
Identification of Irregular Motion in Automotive
Navigation Systems Using Novelty Detection

Martin Pöllot∗, Dominic Springer
x
, Ralph Schleifer

x
, Dieter Niederkorn

x
and André Kaup∗

∗Chair of Multimedia Communications and Signal Processing
Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstraße 7, 91058 Erlangen, Germany

x
Audi AG Ingolstadt, Auto-Union-Straße 1, 85045 Ingolstadt, Germany

Abstract—Automated display testing for visual unpleasant and
erroneous navigation sequences is an important step to preserve
a high quality standard for premium vehicle manufacturers. This
paper presents a novel error detection algorithm for navigation
sequences based on novelty detection on motion parameters ob-
tained from real world navigation sequences. Motion parameters
are accumulated through key point matching using BRISK and
subsequent homography calculation. With these parameters one
is able to describe the motion between two successive frames.
Combinations of translational and rotational components allow
the novelty detection algorithm to predict outliers. These outliers
either show positioning errors or abnormal motion behaviour
which are both unacceptable for high quality. Experimental
results demonstrate that this algorithm works significantly better
than state of the art, where one has to know errors before
analysing the data set in order to determine thresholds for
particular errors. The gains in precision and recall are 49.67%
and 6.06% respectively, the accuracy is 1.37% higher compared
to optimized threshold results.

I. INTRODUCTION

Nowadays automobiles are equipped with a high number
of components for information and entertainment purposes.
With every new production cycle a plethora of new features
are introduced not only for the driver, but also for fellow
passengers. These components are generally controlled by a
central processing unit. With an increase in complexity, the
time and efforts for testing novel systems in order to find new
errors during development, increases as well. Since errors have
an impact on the quality of experience on the user side, errors
should be eliminated during development.
In the scope of this paper, we consider errors from the
onboard infotainment system with special view on navigation
sequences. These sequences are recordings of a map indicating
position of car and giving directions. There are several erro-
neous movements which can occur single or as combination of
multiple errors. These errors contain drifts, where the position
of the car changes horizontally. Jumps are also considered
as errors. They occur when the car covers too much ground
between two frames. This results in a jump from the former to
the current position. Other errors cover for example backwards
motion or an angle that is too high. Pairs of frames containing
erroneous movement are shown in Fig. 1.

The scope of this paper is to develop an algorithm for
automated testing that allows error detection regarding erro-
neous movements in navigation sequences with high reliability.
These defective movements emerge from the fusion of mul-

Fig. 1. Multiple examples for displayed errors from pairwise consecutive
navigation frames. From top to bottom: the first row shows a horizontal drift
to the right with a rotation of almost 40 degree. In the second row, one can
see a jump resulting from a frame freeze. Motion is dominated by a vertical
part, horizontal and rotational movement are negligible. The last row shows
a rotation of 90 degree and a vertical jump. This is due to the fact that first
the frame is rotated, then the translation is applied. Horizontal displacement
is small.

tiple noisy sensor inputs, most commonly from a gyroscope,
odometer and GPS-signals. Generally these errors occur in-
frequently when the driver is leaving a proposed route. If no
route guidance is activated, errors can occur when the defective
positioning is not unique anymore, for example when passing
a motorway service area. Errors appear on rare occasions when
there are two or more possible positions for the car resulting
from the data fusion. Although GPS data as well as data from
the sensor fusion is available, only the displayed scene is
used. The reason for that is that the noisy sensor data of each
input contains a lot of errors itself and are combined before
they are being processed further. Another reason is, that the
passengers only notice the errors displayed. The algorithm is
therefore capable of indicating an improvement of the sensor
fusion and the displayed navigation scenery. The indication
is done by utilizing a machine learning (ML) method to
detect irregularities displayed by comparing extracted motion
parameters with a learned model of normality.
The reason for using computers in the first place is, that

-5

5

15

25

35

45

55

-15 -10 -5 0 5 10 15

Δ
y

Δx

Thresholding Δx and Δy

Normal

Threshold

Erroneous

Fig. 2. Example scatter plot of the thresholding method. Every point shows
a pair of motion parameters ∆x and ∆y calculated between two consecutive
frames. The chosen thresholds are set as follows: ∆x ∈ [−1.1, 1.1] and
∆y ∈ [0, 30]. These thresholds are obtained from all training sequences and
are optimized to find as many errors as possible. The light green area in the
center of the plot shows motion parameters that will be categorized as error
free. Points lying in the remaining area will be marked as erroneous. The
ground truth for all frames is shown with green dots for normal motion, red
dots indicate erroneous motion. As one can see, one error in the center of
the green shape will not be recognised, aswell as several normal pairs will
falsely be marked as erroneous.

the amount of data to be tested exceeds human capacity.
Therefore, one aspires an automated test setup that is able
to process the amount of test data in a reasonable amount of
time. With rising popularity and many innovations in the field
of machine learning during the past few years, these methods
are able to fulfil the task, if given carefully chosen parameters.
The method then can decide if an observation fits into a prior
learned context of regularity. The procedure is necessary to
find well-known errors, but also unknown and unspecified
anomalies within the displayed footage. These errors can then
be analysed and prevented during later stages of development.
For a ML algorithm to work properly, it is necessary to
supply the algorithm with distinct features. In this paper, these
features are extracted from the homography matrix which is
calculated using binary robust invariant scalable key points
(BRISK [1]). This is done to achieve comparable performance
regarding state of the art. To make the testing algorithm as
robust as possible for automation, different resolutions, icon-
sizes and displayed features have to be handled. In the end,
this algorithm should be easily implementable in automated
testing environments.

II. STATE OF THE ART

For state of the art error detection systems, motion pa-
rameters for a test scene are collected and then analysed.
According to a set of thresholds that are applied to the
tested data [2], errors are seperated from correct movements.
With this setup, erronoeous movements are found with ease.
Regarding unobtrusive errors, however, a clear affiliation is
hard to find and might in the worst case need further attention
and manual sorting. Another downside is that an error that is
not known in prior and not captured by the chosen thresholds
goes unchecked. This is clearly not wanted for test automation.
The number of false alarms should be kept as low as possible
and false negatives should not occur, especially when there
are a wide variety of different sequences to be tested in a
limited amount of time. Another drawback is the effort it
takes to adapt the system to changing conditions, such as

Fig. 3. Left: Center of a typically displayed navigation scene for the driver
in a car. In this example, route guidance is active. Static areas can be found at
the top and bottom of the screen. In these static areas, information regarding
destination or warnings concering the car are showed amongst many other,
sometimes situationally dependant features. Right: A binary mask is shown
with black overlay masking static and transparent areas, where white areas
are taken into account.

changes in resolution or framerate. The general approach will
be presented in the following three subsections.

A. Keypoint Detection, Description and Matching

An effective detection and description of key points k from
an image I is a well-studied problem in many computer
vision applications. Considering the description of these key
points, the most common methods are Lowe’s scale-invariant
feature transform (SIFT, [3]) and Bay’s speeded up robust
features (SURF, [4]). Both SIFT and SURF descriptors have
been improved in the past years. Calonder et al. showed with
the algorithm binary robust independent elementary features
(BRIEF [5]), that binary implementations can further reduce
the computation time. BRIEF, however, is not invariant to scale
and rotation changes unless coupled with a detector providing
it, which led to the oriented fast and rotated BRIEF (ORB)
descriptor by Rublee et al. in [6].
In this paper we use the binary robust invariant scalable key
points (BRISK) [1] algorithm. It is similar to ORB, very
fast and the accuracy in navigation sequences is sufficient.
It is also easy to implement using Python [7] with OpenCV
[8]. Automotive displays show many situational information
such as speed, radio, destination, time and countless other
features that are relevant for the driver or passengers. Areas
in the image containing this information are irrelevant for the
key point detection. Therefore, a static mask that covers the
distracting elements, but not the map, is applied (see Fig. II).
Motion in navigation sequences is dominated by rotational
movement and zoom with only small translatory differences
between successive frames [9]. After detecting a certain
amount of key points k1 in one frame I1, the next frame
I2 is being processed in order to obtain its key points k2.
For the matching key points k̃1, the Hamming distance of all
BRISK key points k2 corresponding to every analysed key
point in k1 is calculated. Using a brute force matcher, every
key point is guaranteed to be assigned to the closest key point
of the set of key points k2. After this procedure, matched key
points that do not belong to a homogeneous set are removed
using random sample consenus (RANSAC, [10]). Fig. 5 shows
matched keypoints in two consecutive frames using BRISK.

Current
frame

Reference
frame

Masking
static areas

BRISK:
detect,

describe and
match

keypoints

Calculate
homography

Calculate
motion

parameters

Δx,Δy,𝜃

Within the
thresholds?

Error

No Error

Thresholding no

yes

State of the art
RANSAC:
Remove
outlying
keypoints

Training set
 or

test set?

Support
Vector
Method

training

testing Novelty
Detection:

testing
Normality

yes

Novelty

no

Proposed Method

similar to
trained set? similar to

trained set?
Similar to

trained set?

1
2

3

&

&

Fig. 4. Proposed irregular motion detection algorithm (blue) compared to the state of the art thresholding method (red). Two consecutive frames are first
masked, then their key points are detected and matched, followed by the homography calculation. The resulting motion parameters are then used in the
corresponding methods. Note that the output of the thresholding procedure is either an error or no error, whereas the output of our novelty detection is either
a normal motion or a before unseen motion novelty.

Fig. 5. Example of the set of matching key points (green) between two consecutive frames In and In+1 with a resolution of 1440x540 pixels each. Some
matching key points have been connected exemplary. Masking has been done to increase the robustness of the algorithm so it only checks map parts of the
image. RGB has been converted to grayscale. Calculated motion parameters for this pair of frames are as follows: rotation θ = 41.08◦, ∆x = 17.23 pixel,
∆y = −1.47 pixel

B. Motion Parameter Calculation

In order to calculate the motion between two consecutive
frames I1 and I2, the set of matching key points k̃ is used
to calculate the corresponding homography matrix H . This
set has to contain at least four different key points for the
estimation to work. In general, there are several hundreds
of key points matching for two consecutive frames (see Fig.
5). The homography matrix describes the relation of a planar
surface in two images [11]. Since we are looking top down
onto a navigation map, assuming a pinhole camera model,
the movement of the camera position can be extracted [12].
This is equivalent to the motion of the automobile since the
navigation sequences are restricted to a 2D top-view, which
simplifies the homography matrix H by removing its skew
factors. Using the homography matrix H , the coordinates x,

y and z of a point p1(x, y, z) on the planar surface in frame
I1 can be warped to match the most similar point p2 on that
surface in the following frame I2. Note that the coordinate z
in p that represents the height of the camera is set to 1 since
we restricted the view to 2D top-view only and restricted the
zoom to a fixed value. The scaling factor s is therefore equal
to 1 since the height z does not change. Every pixel with
coordinates (x, y, 1)T in the reference frame can be warped
to the new position (x′, y′, 1)T in the current frame by using
p2 = H ·p1. With the homography matrix in the form of (1),
the translational motion tx and ty and rotation θ of the image
plane can be extracted; however, these do not correspond to
the movement of the car. In order to get the movement of the
car the coordinates of the centre of the car (xc, yc, 1)T have to
be determined. By simply warping the car centre coordinates,

the new position of the automobile are obtained:x′cy′c
1

 =

− cos (θ) sin (θ) tx
− sin (θ) cos (θ) ty

0 0 1

 ·
xcyc

1

 (1)

Now one simply subtracts the original center coordinates to
obtain the distance the car travelled. Since the origin of the
frame is in the top left corner and a normal forward motion in
the navigation scene would yield a negative ∆y, we invert the
sign of ∆y. This is just for later convenience. Note that the
first two elements in the third line in the homography matrix
are not exactly 0 due to noise and small estimation errors. This
results in a value for z that is not exactly 1 so that we have
to normalize the resulting vector for z after calculation.

C. Thresholding

In order to check for various errors, a set of thresholds is
defined based on observations that have to be done before
testing. During these observations, it has to be defined what
value is acceptable in order to set the thresholds accordingly.
The thresholds are chosen as done in [12] with respect to
finding as many errors as possible. For example, one such
threshold for ∆y is the maximum allowed number of pixels
in forward motion. If the motion is higher than the threshold,
the map in the navigation scene was jumping which would
be signalled as an error. Therefore, Θ is set to the highest
forward motion ∆y allowed. An error is also detected if ∆y
is negative, since the car is not allowed to move backwards.
From these two observations, one can extract thresholds for
∆y ≤ 0 and ∆y > Θ. One can go on and define any number
of thresholds for other variables, depending on the errors one
wants to detect, as seen in [12]. The results of this method can
be seen in Fig. I. The major drawback, however, is on the one
hand to define enough thresholds to achieve a precise error
detection. On the other hand, the method should not need too
many thresholds in order to stay adaptive. This contradictory
trade-off situation is very costly regarding adaption time.

III. IRREGULAR MOTION DETECTION USING NOVELTY
DETECTION

In this novel approach, we abandon manually setting a high
number of thresholds for known errors as described above. Fig.
II gives an overview of the proposed pipeline (blue) and the
state of the art (red). With that we overcome the disadvantage
of missing errors that are unknown in prior and increase the
number of found errors whilst decreasing the number of false
alarms. To achieve that, we use a machine learning technique
named ND. It is widely used in fault detection and aims to
find abnormalities that are very rare or where there is no data
that describes the errors behaviour [13]. Given the fact that
one can never train all possible errors, the procedure aims at
learning what an error is not: normality. Therefore, ND can
be used as a one-class classification tool, where one class has
to be distinguished from all other possibilities [14]. Usually,
the normal class is very well sampled while the other classes
are almost or completely absent. This might have different

reasons, for example when the task is to monitor a system
where it is easy to gather data when it is running normal
and abnormal events occur at rare intervals. We consider our
motion data as training data s1, . . . , sn ∈ S where n is the
number of frames of a sequence S. For ND, normal patterns
of S are available for training, abnormal ones are scarce.
From these observations, a model of normality M(φ), where φ
represents the free parameters of the model, is derived and then
used to calculate novelty scores ξ(s) for previously unseen test
data s. The larger the novelty score ξ(s), the more the unseen
test data s differs from the learned normality corresponding to
the model M(φ). Obviously, a decision boundary ρ has to be
defined, such that ξ(s) ≤ ρ labels data as normal and ξ(s) > ρ
as abnormal.
In this approach, we choose to use a support vector (SV)
method proposed by [15]. It defines the novelty boundary
in high dimensional feature space. Therefore, support vectors
are mapped using a kernel K that requires beforehand fixing
of the ratio ν between positive training data allowed to fall
outside the boundary of normality and all (positive) training
data. This parameter strongly influences the performance of
the algorithm. For that we set ν to 0.0001 and only use
positive data during training phase. This way we assure, that
any observed test data that differs slightly from model M(φ)
will be counted as abnormality. Since false negatives must not
occur, it is better to make the algorithm more sensible, even
for small derivations from the trained model M(φ).
The kernel (2) we use is the Gaussian radial basis function
kernel (RBF kernel), which contains the squared Euclidean
distance

∥∥s− s′∥∥2
between the two feature vectors and acts

as the main comparison element in the algorithm. γ acts as a
weighting factor, has to be greater than 0 and is set to 0.2 in
this approach, since this factor resulted in best test results.

K(s, s′) = exp

(
− γ

∥∥s− s′∥∥2

2σ2

)
(2)

f(s) = sign

(∑
i

φiK(si, s)− ρ

)
(3)

We use this kernel in the decision function f(s) that will
output +1 for a normal observation or −1 for abnormal or
novel observations1 (3), according to [15]. The parameter φ
can be seen as a multiplier containing our free parameters
with φ ≥ 0,

∑
i φi = 1 and ρ is our decision boundary.

An implementation of this algorithm is included in Python’s
machine learning package scikit-learn [16] and was used with
parameters mentioned earlier.
The decision function, however, is not scale invariant. In order

to overcome this problem, one can either scale all training data
or proceed with several combinations of parameters. Scaling is
not an option, because we want to keep the motion parameters
as they are. Scaling would require further analysis in order
to put all parameters into one interval. We decided to use

1We use the convention as in [15] that sign(x) equals 1 for x ≥ 0 and
−1 otherwise.

TABLE I
TRAINING SEQUENCES FROM BOTH DISPLAYS.

Name Resolution Map Type Frames

trainingSeq1a 1440x540 Imagery 3, 012
trainingSeq1b 1024x480 Imagery 13, 458
trainingSeq2a 1440x540 Standard 4, 618
trainingSeq2b 1024x480 Standard 1, 529
trainingSeq3a 1440x540 Standard 8, 298
trainingSeq3b 1024x480 Standard 2, 485
trainingSeq4a 1440x540 Standard 5, 870
trainingSeq4b 1024x480 Standard 1, 898
trainingSeq5a 1440x540 Standard 3, 510
trainingSeq5b 1024x480 Standard 1, 245
trainingSeq6a 1440x540 Standard 3, 746
trainingSeq6b 1024x480 Standard 1, 340

a combination of training parameter sets and combine their
outcome. The training parameters obtained from section II-B
are the angle θ describing the rotation between two frames,
∆x and ∆y containing the translational movement of the car’s
position. Although the SVM is calculating support vectors in
a high dimensional space, it did not adapt well to too many
different input arguments at once. To achieve an accurate
estimation for irregular motions, we therefore train three
different sets of motion parameters and later combine their
output to one prediction. Therefore, the first set of parameters
contains only the angle θ and the horizontal movement ∆x. We
choose these parameters since they are the strongest indicators
for occurring erroneous movements. The second set uses the
parameters |θ|, |∆x| and ∆x/∆y . With this combination we can
check the influence of a high derivation of either θ or ∆x. By
taking the absolute value we temporally lose the orientation of
the movement. The fraction of ∆x/∆y grants a comparison of
the impact of sideways movement. The third set only contains
∆x and ∆y and acts as an assurance for the first set without the
impact of the angle θ. After predicting all three sets separately,
set 1 and 2 as well as set 1 and 3 are compared and later
combined, so that only outliers in both combinatory sets are
selected as erroneous frames.

IV. EXPERIMENTS

This section provides the performance of the proposed
algorithm compared to the standard thresholding approach.
We apply the method to several navigation sequences with
synthetical and real-world data to show the improvement of the
proposed algorithm. For quality measuring we use precision
and recall, as well as the accuracy for an overall performance
as definded by [17].

A. Acquisition of Navigation sequences

The sequences are obtained by screen grabbing the video
signal via DVI connection directly from the display of a test
cube and are then saved as png or bmp files (Fig. 6). These
test cubes are equipped with many tools for analysis which
are connected to a computer for further interaction. The test
cubes contain regular displays, control and input devices set
up just like in a real car with all necessary connections. In
order to record a navigation sequence where the automobile
would have to actually drive in order to produce different GPS

TABLE II
TEST SEQUENCES FROM BOTH DISPLAYS.

Name Resolution Map Type Frames Errors

testDrift1 1440x540 Standard 2, 557 9
testDrift2 1440x540 Standard 2, 560 6
testDrift3 1440x540 Standard 12, 045 36
testDrift4 1440x540 Imagery 3, 645 20
testDrift5 1440x540 Imagery 5, 001 13
testDrift6a 1440x540 Imagery 1, 366 33
testDrift6b 1024x480 Imagery 7, 740 22
testDrift7a 1440x540 Standard 3, 746 0
testDrift7b 1024x480 Standard 1, 340 0

positions and different sensor data, a work-around has to be
used. On the one hand, the navigation system offers a mode for
presentation where one can manually add a starting position.
After entering a destination, the navigation will start and
simulate the cars movement on set route with fixed speeds. We
will call sequences that are obtained in this mode simulated.
On the other hand, a real car can be equipped with a logging
device that records all relevant information such as position,
speed, heading or the number of active satellites. The recorded
file called a trackfile can later at the test cube be used to
recreate the route that was driven during recording. We will
call these sequences real-world sequences. The advantage of
the real-world sequences is that we can repeat tests as many
times as necessary. Another advantage is that we only use
the position from the car and do not need any navigation
route to be active. We also have more precision in corners;
since the presentation mode ignores corners and goes through
them with speed unchanged. Furthermore, we can purposely
set the navigation destination to a place where the car was
not going to during recording. This way, we can force the
positioning to be faulty and show irregular movements, when
we set the navigation destination to a place that conflicts with
the recorded route. This happens, because the positioning of
the car is not only dependant on the sensor data but also on
an active navigation route guidance.
All sequences recorded conform with the following require-
ments: the map has to be shown in a top-down 2D-view,
locked to the position of the car with the car always heading
upwards. All icons showing Points Of Interest (POI) have
to be disabled in order to achieve more robust results for
the homography estimation. For even more accurate results,
the overlay of satellite images should be activated. To get
consistent results, the height of the camera or the zoom level is
restricted to 100 meter above the car. The framerate, which has
a great impact on the received speed of the car, is 15 frames
per second in average. These high framerates are unusual for
infotainment testing; but can be achieved by special grabbing
setups. Currently the time between two frames is not taken into
account since it is very difficult to obtain a constant framerate.

B. Training Data Set

The training data set consists of twelve sequences. Half of
these sequences have a resolution of 1440x540 pixels. These
sequences were recorded from display 1 which is in front of
the driver. The other sequences were recorded from display 2

(a) Display 1 with standard map design (b) Display 2 with standard map design

(c) Display 1 with satellite imagery design (d) Display 2 with satellite imagery design
Fig. 6. Cutouts from frames acquired in navigation sequences with active route guidance and different map designs. (a) and (b) show the standard map desgin,
whereas (c) and (d) show satellite imagery. (a) and (c) are obtained from display 1 with a total resolution of 1440x540 pixels, (b) and (d) are recorded from
display 2 with a total resolution of 1024x480 pixels

which is centered in the middle of the console with a resolution
of 1024x480 pixels. In total, 51, 009 frames comprised in
all training sequences cover only synthetic navigation routes
since real-world data might be erroneous. The navigation
routes were set up in multiple cities with many corners. All
images have an 8-bit depth and are compressed losslessly.
One third of the frames use the map design with activated
satellite imagery, the rest uses a simplified standard map.
Please refer to Table I for more detail. After the training
data acquisition, its motion parameters were calculated and
the thresholds ∆x ∈ [−1.1, 1.1], ∆y ∈ [0, 30] and |θ| < 25◦

have been set for the thresholding method. The paramters have
also been passed to train the ND.

C. Test Data Set

The test data set consists of nine sequences, recorded with
the same settings as the training sequences. However, they
make use of the trackfiles mentioned earlier. Therefore, they
contain frames with erroneous movements. These erroneous
movements are, as mentioned before, mainly drifts or jumps.
Drifts are movements in the horizontal direction and are not
allowed. These errors occur mostly, when route guidance
conflicts with the GPS signal and sensor fusion. In these
cases, the car arrow will follow the proposed route until the
displacement surpasses a threshold. The car is then replaced to

the correct position. This often happens when using motorway
access or exit roads. Sometimes, freezes occur right after the
replacements due to drifts. With an active route guidance, an
updated route has to be calculated. This results in a high
workload for the processing unit and can result in a freeze
of the display where the motion is temporally stopped. After
recalculation, the position of the car is updated. While one
travelles a certain distance during this process, the distance
covered during that time results in a jump. Every sequence
has been checked visually and with motion parameters for
erroneous frames, which are listed in Table II. Note that some
of the sequences use satellite imagery, others only the standard
map design.

D. Results

This section provides the evaluation of the proposed algo-
rithm compared to the standard thresholding approach. For the
thresholding approach, we used the intervals ∆x ∈ [−1.1, 1.1],
∆y ∈ [0, 30] and |θ| < 25 that give the best results for all
training data. Other thresholds have not been used. Examples
for found errors or anomalies in the case of ND are shown in
Fig. 8. For measuring the overall performance, precision (4)
and recall (5) have been calculated and are shown in Fig. 7.
Accuracy (6), which is used as a statistical measure for how
well a binary classification test correctly identifies or excludes

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
P

r
e
c
is

io
n

Thresholding [2],[12] Proposed: Irregular Motion Detection

0.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

R
e
c
a
ll

100.00%

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

A
c
c
u
r
a
c
y

Fig. 7. These three graphs show from top to bottom precision, recall and
accuracy of tested sequences. In all graphs one can see the improvement of
the proposed method.

a condition overall, has also been calculated according to (6)
and is likewise to be seen in Fig. 7.

Precision =
tp

tp + fp
(4)

Recall =
tp

tp + fn
(5)

Accuracy =
tp + tn

tp + tn + fp + fn
(6)

Hereby, tp means ”true positive” and covers all decisions,
where erroneous motion parameters have been found and
marked correctly as such. fp stands for ”false positive” and
counts the number of times, that the algorithm marked a
frame’s motion parameters incorrectly as erroneous. This is
often times called a false alarm or Type 1 error. The more
important Type 2 error –a miss– would be the number of
”false negatives” fn, where the analysed frame actually con-
tains erroneous movements but treated them as normal. This
number should be as small as possible, since errors should not
go unchecked. ”True negatives” tn represent frames without
erroneous movements that were classified as error free.
Fig. 7 shows the precision and recall of both methods. The

TABLE III
COMPARISON OF BOTH ERROR DETECTION METHODS.

Proposed Method Thresholding [12], [2]
Name tp fp fn tp fp fn

testDrift1a 8 1 1 5 15 4
testDrift2a 6 3 0 6 31 0
testDrift3a 35 21 1 35 143 1
testDrift4a 20 10 0 20 59 0
testDrift5a 12 8 1 12 59 1
testDrift6a 33 7 0 33 59 0
testDrift6b 22 3 0 20 50 2
testDrift7a 0 2 0 0 5 0
testDrift7b 0 1 0 0 7 0

proposed method has a clear advantage over the simple
threshold method. On average, the precision was raised by
49.67% except for the last two sequences that purposely had 0
errors. The number of false positives was lowered significantly,
which results in less time for evaluation of predicted error
frames. Some sequences purposely used the standard map
design which is not as robust as the satellite imagery overlay
which resulted in more false positives. Another reason is,
that some sequences have POIs activated (Fig. 8a to 8f).
However, the proposed method behaves superior, since it
has same or a better detection rate and still fewer false
positives as can be seen in Table III. This is also represented
in the recall in Fig. 7. The proposed method improves the
already high rate of 90.86% of the threshold method even
further, on average to 96.92%. Out of 139 total errors in
all sequences, the proposed method missed only three errors
where the thresholding approach missed eight. This means
that less errors that should not be contained in high quality
navigation sequences went unchecked. Regarding the accuracy
in Fig. 7, the improvements of the proposed method are visible.
On average, the accuracy was raised by 1.37%. The dent in
the thresholding method for sequence 6a results from many
corners in that sequence that were handled poorly by the
thresholding method. Combined with a low amount of images
in that sequence the accuracy dropped significantly. Regarding
a fairly huge amount of sequences that have to be tested,
this increase of accuracy decreases significantly the number
of frames that have to be checked by human observation. As
mentioned earlier, the preparation time to set up automated
tests with the proposed method decreases the consumed time
even further.

V. CONCLUSION

In this paper, an irregular motion detection algorithm for
navigation systems has been proposed. Using novelty detec-
tion, a clear advantage over state of the art thresholding meth-
ods could be accomplished. The requirements for recording
appropriate sequences for a robust detection were evaluated
and furthermore tested on standard map design, as well as
on real-world satellite imagery. It was shown that our method
achieves an average gain in precision of 49.67% which saves
time during the evaluation after the detection of the frames
that has to be done by human observation. Additionally, the
recall was raised to 96.92%, which contains a gain of 6.06%

(a) θ = 0.1◦, ∆x = 0.01, ∆y = 7.32 (b) *θ = 34.4◦, ∆x = 9.81, ∆y = −1.72 (c) *θ = 47.1◦, ∆x = 1.81, ∆y = 14.72

(d) θ = 11.2◦, ∆x = 2.08, ∆y = 6.87 (e) *θ = 0.1◦, ∆x = −34.25, ∆y = 3.72 (f) θ = 0.0◦, ∆x = 0.00, ∆y = 0.00

(g) θ = 4.2◦, ∆x = 0.67, ∆y = 15.57 (h) *θ = −41.1◦, ∆x = −49.11, ∆y = 13.37 (i) θ = 0.0◦, ∆x = 0.00, ∆y = 0.00
Fig. 8. Cropped frames detected by the irregular motion detection. Note that the motion is calculated between two frames so there is always a pair of frames
that behaves irregularly to the rest of frames. The frame indicating the error is the subsequent frame. Leading * indicates erroneous motion. (a) to (c) show
frams 175 to 177 with two consecutive detected erroneous frames in testDrift6a, whereas (d) to (f) show only one erroneous frame detected in sequence
testDrift3a, frames 3975 to 3977. (g) to (i) show frames 2984 to 2986 which contain one detected erroneous frame in testDrift6b. The motion parameters
with respect to the subsequent frame are contained for each frame shown. ∆x and ∆y are in pixels. (e) to (f), as well as (h) to (i) are no errors regarding
the motion, which is 0. The algorithm will, however, detect the following jumps in the succeeding frames due to the repositioning.

compared to the thresholding method. As for the accuracy,
a gain of 1.37% was achieved, thus the accuracy resulting
in 99.80%. Although only shown for two different display
sizes, this method is expected to be working on any resolution
with a moving map in the background and the requirements
proposed. We also showed that the tedious acquisition of
thresholds is not necessary anymore. One has to record error-
free training data though, but this has to be done only once.
Further work could contain the acquisition of a better set
of training data. Additionally, the positioning symbol could
be determined automatically for every display. An algorithm
that recognises the positioning symbol and its centre would
further reduce the required preparation steps. Therefore, future
work will also include the application of an adaptive mask
algorithm.

REFERENCES

[1] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in Proceedings of the 13th IEEE Inter-
national Conference on Computer Vision, Barcelona, Spain, November
2011, pp. 2548–2555.

[2] G. Yammine, “Freeze detection in 2D navigation video sequences over-
laid with real satellite images,” in Proceedings of the IEEE International
Workshop on Multimedia Signal Processing (MMSP), Banff, Canada,
September 2012, pp. 43–48.

[3] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, Kerkyra, Greece, September 1999, pp. 1150–1157.

[4] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust fea-
tures,” in Proceedings of the Ninth European Conference on Computer
Vision, Graz, Austria, May 2006.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, BRIEF: Binary
Robust Independent Elementary Features. Berlin/Heidelberg, Germany:
Springer Berlin/Heidelberg, September 2010, vol. 4, pp. 778–792.

[6] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proceedings of the 13th International
Conference on Computer Vision, Barcelona, Spain, November 2011, pp.
2564–2571.

[7] G. Rossum, “Python reference manual,” Centre for Mathematics and
Computer Science (CWI), Amsterdam, The Netherlands, Tech. Rep.,
May 1995.

[8] The OpenCV Reference Manual, 2nd ed., Itseez, April 2014.
[9] D. Springer, F. Simmet, D. Niederkorn, and A. Kaup, “Robust rotational

motion estimation for efficient HEVC compression of 2D and 3D
navigation video sequences,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing ICASSP, Van-
couver, BC, Canada, May 2013, pp. 1379–1383.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, June 1981.

[11] D. Kriegman and S. Belongie, Homography Estimation, October 2007.
[12] G. Yammine, “Freeze detection in 2D navigation video sequences by

matching of extracted line segments,” in Proceedings of the IEEE
International Conference on Vehicular Electronics and Safety, Istanbul,
Turkey, July 2012, pp. 55–60.

[13] M. Markou and S. Singh, “Novelty detection: A review,” Signal Pro-
cessing, vol. 83, no. 12, pp. 2481–2497, December 2003.

[14] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “Review:
A review of novelty detection,” Signal Processing, vol. 99, pp. 215–249,
June 2014.

[15] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt
et al., “Support vector method for novelty detection,” in Proceedings
of the Twelfth Conference on Neural Information Processing Systems,
vol. 12. Denver, Colorado, USA: Citeseer, December 1999, pp. 582–
588.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, November 2011.

[17] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, March 1979.

