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Abstract—Time series forecasting constitutes an important
aspect of any kind of technical system, since the underlying
stochastic processes vary over time. Extensive efforts for de-
signing self-adaptive learning systems have been made, to take
system designers out of the loop. One goal of such systems is
to transfer design-time decisions, e.g. parametrisation, to the
run-time. By means of forecasting the succeeding system state,
the system itself is enabled to anticipate, how to reconfigure to
handle upcoming conditions. Ensemble forecasting is a specific
means of combining and weighting the forecasts of multiple
independent forecast methods. This concept has proven successful
in various domains today. In this work, we present our self-
adaptive forecast module for ensemble forecasting of univariate
time series and draw a picture of how the eXtended Classifier
System for Function approximation (XCSF) can be utilised as a
novel weighting approach in this context. We elaborate on the
fundamental ideas and evaluate our proposed technique on the
basis of several time series with different characteristics.

I. INTRODUCTION

Current research activities focus on turning autonomic com-

puting [1] and organic computing [2] systems from robust

into resilient systems. The main purpose of adding adapta-

tion and self-optimisation capabilities to technical systems in

general, and organic and autonomic system in particular, is to

allow for resilient and flexible solutions. We define the term

resilient as pro-active robustness [3]. The control mechanisms

encapsulating the self-adaptive and self-organising capabilities

of the system do not only react to detected disturbances and

dissatisfying system performance, but are trying to foresee

upcoming problems. For the pure control tasks, this means

to make forecasts that serve as additional input for the self-

adaptation mechanism defined by the architecture. In particu-

lar, the system pro-actively changes the control strategies to

predicted future states, also trying to become aware of the

impact of the decisions taken.

Time series forecasting has been used to support the

decision-making process, and to mitigate the uncertainty of

future trends in real-world domains [4]–[6]. Linear combi-

nation of multiple forecasts from several forecast methods

provides more accurate forecasts, than when relying only on

one single forecast method [7]. Accordingly, the combination

of different learners reduces the model selection risk. We adapt

a evolutionary online machine learning technique, the extended
classifier system for function approximation (XCSF), to multi-

model ensemble forecasting [8]. XCSF learns the optimal

weights for the combination of individual forecasts from

independent forecast techniques at runtime via reinforcement

and evolutionary algorithms.

We propose and evaluate a highly self-adaptive technique to

relieve an engineer from complex, design-time-situated tasks

related to forecast selection, and forecast combination. We

demonstrate the capabilities of XCSF for multi-model en-

semble forecasting of time series with several univariate time

series from different real-world domains exhibiting different

characteristics.

The remainder of this paper is structured as follows: First,

we provide a brief overview of the related work in this

field. We move on, mapping the formal concept of forecast

combination to machine learning problems. Based on this

theoretical concept, we present how learning classifier systems,

in particular the XCSF, can be practically used to tackle this

problem. On the basis of differently characterised time series,

we compare the XCSF-based forecast combination to three

alternative linear combination approaches, and against some

individual forecast techniques. We conclude this work with a

summary of our findings and an outlook on future work.

II. RELATED WORK

Combining Forecasts: A comprehensive review of fore-

cast combination strategies until 1989 is presented by Clemen

[9]. Menezes et al. [10] give an overview over well-established

ensemble methods and propose practical guidelines when

to use which method. These combination strategies range

from simple statistical ensembles, such as the naı̈ve simple

average, the trimmed mean, and the median [11], to more

complex combination mechanisms. In order to improve the

reliability of forecasts and to overcome the limitations and

drawbacks of individual techniques, different approaches have

been discussed in literature. These include, finding the best

individual model from a set of forecast methods [12], [13],

combining the forecasts from a given set of methods [9], [14],

and finding the optimal set of candidates that improves the

forecast precision the most [15]. A recent survey summarises

state-of-the-art ensemble methods, such as bagging, boosting,

random forest, decomposition methods, and many more [16].

Several researchers investigated the strength and weaknesses

of the forecast combination approach. Hibon and Evgeniou

[17] showed that the combination of several, individual fore-

casts on average results in lower forecast errors than when

relying only on a single forecast, and that the performance

among individual methods is significantly worse than the worst



performance of their possible combinations. A recent study

by Adhikari and Agrawal [7] investigates linear combina-

tion strategies (e.g. trimmed mean, outperformance, and least

square regression) in comparison to five individual forecast

techniques. Their results indicate that the forecast accuracies

of the individual forecast methods vary notably and that all

combination methods significantly reduce the forecast error.

Herbst et al. [12] propose a self-adaptive approach that selects

suitable forecasting methods for a given context, based on a

static decision tree. In contrast to ensemble forecasting, they

only select the most promising one out of the set of available

forecast methods instead of combining the individual forecasts.

Combining with Machine Learning Techniques: Super-

vised machine learning techniques learn patterns or functions

from a training set of data [18]. They only rely on historical

data to learn the stochastic dependency between a set of

input and output variables. Prudencio and Ludermir [19]

utilise a multi-layer perceptron trained with backpropagation,

respectively with the Levenberg-Marquardt algorithm to find

the optimal weights for two forecast methods. The input is

based on the time series and certain characteristics, such as

the length of the time series, and a trend in the data. Their

results indicated that the perceptron performs better than the

simple average of the two individual forecasts.

In contrast, our approach resembles a self-adaptive tech-

nique that learns the optimal combination of several individual

forecasts at runtime, and therefore does not rely on training

data and offline training.

III. PROBLEM STATEMENT

From the point of view of the machine learning domain,

each individual forecast method can be seen as a learner

figuring out how to learn the underlying model of a given

time series. In general, a time series describes a time-ordered

sequence of data points X1, ..., Xt, derived from a system in

discrete time intervals of successive measurements. Based on

this internal model, each learner gives his independent vote Fi

(or forecast in terms of time series forecasting). The outputs of

each individual forecast technique F1, . . . , Fn are considered

with varying impact, weighted according to their expected

accuracy. Let Wi (i = 1 . . . n) be the weight of forecaster

i, and Fi its respective forecast. Then, the combined forecast

y(t) for time step t can be calculated as

y(t) = f(F1, . . . , Fn,W1, . . . ,Wn) =

∑n
i=1 Fi ∗Wi∑n

i=1 Wi
(1)

where Fi is the forecast value and Wi its assigned weight

with Wi ≥ 0, ∀i. Usually, the value range of each weight is

restricted to [0, 1], and the sum of all weights equals 1. The

problem of finding the optimal weights can be formulated as

a minimisation problem:

argmin
�W

(|x(t)− y(t)|) (2)

with x(t) being the actual value at time step t, and y(t) being

the combination of forecasts at time step t, weighted by �W :=

(W1, . . . ,Wn). The optimisation criterion is the minimisation

of the forecast error. This can be achieved by exploring the

search space of all possible weight combinations. The key

problem is that these weights are not static among a certain set

of forecast methods, but are dependent on the current situation

within the time series, and the time series itself. In general,

the forecast combination problem can be expressed as finding

a vector of the optimal weights for an input of forecasts from

different forecasting models, to obtain the optimal combination

of these forecasts.

In the following, we give a brief introduction to the XCSF

[20]. We explain how we utilise an evolutionary, rule-based,

online machine learning technique, the XCSF, to evolve rules

that encode the optimal weights for the combination of indi-

vidual forecasts Fi from independent forecast techniques at

runtime.

IV. XCSF IN A NUTSHELL

In 1995, Wilson introduced a revealing LCS derivative –

the extended classifier system (XCS), an evolutionary rule-

based machine learning technique. XCS gained a majority

of attention in the broader research field of michigan-style

learning classifier systems (LCS). XCS was initially utilised

for function approximation in 2002 [21]. In his article, Wilson

presented XCSF (XCS for function approximation) that aims

at approximating an underlying function by means of com-

bining gradient-based local learning and a steady-state niche
genetic algorithm (GA) [20]. More precisely, XCSF attempts

to partition the problem space into several subspaces and

learns linear approximations of the targeted function within the

corresponding niches. Therefore, it generates and maintains a

certain set of rules (in this context usually termed classifiers).

This set is called classifier population [P ].
A single classifier clj comprises a couple of attributes:

1) The condition C that determines a certain subspace by

encoding a geometric structure, 2) an action a that defines a

reaction that can be executed on the environment (in the case

of XCSF, only a single dummy action ad is used), 3) a weight

vector �wj = (w0, w1, . . . , wn) that represents the coefficients

for the linear approximation, 4) an error estimate ε that reflects

the mean absolute prediction error of the linear approximation,

5) a fitness value φ that can be roughly interpreted as an

inverse of ε, which represents the accuracy of the linear

approximation.

As illustrated by Figure 1, a single iteration through XCSF’s

main loop can be described as follows:

At each time step t, XCSF retrieves an n-dimensional situ-

ation/feature vector σ(t) . Next, the population [P ] is scanned

for any matching classifiers clj , which in turn constitute the

match set [M ]. Afterwards, the so-called system prediction1

P (σ(t)) is calculated by means of a fitness-weighted sum

of all linear approximations at the problem space’s site σ(t),

1We note that the term ‘system prediction’ hails from the XCS termi-
nology and that we clearly differ this from the term ‘forecast’ that is used
throughout the paper to denote a calculated time series value at time t+ 1.
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Figure 1: Schematic illustration of conventional XCSF

where the linear approximations of a classifier clj is calculated

as follows:

hj(σ(t)) = w0 +

n∑
i=1

wi · σi (3)

As can be seen, XCSF approximates the underlying problem

space in a piece-wise linear fashion and combines overlapping

subspaces represented by classifiers clj in the same match set

[M ] (i.e. environmental niche) according to their fitness values

clj .φ. This combination, more precisely the system prediction

P (σ(t)), is then used as output value. All aforementioned steps

through the main loop are actualised by XCSF’s performance
component. The actual time series value is set to be the

immediate reward rimm. The reward is eventually used to

refine the attributes �w, ε, φ, etc. of each classifier clj ∈ [M ]
with gradient-based techniques. For the adaptation of the

coefficients �w of the linear approximation, the recursive least
squares (RLS) algorithm [20] is used. The refinement of

the matching classifiers is the task of XCSF’s reinforcement
component.

As Figure 1 depicts, there remains a further part – the

discovery component, which is responsible for exploring the

problem space, and to guarantee immediate response to any

input vector σ(t) at any time t. Whenever [P ] contains no

clj whose condition C encompasses the current situation

σ(t), a so-called covering mechanism (COV) is activated.

This assures that at least one classifier clcov is generated

ad-hoc to cover the current stimuli. The attributes of clcov
are initialised using predefined initial values for �w, ε, and φ.

The concrete geometric shape of the condition C is generated

probabilistically to a certain degree. In our work, we used the

general hyper-ellipsoidal condition representation introduced

by Butz et al. in [22].

Besides the covering mechanism, a steady-state niche ge-
netic algorithm (GA) comes into operation, to refine the

geometric shapes during the learning process. Thus, it tries to

find the most suitable local structures for any subspace in the

function to be learned. It therefore recombines and mutates the

conditions C of two selected and copied parental classifiers,

resulting in two newly generated offspring classifiers cloff to

be inserted in [P]. The remaining classifier attributes such as

�w, ε, φ are inherited from their parents, and partially adapted

according to predefined reduction values. The selection of the

parental classifiers can be achieved for instance by roulette-
wheel (fitness proportionate) or tournament selection [23].

This offspring classifier is subsumed by a more general one,

if a sufficiently experienced classifier with a prediction error ε
smaller than the target error ε0 exists in [M ] that additionally

encompasses the condition of the offspring classifier entirely.

For the sake of brevity, we assume a certain degree of

familiarity with the standard XCSF. For a more detailed view

on XCS(F) and all relevant algorithmic parts and parameters,

we refer the reader to [21], [24], [25].

V. XCSF FOR TIME SERIES FORECAST COMBINATION

In the following paragraphs, we elaborate on the idea of

utilizing XCSF as a forecast combination method. Therefore,

we first have to introduce some formalisms and interpretations:

As already stated in Section III, a time series can be

formalized as follows: ts = X1, . . . , Xt, where t determines

the length of ts. Forecasting strives to look beyond the current

value of ts and to predict the value m steps in the future Xt+m.

We focus on forecasting exactly one step in the future. Thus,

we define F̂t as forecast for the future value Xt+1. With XCSF

as ensemble time series forecast technique, we further define

Fi for i = 1, . . . , k as the calculated value of the i-th forecast

method.

Accordingly, the situation vector σ(t) that is retrieved by

XCSF is now defined by σ(t) = (F1, . . . , Fn), i.e. XCSF

is presented the individual forecast values of each utilised

method in the ensemble. In the case of covering, and to provide

XCSF with a sufficient initial prediction, the offset weight

w0 of the initialised weight vector �w for the newly created

classifier clcov is set to the mean value of the multiple forecasts

delivered in the situation vector σ(t). For the combination

of n forecast methods, �w = {w0, w1, ...wn} resembles the

coefficients of the linear prediction using RLS, calculated as:

P (σ(t)) = w0 + w1 ∗ F1 + · · ·+ wn ∗ Fn (4)

This leads to an approximated linear function h(σ(t)) for

the region covered by the novel classifier that intersects the

ordinate approximately at the actual value’s height in the

problem function (see Figure 2). Naturally, the proximity to

the actual value Xt+1 depends on the quality of the selected

ensemble of forecast methods.

The reward rimm that is retrieved by XCSF after forecasting

the value for time step t+1 (F̂t) is set to the actual value Xt+1.

Accordingly, the absolute error can be calculated and further

incorporated to update the classifier attributes of all clk ∈ [M ].
The time series can be interpreted as a function, where

the sampling of the domain is determined by the time a

certain value appears. Thus, instead of a uniform sampling, the

time series is, conceptually spoken, ordered by time. In each



Figure 2: Scatter plot showing the problem space for the

combination of two forecast methods (SUNSPOTS data set).

learning step, XCSF is presented the values F̂t of multiple

forecast methods for time step t+ 1.

To provide the reader with an idea of how the problem

function that XCSF has to approximate may look like, the plot

in Figure 2 depicts a fitted regression surface. The surface is

determined by the individual forecast values F1 and F2, as

well as the time series value Xt+1. By approximating such

a function, XCSF learns implicitly how much influence each

feature in σ(t) (i.e. F1, . . . , Fk) has.

VI. EVALUATION

In order to demonstrate the benefit of our approach, we

evaluate our combination strategy with several time series with

different characteristics, i.e. nonlinearity, trends, seasonality.

First, we apply linear scaling, normalising each time series to

the value range of [0; 1]. Second, we make one-step forecasts

for every time step of each time series. Third, based on these

forecasts and several forecast accuracy measures, we evaluate

the forecast errors, and compare several combination strategies

to our XCSF approach.

A. Experimental Setup

a) Time series: To evaluate our combination strategy, we

use ten time series from real-world domains. These daily data

sets are taken from the Quandl data library2, and from the

FRED economic data library3. Their time plots can be seen in

Figure 3, and further description is given in Table I. These time

series exhibit different characteristics, such as trends, seasonal

patterns, or non-stationary behaviour.

b) Parametrisation: Our implementation makes use of

the XCSF-Ellipsoids Java project [20] that was made available

by Patrick Stalph and Martin Butz in 2008. XCSF was mostly

parametrised with the default values as suggested by the

authors of the project, except of the N parameter determining

the maximum number of classifiers in the population [P], and

2http://www.quandl.com, last access: 2016/03/14
3https://research.stlouisfed.org/fred2/, last access: 2016/03/15

the r0 parameter defining the initial condition size during the

covering process. Therefore, XCSF parameters were set as

follows: N = 200, α = 1, β = 0.1, δ = 0.1, r0 = 0.5,

δRLS = 1000, λ = 1, ν = 5, ε0 = 0.01, θGA = 50, θdel = 20,

θsub = 20, μ = 0.05, χ = 1.0, φini = 0.1, εini = 0.0,

fitnessReduction = 0.1, predictionErrorReduction =
1.0. Only GA subsumption was activated. Compaction and

condensation was not used. Tournament selection was selected

for the choice of parents within the GA.

c) Individual Forecast Methods: We compare our multi-

model combination with XCSF against the performance of

some individual forecast methods [26], and against three linear

combination strategies (Simple average, optimal weights, and

outperformance [10]).

Moving average (MA) equals an ARIMA(0,0,1) model. It

has the advantage of quick low cost updates and accurate short-

term forecasts. However, it does not cope well with trend or

seasonality.

Cubic spline’s smoothing (CS) model is equivalent to an

ARIMA(0,2,2) model, but with a restricted parameter space.

Its advantage over the full ARIMA model is that it provides a

smooth historical trend, as well as a linear forecast function.

ARIMA(1,0,1) resembles a first-order autoregressive model

with one order of a moving average process.

The exponential smoothing state space model (ETS) is fully

automatic and estimates the model based on the given time

series only.

The random walk with drift model (RW) is calculated as

Yt = c+ Yt−1 + Zt (5)

where Zt is a normal error.

Within this evaluation, we define the input of CS as the last

ten time series values. ETS and ARIMA make their forecasts

based on the last 25 observations. The MA method considers

the last three values. The random walk method estimates the

drift based on the last ten observations.

d) Combination Strategies: The simple average (SA)

simply combines the individual forecasts by calculating their

average.

Optimal weights (OW) estimates the linear weights to

minimise the error variance of the combination (assuming

unbiasedness for each individual forecast). The sum of the

resulting weights equals one and no individual weight can be

outside the interval [0, 1]. The weights are estimated bases on

a short history of n forecast errors for each forecast model.

A parameter study with n = {5, 10, 15, 20, 25} indicated that

n = 5 offers the best results.

Outperformance (OP) calculates each individual weight as

the probability that its respective forecast will perform the best

(in the smallest absolute error sense) on the next iteration. Each

weight is estimated as the fraction of occurrences in which its

respective forecasting model has performed the best in the

latest k executions. We conducted a brief parameter study for

k = {5, 10, 15, 20, 25}. The best performance was achieved

with k = 20. We therefore use this parameter setting in the

following evaluation.
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Figure 3: Plots of the time series used for the evaluation.

Table I: Description of the time series data sets.

Time series Description Type Length

BARB-MSCI MSCI Equity Index stationary, non-seasonal 2,918
BBK Bundesbank: Yields on debt securities outstanding issued by residents non-stationary, trend, seasonal 9,925
FRED-CRES Cleveland Financial Stress Index non-stationary, seasonal 5,810
FRED-GOLD LBMA Gold Price: Daily Prices non-stationary, trend, non-seasonal 12,118
FRED-MKT Total Commercial Paper Issues with a Maturity Between 1&4 Days stationary, non-seasonal 3,813
FRED-RIFS 15-Day AA Financial Commercial Paper Interest Rate non-stationary, seasonal 4,183
LIVEX-LVX50 Daily prices of 50 Fine Wine Index non-stationary, seasonal 1,633
PSYCH-XIV Sentiment volume ratios for stocks stationary, non-seasonal 921
SUNSPOTS Daily total number of sunspots stationary, seasonal 68,873
SPDJ-SPFTR S&P Dow Jones 500 Futures Index non-stationary, trend, seasonal 1281

e) Evaluation Measures: Theil’s U-statistic is a relative

accuracy measure, comparing the RMSE of the proposed

method against the RMSE of a naive one-step ahead forecast:

U =

√√√√
∑n−1

t=1 (Ft+1−Yt+1

Yt
)2

∑n−1
t=1 (Yt+1−Yt

Yt
)2

(6)

where Yt is the actual value of a point for a given time period

t, Ft its respective forecast, and n is the number of data points.

The symmetric mean absolute percentage error (SMAPE) is

an accuracy measure based on percentage (or relative) errors.

It is calculated as:

SMAPE =
1

n

n∑
t=1

|Ft − Yt|
|Ft|+ |Yt| . (7)

The mean absolute scaled error (MASE) [27] compares the

forecast accuracy with the average forecast error of the one-

step naive forecast method:

MASE =

∑n
t=1 |Yt − Ft|

n
n−1

∑n
i=2 |Yi − Yi−1| . (8)

Its lower bound is 0, and the method with the lowest MASE

offers the best accuracy. MASE allows to compare forecast

accuracy between time series.

B. Experimental Results

The following section presents the results of the evaluation

for an ensemble of two forecast methods, ARIMA(1,0,1) and

cubic spline. Table III shows the SMAPE, MASE, and U-

statistic values for each time series, forecast method, and

combination strategy. The average ranking for each strategy is

also given in the last column, labelled “Avg. rank”. For each

forecast accuracy measure, the strategies are ranked according

to the “Avg. rank”, i.e. the last column. As we can see,

ARIMA(1,0,1) provided rather accurate forecasts, whereas the

forecasts of cubic spline resulted in rather high forecast errors.

A good combination strategy should therefore tend to weight

ARIMA(1,0,1) higher than cubic spline.

Table II lists the most influential classifiers out of a

population of 83 classifiers, evolved after 9000 time steps

for the BBK time series. For each classifier, its condition,

its coefficient vector �w, its fitness φ, its experience, and



Table II: XCSF population showing the most important clas-

sifiers with the highest fitness for the BBK time series (sorted

by fitness φ desc.).

Cond.: Center / Stretch Coefficients �w φ Exp. ε4

0.516, 0.516 / 0.39, 0.79 0.516, 0.760, 0.240 0.272 4530 4.2
0.660, 0.516 / 0.20, 0.79 0.624, 0.745, 0.255 0.216 5327 1.6
0.517, 0.520 / 0.39, 0.79 0.517, 0.740, 0.259 0.154 3526 4.2
0.661, 0.516 / 0.20, 0.79 0.621, 0.724, 0.275 0.151 2935 2.4
0.661, 0.520 / 0.23, 0.79 0.628, 0.775, 0.221 0.151 922 2.4

its prediction error ε4 are presented. As we can see, these

classifiers give ARIMA(1,0,1) an average weight w1 = 0.75,

and CS an average weight w2 = 0.25. This result confirms

that XCSF is able to learn to assign higher weights to forecast

methods with higher accuracy.

Looking at the individual conditions, it can be clearly seen

that each of the five listed classifiers cover approximately

the same region of the problem space. In other words, the

center and stretch values of the hyper-ellipsoids are rather

similar. We attribute this effect to the smaller amount of

opportunities of the GA to refine the condition structures, since

the learning task only comprised ≈ 9000 steps. Another reason

hails from the shape of the underlying problem function as

depicted in Figure 2. Indeed, it seems to be possible to only

create one single hyper-ellipsoid with a linear approximation

to resemble the regression surface. However, XCSF needs

more than one classifier to allow for exploratory behavior

exerted by the GA, to find a nearly optimal condition structure.

The classifier that fits this particular problem function best is

expected to outperform any competing classifiers in terms of

its fitness, its numerosity, and its experience. Nonetheless, such

in-depth investigations regarding the classifier evolution have

to handled in future works.

Concerning the U-statistic and the MASE measure, a fore-

cast should only be considered in case its value is lower

than 1. Table III shows that, in most cases, XCSF is better

or similar to this reference value. All other combination

strategies are mostly above this boundary. The results indicate

that in the case of stationary time series, XCSF performs

similar or slightly superior to the best reference technique.

XCSF outperforms the two individual forecast techniques for

every time series. Time series that are characterised by trends

seem to be challenging for XCSF. For now, we attribute this

observation to the fact that XCSF gets no chance to reinforce

already evolved classifiers, since they are not, or seldom,

triggered again, due to the trend. Put differently, when a

time series follows a trend, the already covered niches within

the approximated problem function will not, or rarely, be

sampled again. Thus, XCSF is not able to learn an adequate

weighting for these situations. Nonetheless, we deem XCSF

as promising candidate for ensemble time series forecasting,

but more efforts regarding the parametrisation have to be done

in future work.
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Figure 4: Forecast error histogram for XCSF (SUNSPOTS data

set).

a) Different Number of Forecast Methods: : Table IV

evaluates the combination strategies for ensembles of size 2,

3, 5 and 7. The ensembles comprise the following forecast

methods: set size 2 = ARIMA + CS; 3 = ARIMA + CS +

MA; 5 = ARIMA + CS + MA + RW + ETS. The results

are averaged over all ten time series. Consequently, set size 2

resembles the average results of Table III. As stated before, a

combination of more forecast methods increases the forecast

accuracy. The lowest MASE, U-measure, and SMAPE values

were achieved using five forecast methods. Considering MASE

and U-measure, XCSF has the lowest values. In contrast, for

the SMAPE measure, it ranks last. However, the difference to

the other strategies is rather small.

b) Accuracy of the Predictive Model: To confirm the re-

liability of our model, we check both the correlations between

errors for successive forecasts, and that the errors are normally

distributed with a mean of zero. The representative histogram

of the forecast errors in Figure 4 supports the observation that

the distribution of forecast errors is centred around zero, and

approximately normally distributed. Additionally, we carried

out a Ljung-Box test to determine whether there is significant

evidence for non-zero correlations at lags 1 to 20. The Ljung-

Box test returns a p-value of ≈ 0.13, indicating that there

is little evidence for non-zero autocorrelations in the forecast

errors for lags 1 to 20. These observations hold for the other

time series as well. Therefore, we can assume that XCSF

provides an adequate predictive model, which probably cannot

be substantially improved upon.

Figure 5 presents the results for the MASE forecast accuracy

measure for several set sizes, averaged over all ten time

series. The box plots show the statistical distribution of the

MASE errors for all time series. The bottom and top of

the box represent the first and third quartiles, and the band

inside the box represents the median. Outliers are indicated

by separate points. The plot shows that XCSF has the lowest

average MASE, while also having the lowest lower quartile.



Table III: Results per time series for an ensemble with two forecast methods (ARIMA(1,0,1) and Cubic spline) (bold values

highlight the best performances).

MSCI BBK01 CRES GOLD MKT14 RIFS LVX50 PSYCH SUNSPOTS SPFTR Avg. rank

U-measure
XCSF 1.00 0.92 0.98 1.31 0.52 1.02 0.19 0.98 1.07 0.38 1.3
MA 1.01 1.13 1.05 1.23 1.52 1.14 1.45 1.20 1.14 1.14 2.5
ARIMA(1,0,1) 1.02 1.15 1.08 1.23 0.99 1.03 1.93 1.50 1.07 1.13 2.8
OW 1.10 1.18 1.09 1.28 1.25 1.30 1.84 1.46 1.22 1.17 4.0
OP 1.22 1.15 1.10 1.21 2.02 1.56 1.92 1.50 1.38 1.15 4.2
CS 1.22 1.34 1.32 1.48 2.07 1.64 1.54 1.97 1.53 1.38 5.6

SMAPE
ARIMA(1,0,1) 76.34 0.38 1.53 0.47 4.94 3.35 0.11 35.00 26.72 0.40 2.2
SA 74.93 0.38 1.49 0.49 5.80 3.81 0.11 41.34 27.86 0.40 2.3
XCSF 88.57 0.38 1.51 0.62 4.75 3.50 0.13 34.60 25.93 0.40 2.7
OW 74.90 0.39 1.49 0.51 5.38 4.19 0.12 45.18 28.70 0.42 3.4
OP 75.11 0.39 1.51 0.48 7.45 4.75 0.13 36.20 30.09 0.40 3.7
CS 75.19 0.46 1.49 0.60 7.80 5.11 0.13 48.68 29.49 0.50 4.9

MASE
XCSF 0.69 1.05 1.02 1.13 0.99 1.16 1.15 0.78 1.07 0.98 1.2
ARIMA(1,0,1) 0.73 1.07 1.08 1.15 1.01 1.12 1.39 0.79 1.09 1.11 2.5
SA 0.90 1.07 1.03 1.19 1.18 1.18 1.38 0.97 1.14 1.14 3.2
OW 1.06 1.10 1.04 1.25 1.09 1.26 0.84 1.12 1.20 1.17 3.8
OP 1.24 1.08 1.07 1.16 1.55 1.41 1.59 0.81 1.34 1.13 4.2
CS 1.28 1.28 1.14 1.47 1.64 1.52 1.59 1.35 1.44 1.41 5.8

Table IV: Average SMAPE, U-measure, and MASE for fore-

cast method ensembles with different size (bold values high-

light the best performances).

Measure Strategy Set size Avg. rank

2 3 5

U-measure XCSF 0.84 0.77 0.75 1.00
SA 1.20 1.04 1.00 2.00
OW 1.29 1.08 1.01 3.00
OP 1.42 1.23 1.20 4.00

SMAPE SA 15.57 15.05 14.97 1.33
OW 16.01 15.16 14.90 2.00
OP 15.57 17.43 15.59 2.67
XCSF 16.04 15.68 15.71 3.67

MASE XCSF 1.00 0.95 0.93 1.00
SA 1.12 1.02 0.98 2.00
OW 1.18 1.05 0.98 2.67
OP 1.24 1.16 1.10 4.00

Independent of the number of forecast methods combined,

XCSF offers the lowest MASE. For larger set sizes, MASE is

reduced for all combination strategies. Based on our findings,

we assume that additional forecast methods do not increase

the forecast accuracy.

c) XCSF’s Learning Behaviour: Figure 6 depicts the

development of two XCSF-specific metrics, i.e. the averaged

system error that corresponds to the mean absolute (forecast)

error as well as the averaged size of the population [P]. Each

data point is the average of 700 XCSF-combined forecasts.

The curves show the development of the corresponding means

over 30 i.i.d. experimental runs with different random seeds

to face the bias that occurs due to the randomized operators

(e.g. crossover, mutation, covering) XCSF relies on.

As you can see, the chosen population size restriction of

N = 200 micro-classifiers is sufficient to approximate the

problem function illustrated in Figure 2. Higher values (up to

6400) did not lead to smaller forecast errors. The number of

physically stored classifiers (macro-classifiers with numerosity

cl.num > 1) converges after approximately 10.000 steps to an

amount of about 140.
Obviously, the forecast error continuously fluctuates be-

tween approximately 0.04 and 0.005. The number of peaks

and valleys correlates with the seasons in the SUNSPOTS time

series (cf. Figure 3). We attribute the fluctuation effect to the

particular learning task XCSF is confronted with. The goal

XCSF is striving for is not to forecast the next time series

value directly, but to learn which of the individual forecast

methods shall get a higher weight in which situation. Thus,

when both single methods are forecasting values with a high

error, XCSF also outputs a combined value that leads to an

error with a similar (nonetheless mostly smaller) amount.

VII. CONCLUSION & FURTHER RESEARCH

We applied the extended classifier system for function

approximation XCSF to the challenging task of multi-model

ensemble time series forecasting. Our presented approach was

compared against two individual forecast methods, and three

established combination strategies. The evaluation was done

with real-world time series exhibiting different characteristics.

Using this setup, we demonstrated that the utilisation of XCSF

as forecast combination approach is competitive in comparison

to the reference methods whenever the time series is stationary.
An in-depth investigation of the proposed concept with

regard to XCSF-specific metrics and issues, such as the

classifier evolution, and the formalisation of parametrisation

guidelines constitute a top priority on our research agenda. We

further plan to evaluate our combination with XCSF for longer

forecast horizons. Additionally, standard XCSF as utilised in

the present work will be compared to an interpolation-assisted

variant as proposed in [25].
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Figure 5: Boxplots showing the MASE error averaged over all ten time series (lower values are better).

Figure 6: Illustration of XCSF’s learning process in terms

of forecast error and population size for the ensemble with

ARIMA(1,0,1) and cubic spline. The SUNSPOTS data set was

chosen since it contains the longest series (68873 time steps).
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