting
approaches by embedding them in a recently developed MOEA
specially designed for MaOPs, the knee point driven evolu-
tionary algorithm (KnEA) [8] to test their computational per-
formance in optimization. Empirical results on both scenarios
confirm that the computational efficiency of T-ENS is much
better than that of existing non-dominated sorting methods
for MaOPs. In addition, the enhancement in computational
efficiency of the T-ENS becomes increasingly significant as the
number of objectives or the population size increases, which
is particularly encouraging.

The rest of the paper is organized as follows. In Section II,
we recall the details of the tree-based efficient non-dominated
sorting approach, T-ENS. Simulation results are presented in
Section III to empirically verify the computational efficiency
of T-ENS. Finally, conclusions are drawn in Section IV.

II. THE NON-DOMINATED SORTING APPROACH T-ENS

Non-dominated sorting is a procedure that assigns can-
didate solutions in a population to different non-dominated
fronts based on their dominance relationships. Without loss of
generality, we assume that the individuals in the population P
can be categorized into L non-dominated fronts, denoted as
F1, F2, . . . , FL. According to the principle of non-dominated
sorting, all non-dominated solutions in P are assigned to front
F1. Then solutions assigned to F1 are temporarily removed
from P and the non-dominated solutions in P \F1 are assigned



TABLE I. LISTING OF BEST CASE TIME COMPLEXITY, WORST CASE TIME COMPLEXITY AND SPACE COMPLEXITY OF EXISTING NON-DOMINATED

SORTING APPROACHES.

Category Approach Authors
Year of Time Complexity Space

Publication Best Case Worst Case Complexity

1

Fast Non-dominated
K. Deb, et al. 2002 O(MN2) O(MN2) O(N2)

Sort [1]
Better Non-dominated

C. Shi, et al. 2005 O(MN +N2) O(MN2) O(N2)
Sort [10]

2

Non-dominated Sort [9] N. Srinivas, et al. 1995 O(MN2) O(MN3) O(N)

Quick Sort [11] J. Zheng, et al. 2004 O(MN
√
N) O(MN2) O(N)

Non-dominated Rank
K. Deb, et al. 2006 O(MN2) O(MN3) O(N)

Approach [12]

Sorting Based Algorithm [13] J. Du, et al. 2007 O(MN
√
N) O(MN2) O(MN)

Immune Recognition
X. Zhou, et al. 2008 O(MN

√
N) O(MN2) O(N)

Based Algorithm [14]

Arena’s Principle [15] S. Tang, et al. 2008 O(MN
√
N) O(MN2) O(N)

Deductive Sort [16] K. McClymont, et al. 2012 O(MN
√
N) O(MN2) O(N)

Corner Sort [17] H. Wang, et al. 2013 O(MN
√
N) O(MN2) O(N)

3

Jensen’s Sort [19] M. T. Jensen 2003 O(NlnM−1N) O(NlnM−1N) O(N)
Divide-and-Conquer

based Non-dominated H. Fang, et al. 2008 O(MNlnN) O(MN2) O(N)
Sorting Algorithm [20]
Generalized Jensen’s

F.-A. Fortin, et al. 2013 O(NlnN) O(MN2) O(N)
Sort [21]

4

Efficient Non-Domination
K. Li, et al. 2014 O(M) O(MN

√
N) O(N)

Level Update Approach [22]†
O(MN) or

M-front [23] M. Drozdı́k, et al. 2014 O(MNlnN) O(MN2) O(MN)
using K-d tree

5 X. Zhang, et al. 2014

O(MNlnN)

O(MN2) O(1)
Efficient Non-dominated for ENS-BS,

Sort (termed ENS) [24] O(MN
√
N)

for ENS-SS

A-ENS [25] X. Zhang, et al. 2016 O(N
√
N) O(N2) O(N)

T-ENS [26] X. Zhang, et al. 2016 O(MNlnN/lnM) O(MN2) O(MN)

†Note that the time complexity listed here is the one that a new solution is added to a population whose non-domination level structure has been known, since
the approach is designed for the MOEAs that the population should be updated whenever a new candidate solution is reproduced.

to front F2. This procedure repeats until all solutions in P are
assigned to a non-dominated front Fi, 1 ≤ i ≤ L. Solutions
in front Fi are considered to be better than those in front Fj

for j > i.

In this section, we first briefly review the ENS approach,
then present a detailed description of T-ENS.

A. A Summary of ENS

For a minimization problem, the ENS approach performs
as follows. First, all solutions in the population are sorted in an
ascending order according to the first objective. Solutions will
be sorted according to the j-th objective in case they have
the same value on each of the i-th objective, 1 ≤ i < j.
Second, solutions in the sorted population are assigned to non-
dominated fronts one by one, starting from the first solution
to the last one by comparing the solution to be assigned with
those that have been assigned to the fronts. A solution will
be assigned to a front if this solution is not dominated with
all solutions that have been assigned to this front. Otherwise,
ENS will check whether it can be assigned to the next front.
The procedure repeats until all solutions in the population are

assigned to a front. Fig. 1 illustrates the sorting process of
ENS with a population having four solutions.

In ENS, a solution to be assigned to a front only needs to be
compared with solutions that have been assigned to the fronts.
Therefore, ENS can avoid a large number of unnecessary com-
parisons between solutions, which makes the computational
efficiency of ENS very competitive for populations with a
small number of objectives. However, the efficiency of ENS
will decrease as the number of objectives increases due to the
large number of comparisons between solutions in the same
front. The rapid degradation of the computational efficiency of
ENS as the number of objectives increases can be attributed
to the fact that in ENS a solution to be assigned to a front
must be compared all solutions that have been assigned to
the front before it can be assigned to the front. In dealing
with optimization problems with a large number of objectives,
the population of MOEAs only consists of one or two non-
dominated fronts already in the early search stage.

B. The T-ENS Approach

In order to reduce the number of comparisons between
solutions in the same fronts as much as possible, the T-ENS



Fig. 1. An illustration of the main steps in the ENS framework. (a) A
population consists of four individuals, p1, p2, p3 and p4; (b) The four
individuals are sorted in an ascending order according to the first objective,
resulting in p′1, p′2, p′3 and p′4; (c) The first solution p′1 in the sorted population
is assigned to the first front F1; (d) The second solution p′2 in the sorted
population is compared with p′1 and it is assigned to the second front F2 due
to the fact that it is dominated by p′1; (e) The third solution p′3 in the sorted
population is compared with p′1 and p′3 is assigned to the first front F1 since
it is non-dominated with the only solution p′1 that has been assigned to F1;
(f) The fourth solution p′4 is compared with p′3 in F1 and it is found that it
does not belong to F1 since p′4 is dominated by p′3; (g) p′4 is compared with
p′2 in the second front F2 and p′4 is assigned to F2 since it is non-dominated
with the solution p′2 that has been assigned to F2; (h) The non-dominated
sorting is thus complete.

proposes to use a tree to represent the solutions in each non-
dominated front. The benefit of adopting a tree structure,
compared to the set based representation used in ENS, is
that information about the objectives determining the non-
dominance relationship between solutions can be recorded
by the position of nodes in the tree in which the solutions
are stored. In other words, if a population consists of L
non-dominated fronts, T-ENS will construct L trees, each
representing the non-dominated solutions that belong to a
front. As a result, many non-dominance relationships between
solutions can be inferred from those that have been assigned
to the front (stored in the tree), and a solution to be assigned
to a front only needs to be compared with some of them,
provided that the solution to be assigned eventually belongs
to this front. Therefore, compared to ENS, T-ENS can spare a
large number of comparisons between solutions belonging to
the same front, which can lead to significant enhancement of
the computational efficiency of T-ENS over ENS, in particular
for solving MaOPs. Algorithm 1 presents the main steps of
T-ENS in pseudo code taken from [26].

To describe how the tree of each front is constructed
in T-ENS, let us consider an illustrative example of a
population consisting of the following six solutions for
a 4-objective minimization problem: (3, 5, 3, 2), (4, 1, 3, 2),
(1, 3, 4, 2), (5, 2, 4, 3), (2, 4, 4, 1), (6, 2, 4, 1), where each so-
lution is represented by their four objective values in the form
of (f1, f2, f3, f4). The non-dominated sorting procedure of T-
ENS is performed as follows. First, as in ENS, the six solutions
in the population are sorted according to the first objective
value in an ascending order. For convenience, the sorted
solutions in the population are denoted by pi(f1, f2, f3, f4),
where 1 ≤ i ≤ 6: p1(1, 3, 4, 2), p2(2, 4, 4, 1), p3(3, 5, 3, 2),
p4(4, 1, 3, 2), p5(5, 2, 4, 3) and p6(6, 2, 4, 1). Once sorting is
completed, T-ENS starts to construct the tree of the first front
F1 by checking solutions in the sorted population from the

Algorithm 1: The main steps of T-ENS

Input: P (population), M (number of objectives)
Output: F (set of fronts, each front is represented by a

tree)
1 Sort P in an ascending order according to the first

objective;
2 F ← ∅;
3 k ← 0;
4 while not empty(P ) do
5 k ← k + 1 ; /*start to construct a new

tree*/
6 for all the p ∈ P do
7 objSeq[p] ← random permutation from 2 to M ;
8 update tree(p, F [k], objSeq);

9 return F ;

Algorithm 2: update tree(p, tree, objSeq)

Input: p (the solution to be checked), tree (the tree to
be checked), objSeq (the permutation of
objectives for each solution)

Output: -
1 if empty(tree) then
2 tree ← p ; /*p is used as the root of

the tree*/

3 else if check tree(p, tree, objSeq,true) then
4 P ← P \ {p};

5 return;

first solution p1 to the last one p6.

The first solution p1 definitely belongs to the first front
F1 and will naturally be placed in the root node of the tree
for F1, as shown in Fig. 2(a). All other solutions belonging
to F1 will be stored as the descendants of p1. Note that in
the figure, the black circle denotes a solution to be assigned,
while gray circles denote solutions with which the solution in
the black circle needs to be compared to check whether it can
be assigned to F1. Solutions in white circles do not need to be
compared with in assigning the solution in the black circle.

Next, T-ENS will check whether the second solution p2
can be assigned to F1 by comparing it with solution p1. Since
solution p2 has a smaller value than p1 on the fourth objective,
p2 is not dominated by solution p1 and hence, p2 can be
assigned to the first front F1. In the tree structure, p2 will
be added to the third child node of the root due to the fact the
fourth objective of p2 is smaller than that of p1, which provides
the information showing the objective that helps determine
the non-dominance relationship between the two solutions, as
depicted in Fig. 2(b).

After p2 is assigned, T-ENS checks if p3 can be assigned to
the same front of p1 and p2. To this end, T-ENS only needs to
compare p3 with the root solution p1, since the non-dominance
relationship between p3 and p2 can be inferred from the non-
dominance relationship between p3 and p1. It is noticed that
p3 has a smaller value on the third objective than solution p1,
while p2 has a larger value on this objective than p1. This



Algorithm 3: check tree(p, tree, objSeq, add pos)

Input: p (the solution to be checked), tree (the tree to
be checked), objSeq (the permutation of
objectives for each solution), add pos (indicates
whether p can be added to a node of tree as a
ray)

Output: nd (indicates whether p is non-dominated with
all solutions that have been assigned to the
tree)

1 if empty(tree) then
2 return true ; /*tree is an empty tree*/

3 Find the minimal index m satisfying that
p[objSeq[tree.root][m]] <
tree.root[objSeq[tree.root][m]];

4 if m not found then
5 return false ; /*p is dominated by the

solution at the root*/

6 else
7 for i ← 1 to m do
8 if check tree(p, tree.branch[i], objSeq,

i == m && add pos)==false then
9 return false ; /*p is dominated by

a solution in the branch of
the tree*/

10 if empty(tree.branch[m]) && add pos then
11 tree.branch[m] = p ; /*add p to the

branch of the tree*/

12 return true;

Fig. 2. An illustrative example showing the construction of the tree
representing the solutions belonging to the first front for a population of a 4-
objective minimization problem, where solutions in gray circles denote those
with which a solution to be assigned (in the black circle) need to be compared
to check whether it can be assigned to F1. Solutions in white circles do not
need to be compared in assigning the solution in the black circle.

means that solution p2 will have a larger value than p3 on the

third objective if p1 has a larger value than p3 on that objective.
Because the third solution p3 is non-dominated with solution
p1, it can be inferred that solution p3 is also non-dominated
with p2, thus p3 can also be assigned to the first front F1.
To repeat, since p3 belongs to the same front of p1 and has a
smaller value on the third objective than p1, p3 is placed as the
second child (from the left) of the root. The tree after adding
p3 is shown in Fig. 2(c).

By simply comparing it with solution p1, it can be found
that solution p4 also belongs to F1 since the non-dominance
relationship between p4 and p3 and between p4 and p2 can
be inferred from the non-dominance relationship between p4
and p1, due to the fact that p4 has a smaller value than p1 on
the second objective, whereas p2 and p3 have a larger value
than p1 on this objective. Therefore, solution p4 is added to
the first descendant node of the root, since p4 has a smaller
value than p1 on the second objective. The tree of the first
front after adding solution p4 is shown in Fig. 2(d).

The next solution to check is p5 and it is first compared
with solution p1. It is found that the second objective value
of p5 is smaller than that of p1. Thus, solution p5 is non-
dominated with solution p1 since the value of the first objective
of p1 is smaller than p5. From this non-dominance relationship
between p1 and p5, it can be inferred that p5 is also non-
dominated with solutions p2 and p3, since the value of the
second objective of p1 is smaller than that of p2 and p3. This
implies that only p4 needs to be compared to check whether p5
can be assigned to front F1. After comparison, it is found that
solution p4 dominates p5, meaning that p5 does not belong
to F1 and therefore the tree for F1 remains unchanged, as
illustrated in Fig. 2(e).

Finally, T-ENS checks if solution p6 can be assigned to
F1. For this purpose, solution p6 is compared with solution
p1 at first. The comparison shows that p6 has a smaller value
on the third objective than p1. This indicates that solution p6
is non-dominated with p1 and the non-dominance relationship
between p6 and p2 can be inferred from the non-dominance
between p1 and p6. For determining whether p6 can be
assigned to F1, we only need to compare it with p3 and p4. By
comparing p6 with p3 and p4, we can see that p6 is also non-
dominated with p3 and p4 and hence assign p6 to F1. Because
it has a smaller value than p1 on the third objective like p3, p6
is added as a child of p3 and becomes a grandchild node of p1.
Moreover, by comparing with solution p3, we find that p6 has
a smaller value than p3 on the second objective, so p6 is stored
as the first child (from the left) of p3, as shown in Fig. 2(f).
The non-dominated sorting process is thus completed.

The above example illustrates the basic idea of the tree-
based representation of solutions in the same front in T-ENS.
Assume the population contains N M -objective solutions:
p1(f

1
1 , f

1
2 , ..., f

1
M ), p2(f

2
1 , f

2
2 , ..., f

2
M ), ..., pN (fN

1 , fN
2 , ..., fN

M ),
where f i

j is the j-th objective value of the i-th solution,
1 ≤ j ≤ M , and 1 ≤ i ≤ N . Note that for minimization
problems, we assume that the individuals have already been
sorted according to an ascending order of the first objective.
T-ENS aims to reduce the number of comparisons between
solutions belonging to the same non-dominated front by
storing these solutions in a specific position in the tree
for the front. In performing non-dominated sorting, T-ENS
adopts the first solution p1 as the root of the tree for the



first non-dominated front F1 and all other solutions in the
population belonging to F1 will be stored as the descendants
of p1. The position of solution pi, 2 ≤ i ≤ N in the tree
is determined by the minimum j (j > 1) satisfying that
f i
objSeq[1][j] < f1

objSeq[1][j], where objSeq[1][j] is the j-th

element of a permutation that is randomly generated from 2
to M for solution p1. It is worth noting that in the example
shown in Fig. 2, the permutation objSeq[i] for solution i is
fixed to 2, . . . ,M for the sake of simplicity. More precisely,
a solution pi with the objSeq[1][j]-th objective satisfying the
above condition will be stored as the j-th child (from the left)
of the root. If there is more than one solution that satisfies the
above condition, the next solution will be stored as a child
of pi, i.e, a grandchild of p1. This procedure repeats until all
solutions in the population are checked. Algorithms 2 and 3
present a detailed description of updating the tree of a front
in pseudo code taken from [26].

With the above tree constructed to represent solutions in
a front, if a solution p to be assigned to the front is non-
dominated with a solution q in the tree, where p has a smaller
value than q on the objSeq[q][j]-th objective (p has a larger
value than q on the first objective since q is ranked before p
in the sorted population), then the non-dominance relationship
between p and the solution stored as the k-th child of node
q from the left and all descendants of this child can be
inferred from the non-dominance relationship between q and
p, since for each of these solutions s we have fp

objSeq[q][j] <

fq
objSeq[q][j] < fs

objSeq[q][j], j ∈ {1, 2, . . . ,M − 1}. Therefore,

p does not need to be compared with these solutions, thus
sparing a large number of comparisons between solutions.

In the above example, T-ENS performs eight comparisons
between solutions in completing the non-dominated sorting,
among which six comparisons are made between solutions in
the same front and two between solutions in different fronts.
However, 11 comparisons between solutions will be needed for
ENS, ten of which are comparisons between solutions in the
same front and one between solutions in different fronts. This
is due to the fact that in ENS, a solution to be assigned to
a front must be compared with all solutions that have been
assigned to that front in case this solution belongs to this
front. By contrast, in T-ENS, this solution only needs to be
compared with some of the solutions that have been assigned
to the front. This is made possible by the fact that the tree-
based representation records the objective (except for the first
objective) that helps identify the non-dominance relationship
between two solutions assigned to the front. Therefore, T-
ENS is an even more efficient non-dominated sorting approach
than ENS in that it can avoid a large number of comparisons
between solutions in the same front, which is essential for
reducing computational cost when the number of objectives is
large.

III. SIMULATION EXPERIMENTS AND ANALYSIS

In this section, we verify the performance of T-ENS by em-
pirically comparing it with three popular non-dominated sort-
ing approaches, namely, deductive sort [16], corner sort [17]
and ENS-SS [24]. The experiments are conducted on two
different scenarios. In the first scenario (Scenario 1), the
computational efficiency of the four compared non-dominated
sorting approaches are compared in obtaining a set of reference

points uniformly distributed in the Pareto front of DTLZ7. In
the second scenario (Scenario 2), we compare the efficiency of
these non-dominated sorting approaches by embedding them
in KnEA for solving MaOP benchmark problem DTLZ2.
In the experiments, the maximum number of generations in
KnEA is set to 250, and the rest parameters are specified
as recommended in [8]. In both scenarios, the number of
comparisons between solutions and the amount of runtime
are used to evaluate the computational efficiency of the four
non-dominated sorting approaches under consideration. All
simulations reported in this work are conducted on a PC with
2.3GHz Intel Core i7-3610QM CPU and the Windows 7 SP1
64 bit operating system.

A. Scenario 1

Fig. 3 presents the number of comparisons between so-
lutions and runtime(s) of the four compared non-dominated
sorting approaches for obtaining a set of reference points
uniformly distributed of the Pareto front of DTLZ7, where
the number of sampled points is fixed to 1000 and 10000,
respectively. From this figure, we can find that the ENS-SS
performs the best among the four compared non-dominated
sorting approaches in obtaining a reference set of DTLZ7
with two objectives, in terms of both number of comparisons
between solutions and runtime. The ENS-SS saves about one
third runtime of deductive sort and three fifths runtime of
corner sort and T-ENS for 2-objective DTLZ7. For DTLZ7
with more than three objectives, the ENS-SS also consumes
less runtime than corner sort and deductive sort, despite that
they take almost the same number of comparisons between
solutions when the number of objectives increases to 5 due to
its space complexity of O(1).

Compared with ENS-SS, corner sort and deductive sort, the
computational efficiency of T-ENS is much better on DTLZ7
with three or more objectives in terms of both number of
comparisons between solutions and runtime. More encourag-
ingly, the superiority of T-ENS will be greatly enhanced as
the number of objectives increases. For DTLZ7 with three
objectives, T-ENS needs roughly a half of runtime of ENS-
SS and deductive sort, and one third of runtime of corner sort.
However, as the number of objectives increases to 15, T-ENS
takes only one sixth of runtime of ENS-SS, and one eighth
of runtime of corner sort and deductive sort in obtaining a
set of reference points uniformly distributed in Pareto front
of DTLZ7. As can be seen from the figure, it seems that the
superiority of T-ENS will also increase when more points are
uniformly sampled from the Pareto front of DTLZ7. As the
number of sampled points increases from 1000 to 10000, the
runtime saved by T-ENS on 15-objective DTLZ7 will increase
from seven eighths to nine tenths compared with ENS-SS,
which is faster than corner sort and deductive sort on 15-
objective DTLZ7.

Therefore, we can conclude that the computational effi-
ciency of T-ENS is much higher than the three compared ap-
proaches, ENS-SS, corner sort and deductive sort, in obtaining
sets of reference points uniformly distributed in Pareto front
of DTLZ7 with three or more objectives.



Number of Objectives
2 3 5 10 15

N
um

be
r o

f C
om

pa
ris

on

×105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Number of sampled points: 1000

Corner Sort
Deductive Sort
ENS-SS
T-ENS

(a)

Number of Objectives
2 3 5 10 15

N
um

be
r o

f C
om

pa
ris

on

×107

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Number of sampled points: 10000

Corner Sort
Deductive Sort
ENS-SS
T-ENS

(b)

Number of Objectives
2 3 5 10 15

R
un

tim
e 

(s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Number of sampled points: 1000

Corner Sort
Deductive Sort
ENS-SS
T-ENS

(c)

Number of Objectives
2 3 5 10 15

R
un

tim
e 

(s
)

0

20

40

60

80

100

120

140
Number of sampled points: 10000

Corner Sort
Deductive Sort
ENS-SS
T-ENS

(d)

Fig. 3. Number of comparisons between solutions and runtime(s) of the four compared non-dominated sorting approaches for obtaining a set of reference
points uniformly distributed in the Pareto front of DTLZ7 under different numbers of sampled points.

TABLE II. MEAN AND STANDARD DEVIATION OF NUMBERS OF COMPARISONS OF FOUR NON-DOMINATED SORTING APPROACHES WHEN THEY ARE

EMBEDDED INTO KNEA TO SOLVE DTLZ2, AVERAGED OVER 20 RUNS. BEST PERFORMANCE IS SHOWN IN BOLD.

Population size Obj. Corner Sort Deductive Sort ENS-SS T-ENS

100

2 3.5471e+6(2.98e+4) 3.4731e+6(2.54e+4) 7.5093e+4(4.93e+2) 3.6786e+6(2.48e+4)

3 4.3370e+6(2.31e+4) 4.3772e+6(1.90e+4) 4.0933e+6(2.59e+4) 1.0199e+6(3.34e+4)
5 4.6906e+6(8.56e+3) 4.7169e+6(7.44e+3) 4.6188e+6(9.27e+3) 1.0011e+6(1.35e+4)

10 4.8537e+6(7.44e+4) 4.8686e+6(7.77e+4) 4.8582e+6(7.75e+4) 1.3597e+6(2.80e+4)
15 4.9044e+6(2.47e+4) 4.9164e+6(2.51e+4) 4.9128e+6(2.34e+4) 1.6145e+6(6.54e+4)

500

2 8.5536e+7(1.26e+5) 7.7998e+7(1.67e+5) 5.0924e+5(2.56e+3) 8.7268e+7(1.69e+5)

3 1.0684e+8(6.04e+4) 1.0736e+8(4.99e+4) 9.9915e+7(3.05e+4) 1.4909e+7(2.37e+5)
5 1.1769e+8(1.55e+6) 1.1849e+8(1.48e+6) 1.1609e+8(1.69e+6) 1.1243e+7(9.16e+4)

10 1.1165e+8(3.92e+6) 1.1174e+8(4.13e+6) 1.1367e+8(2.88e+6) 1.3957e+7(3.41e+5)
15 1.2327e+8(3.09e+5) 1.2370e+8(2.16e+5) 1.2351e+8(2.90e+5) 1.6126e+7(1.90e+5)

TABLE III. MEAN AND STANDARD DEVIATION OF RUNTIME(S) OF FOUR NON-DOMINATED SORTING APPROACHES WHEN THEY ARE EMBEDDED

INTO KNEA TO SOLVE DTLZ2, AVERAGED OVER 20 RUNS. BEST PERFORMANCE IS SHOWN IN BOLD.

Population size Obj. Corner Sort Deductive Sort ENS-SS T-ENS
The rest operations

in KnEA

100

2 1.5844e+1(3.86e-1) 1.5151e+1(3.26e-1) 5.9564e-1(1.99e-2) 1.4899e+1(3.78e-1) 5.3194e+0(1.54e-1)

3 2.1231e+1(1.52e-1) 2.1160e+1(2.34e-1) 1.4360e+1(1.11e-1) 4.6993e+0(1.41e-1) 7.0481e+0(6.37e-1)

5 2.4544e+1(3.01e-1) 2.4474e+1(5.33e-1) 1.6687e+1(1.82e-1) 4.6854e+0(1.39e-1) 7.2942e+0(3.24e-1)

10 2.8917e+1(6.28e-1) 2.8729e+1(6.47e-1) 1.8182e+1(2.37e-1) 6.0363e+0(3.41e-2) 8.2037e+0(2.43e-1)

15 3.8776e+1(6.65e+0) 3.8706e+1(6.29e+0) 2.2062e+1(2.81e+0) 8.1395e+0(1.20e+0) 8.7830e+0(9.02e-1)

500

2 3.4041e+2(1.30e+1) 3.0860e+2(1.17e+1) 3.1573e+0(1.83e-1) 3.1897e+2(1.41e+1) 9.8847e+1(5.60e-1)

3 4.8867e+2(1.30e+1) 4.9248e+2(1.44e+1) 3.2974e+2(1.14e+1) 6.0928e+1(1.75e+0) 7.7333e+1(8.99e+0)

5 5.3601e+2(2.49e+1) 5.4405e+2(2.46e+1) 3.6632e+2(1.84e+1) 4.4031e+1(2.10e+0) 1.1666e+2(3.18e+0)

10 5.7568e+2(6.20e+1) 5.8237e+2(6.34e+1) 3.7746e+2(3.69e+1) 5.2334e+1(3.27e+0) 1.2749e+2(1.11e+1)

15 8.7768e+2(6.77e+0) 1.0944e+3(1.08e+1) 5.3557e+2(2.40e+0) 7.2145e+1(7.24e-1) 9.3225e+1(1.81e+0)

B. Scenario 2

Tables II and III list the mean and standard deviation of
number of comparisons and runtimes of four non-dominated
sorting approaches when they are embedded into KnEA to
solve DTLZ2 with a population size of 100 and 500 averaging
over 20 runs, where the best performance is highlighted in
bold. The runtime consumed by the rest operations in KnEA
for solving DTLZ2 is also presented in Table III. From the
tables, the following three observations can be made. First,
compared to the rest operations in KnEA, non-dominated sort-
ing is computationally highly time-consuming. Except for the
proposed T-ENS, all other compared non-dominated sorting
approaches take more than a half of the total runtime needed
in KnEA.

Second, ENS-SS performs much better than corner sort,
deductive sort and T-ENS on DTLZ2 with two objectives,

whereas T-ENS performs the best on all DTLZ2 test instances
with more than three objectives. On DTLZ2 with 5, 10 and
15 objectives, T-ENS consumes roughly two fifths of the
runtime of ENS-SS and one fifth of that of deductive sort and
corner sort respectively, when the population size of KnEA is
100. Note that the computational efficiency of T-ENS is also
better than that of the compared algorithms on DTLZ2 with
three objectives, since the number of fronts decreases to very
small as the number of generations increases. Therefore, T-
ENS is more suited for performing non-dominated sorting for
Pareto-based MOEAs to solve MOPs with a large number of
objectives.

Finally, T-ENS saves more runtime than the three compared
non-dominated sorting approaches when a larger population
size is used in KnEA. On DTLZ2 with 5, 10 and 15 objectives,
T-ENS only needs about three fifteenths of the runtime of ENS-



SS and one tenth of corner sort and deductive sort, respectively,
when the population size of KnEA is increased to 500 from
100.

From the above empirical results, we can conclude that
T-ENS is a very competitive and promising non-dominated
sorting algorithm for MOEAs to solve MaOPs. The larger
the population size, the more superior T-ENS is compared to
the state-of-the-art non-dominated sorting algorithms. This is
particularly encouraging since a larger population size is often
needed in MOEAs in dealing with MaOPs.

IV. CONCLUSIONS AND REMARKS

In this paper, we have empirically verified the compu-
tational efficiency of an efficient non-dominated sorting ap-
proach, termed T-ENS. The T-ENS has been recently de-
veloped on the basis of the ENS for non-dominated sorting
in Pareto-based MOEAs to solve MaOPs [26]. Experimental
results have clearly demonstrated that, compared with the
state-of-the-art non-dominated sorting approaches, the ENS
holds the best computational efficiency for 2-objective MOPs,
while the T-ENS performs the best for MOPs with three or
more objectives. Empirical results have also confirmed an
encouraging performance of T-ENS that the superiority of T-
ENS will be enhanced as the number of objectives and the size
of population increases.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (Grant No. 61272152, 61502004,
61502001), the Joint Research Fund for Overseas Chinese,
Hong Kong and Macao Scholars of the National Natural Sci-
ence Foundation of China (Grant No. 61428302) and EPSRC
Grant (No. EP/K001523/1).

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[2] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength
pareto evolutionary algorithm for multiobjective optimization,” in Fifth
Conference on Evolutionary Methods for Design, Optimization and
Control with Applications to Industrial Problems, 2001, pp. 95–100.

[3] J. Bader and E. Zitzler, “HypE: an algorithm for fast hypervolume-based
many-objective optimization,” Evolutionary Computation, vol. 19, no. 1,
pp. 45–76, 2011.

[4] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired co-
evolutionary algorithms for many-objective optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 17, no. 4, pp. 474–494, 2013.

[5] S. Yang, M. Li, X. Liu, and J. Zheng, “A grid-based evolutionary
algorithm for many-objective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 17, no. 5, pp. 721–736, 2013.

[6] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point based non-dominated sorting approach,
part I: handling constraints and extending to an adaptive approach,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp.
577–601, 2014.

[7] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, 2016 (accepted).

[8] X. Zhang, Y. Tian, and Y. Jin, “A knee point driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions on
Evolutionary Computation,, dol.10.1109/TEVC.2014.2378512, 2014.

[9] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary Computation, vol. 2,
no. 3, pp. 221–248, 1995.

[10] C. Shi, M. Chen, and Z. Shi, “A fast nondominated sorting algorithm,”
in Proceedings of 2005 International Conference on Neural Networks
and Brain, 2005, pp. 1605–1610.

[11] J. Zheng, C. X. Ling, Z. Shi, and Y. Xie, “Some discussions about
MOGAs: individual relations, non-dominated set, and application on
automatic negotiation,” in Proceedings of 2004 IEEE Congress on
Evolutionary Computation, 2004, pp. 706–712.

[12] K. Deb and S. Tiwari, “Omni-optimizer: a procedure for single and
multi-objective optimization,” in Proceedings of the Third international
conference on Evolutionary Multi-Criterion Optimization, 2005, pp. 47–
61.

[13] J. Du, Z. Cai, and Y. Chen, “A sorting based algorithm for finding
non-dominated set in multi-objective optimization,” in Proceedinds of
the Third International Conference on Natural Computation, 2007, pp.
436–440.

[14] X. Zhou, J. Shen, and J. Shen, “An immune recognition based algo-
rithm for finding non-dominated set in multi-objective optimization,”
in Proceedings of 2008 IEEE Pacific-Asia Workshop on Computational
Intelligence and Industrial Application, 2008, pp. 305–310.

[15] S. Tang, Z. Cai, and J. Zheng, “A fast method of constructing the
non-dominated set: arena’s principle,” in Proceedinds of the Fourth
International Conference on Natural Computation, 2008, pp. 391–395.

[16] K. M. Clymont and E. Keedwell, “Deductive sort and climbing sort:
new methods for non-dominated sorting,” Evolutionary Computation,
vol. 20, no. 1, pp. 1–26, 2012.

[17] H. Wang and X. Yao, “Corner sort for pareto-based many-objective
optimization,” IEEE Transactions on Cybernetics, vol. 44, no. 1, pp.
92–102, 2014.

[18] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of
a set of vectors,” Journal of the ACM, vol. 22, pp. 469–476, 1975.

[19] M. T. Jensen, “Reducing the run-time complexity of multiobjective EAs:
the NSGA-II and other algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 5, pp. 503–515, 2003.

[20] H. Fang, Q. Wang, Y. Tu, and M. F. Horstemeyer, “An efficient non-
dominated sorting method for evolutionary algorithms,” Evolutionary
Computation, vol. 16, no. 3, pp. 355–384, 2008.

[21] F.-A. Fortin, S. Grenier, and M. Parizeau, “Generlizing the improved
run-time complexity algorithm for non-dominated sorting,” in Proceed-
ings of the fifteenth annual conference on Genetic and evolutionary
computation, 2013, pp. 615–622.

[22] K. Li, K. Deb, Q. Zhang, and S. Kwong, “Efficient non-domination level
update approach for steady-state evolutionary multiobjective optimiza-
tion,” Department of Electtrical and Computer Engineering, Michigan
State University, East Lansing, USA, Tech. Rep. COIN Report Number
2014014, 2014.

[23] M. Drozdı́k, Y. Akimoto, H. Aguirre, and K. Tanaka, “Com-
putational cost reduction of non-dominated sorting using m-
front,” IEEE Transactions on Evolutionary Computation, 2014, dol.
10.1109/TEVC.2014.2366498.

[24] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach to
non-dominated sorting for evolutionary multi-objective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp.
201–213, 2015.

[25] X. Zhang, Y. Tian, and Y. Jin, “Approximate non-dominated sorting for
evolutionary many-objective optimization,” Information Sciences, vol.
369, pp. 14–33, 2016.

[26] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-
based evolutionary algorithm for large-scale many-objective optimiza-
tion,” IEEE Transactions on Evolutionary Computation, 2016, in press.

[27] D. A. V. Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithm research: A history and analysis,” Department of Electrical
and Computer Engineering. Graduate School of Engineering, Air Force
Inst Technol, Wright Patterson, Tech. Rep. TR-98-03, Tech. Rep., 1998.

[28] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. D.
Fonseca, “Performance assessment of multiobjective optimizers: an
analysis and review,” IEEE Transactions on Evolutionary Computation,
vol. 7, no. 2, pp. 117–132, 2003.


