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Abstract— The idea that a concept is properly learned by an 

agent when the agent is able to generate examples and non-

examples of the concept, has motivated research on generative 

models. Generative models are trained with the aim of improving 

performance of tasks such as classification. In this paper, a Long 

Short Term Memory (LSTM) architecture for simultaneous 

generation-classification is presented. The architecture is designed 

with the purpose of serving as a model which can generate 

sequence samples, while simultaneously classifying a given 

sequence. The presented generation-classification methodology 

was implemented on a sentiment analysis task. However, it can be 

applied to any sequence modelling or classification task. The 

experimental results suggest that this approach can be 

particularly useful as a regularization methodology which acts 

similarly to pre-training through Restricted Boltzmann Machines 

or auto-encoders.  

Keywords—Deep Learning; Deep Neural Networks; Long-

Short-Term memory; LSTM, sentiment analysis. 

I. INTRODUCTION  

The idea that a concept is properly learned by an agent only 
when the agent is able to reproduce examples of it, is a 
mechanism that humans often use to evaluate their 
understanding of a particular concept. Further, it is used as a tool 
for improving their comprehension of the subject. As a concrete 
example, Frayer Models [1], [2] are often used as learning 
strategies in schools to evaluate the comprehension of a subject 
by asking the student to provide examples and non-examples of 
a specific concept.  

Example and non-example generation is naturally an 
interesting task that researchers on machine learning want to 
replicate in machines. Therefore, it has gained increased 
attention. Especially, after the introduction of the contrastive-
divergence algorithm [3], [4] for training Restricted Boltzmann 
Machines (RBM). RBMs are usually trained in an unsupervised 
way with the aim of providing a probabilistic model that has a 
high probability of generating samples similar to the ones used 
for training the model. 

Research on Deep Learning [5] has fueled the interest on the 
development of efficient generative probabilistic models of data 
that provide accurate probabilistic inferences and fast simulation 
sampling of fantasy data (generated data) from the inferred 
model [6].  

Generative models have proven to be an effective tool for 
improving the performance of deep neural networks 
architectures [7], [8], [9]. Unsupervised pre-training through 
RBM and auto-encoders provided the first tools for successfully 

training of deep architectures [7] and have been shown to act as 
regularizers [8] . Those methods also have been successful on 
for obtaining useful reusable features using unsupervised 
representation learning [9], which can be used to improve 
classification tasks. 

Furthermore, generating data from models provide a way of 
understanding how the model is behaving, and is an indication 
of what it has learned. Therefore, it provides a way to prove the 
model and visualize its internal structure [10]. It also is a tool for 
debugging the training process, allowing to identify why or why 
not is the model performing well. 

In this paper, an architecture for sequence generation and 
classification is presented. The objectives of the developed 
model are; 1) generating sequences for a given class and 2) given 
a sequence, predicting the class to which it belongs.  

Long Short Term Memory (LSTM) is a type of recurrent 
neural network that has become a benchmark model for 
sequence modeling, and have been extensively used by the 
Natural Language Processing community [11], [12], [13]. In 
addition, LSTMs have been successfully used for applications 
that include but not limited to energy load forecasting [14], 
visual attention models [15], handwriting generation [11], 
automatic caption generation from images [16], translation [12] 
and language modeling [11]. Their success is attributed to its 
capability of modeling long-range structures; thanks to the fact 
that they were designed specifically to alleviate the vanishing 
gradient problem [17].  

Given the success of LSTM networks as sequence models, 
the presented generation-classification architecture is composed 
of a set of LSTM models. Each model is trained for generating 
sequences belonging to a specific class. For classifying a given 
sequence, losses that correspond to the error committed by each 
network are used to predict the class of the sequence  

The presented LSTM based generation-classification 
architecture was implemented and tested on a sentiment analysis 
task. Previous LSTM models for sentiment analysis have also 
used a joint training between the language model and the 
classifier [13]. However, the main difference of the presented 
architecture is that it aims to obtain a separate model for each 
concept (each class) found in the dataset. The models are jointly 
trained to generate samples corresponding to its respective class 
and to identify to which class a given sample belongs. 
Furthermore, the study also explores the benefits that 
simultaneous generation-classification training methodology 
has on the classification performance. 



The presented architecture was tested on two datasets for 
sentiment analysis. The most interesting result found in the 
experiments was that, when the architecture is trained to jointly 
minimize classification error and generation loss, it achieves 
better performance on testing dataset rather than when the same 
architecture is trained only to minimize classification error. This 
suggests that simultaneous generation-classification training 
acts as a regularizer, providing models with better 
generalization.  

The rest of the paper is organized as follows. Section II 
provides a brief introduction of LSTM networks. Section III 
presents the proposed generation-classification architecture. 
Section IV shows the loss and specifics for the training of the 
architecture. Section V presents the results on the two datasets 
used for sentiment analysis. Section VI presents a discussion on 
the results and the pros/con of the architecture is presented. 
Section VII concludes the paper. 

II. LSTM MODEL 

This section provides an overview of the used LSTM model. 
The same LSTM model used in [11] is employed in this paper. 
The model for the cells is shown in Fig. 1.a. Eq. (1.a) through 
(1.f) express a single LSTM cell’s operation 

𝑖𝑔 = σ(𝑖[𝑡]𝑊𝑥𝑖 + ℎ[𝑡−1]𝑊ℎ𝑖 + 𝑥[𝑡−1]𝑊𝑐𝑖 + 𝑏𝑖) (1.a) 

𝑓𝑔 = σ(𝑖[𝑡]𝑊𝑥𝑓 + ℎ[𝑡−1]𝑊ℎ𝑓 + 𝑥[𝑡−1]𝑊𝑐𝑓 + 𝑏𝑓) (1.b) 

𝑧 = tanh(𝑖[𝑡]𝑊𝑥𝑐 + ℎ[𝑡−1]𝑊ℎ𝑐 + 𝑏𝑐) (1.c) 

𝑥[𝑡] = 𝑓𝑔 ∘ 𝑥[𝑡−1] + 𝑖𝑔 ∘ 𝑧 (1.d) 

𝑜𝑔 = σ(𝑖[𝑡]𝑊𝑥𝑜 + ℎ[𝑡−1]𝑊ℎ𝑜 + 𝑥[𝑡]𝑊𝑐𝑜 + 𝑏𝑜) (1.e) 

ℎ[𝑡] = 𝑜𝑔 ∘ tanh⁡(𝑥) (1.f) 

where ∘ denotes the element-wise product. 𝑖𝑔 corresponds to the 

input gate, 𝑓𝑔 to the forget gate and 𝑜𝑔 to the output gate. 𝑥[𝑡] is 
the value of the memory state at time step 𝑡, ℎ[𝑡] the output of 

the cell and 𝑧 is the update signal. 𝜎 is the sigmoid function. 
𝑊𝑐𝑖 ,𝑊𝑐𝑓 ,  and 𝑊𝑐𝑜  are diagonal matrices. For simplicity, all 

vectors are represented as row vectors.  

Fig. 1.b shows the LSTM multilayer architecture used in 
[11], with 𝐿 = 2  layers. This architecture is usually used in 

sequence modeling, where given a sequence of 𝑇 consecutive 

samples 𝑢[1:𝑇] = {𝑢[1], 𝑢[2], … , 𝑢[𝑇]}, we would like to predict 

the value of 𝑢 in the next time step (𝑢[𝑇+1]). For this purpose, 

the architecture on Fig .1.b uses a softmax function to map the 

activation value of the hidden layers {ℎ[𝑡]
𝑙 ⁡|⁡𝑙 = 1, … , 𝐿}, to a 

discrete probability distribution 𝑦[𝑡]: 

𝑦[𝑡] = Ψ([ℎ[𝑡]
1 … ℎ[𝑡]

𝐿 ]𝑊𝑦 + 𝑏𝑦) (2) 

where Ψ is the softmax function. 𝑦[𝑇] is therefore a model of the 

probability distribution of 𝑢[𝑇+1] given  𝑢[1:𝑇]: 

𝑦[𝑇] = 𝑃(𝑢[𝑇+1]|⁡𝑢[1:𝑇]) (3) 

For discrete inputs, usually 𝑢[𝑡]  is encoded as a one-hot 

encoding, which is represented by 𝑢̂[𝑡].  

 

    
 (a) (b)  

Fig. 1. (a) LSTM cell, (b) multilayer LSTM architecture 

 
Fig. 2. Sequence generation using LSTM network 



III. LSTM BASED SIMULTANEOUS GENERATION-

CLASSIFICATION MODEL 

This section elaborates the presented LSTM based 
simultaneous generation-classification model. 

Assume we have a set of sequences 𝑢, each belonging to a 
class 𝑐 ∈ 𝐶 , where 𝐶  is the set of possible classes (E.g. 𝐶 =
{positive, negative}  ). An architecture that aims to achieve 
simultaneous generation-classification of those sequences, 
should provide a model from where sequences for each class can 
be generated. I.e. it should provide a model for 

𝑃(𝑢[𝑇+1]|⁡𝑢[1:𝑇], 𝑐) . At the same time, given a sequence, 𝑢[1:𝑇], 
the model should be able to predict the class which the sequence 

belongs to. I.e. it should estimate 𝑃(𝐶|𝑢[1:𝑇]). 

The architecture depicted in Fig .1.b gives us a model for 
generating sequences [11]. One simple approach for generating 
a sequence 𝑢[1:𝑇] is to initialize the state 𝑥[0] and outputs of the 

hidden layers to zero (or a random value). The first value of the 
sequence 𝑢[1] is randomly initialized. Then, the calculation of 

𝑦[1] is performed by following Eq.1 . 𝑢[2] is sampled (generated) 

from 𝑦[1]  and used for obtaining 𝑦[2]  from where 𝑢[3]  can be 

sampled. Recursively using the outputs of the network as inputs 
for the next time steps, a sequence of arbitrary length can be 
generated. This procedure is illustrated in Fig. 2, where the 
dashed lines are used to represent the sampling of 𝑢[𝑡]  from 

𝑦[𝑡−1]. 

Given that the architecture of Fig .1.b can be used to generate 
sequences, we can have a set of networks, 𝑁𝑒𝑡 = {𝑁𝑐|⁡𝑐 ∈ 𝐶}, 
where each one of the network 𝑁𝑐 serves as a sequence model 
for each class 𝑐.  

Having the set of networks 𝑁𝑒𝑡 , the class of a given 
sequence 𝑢[1:𝑇] can be predicted by evaluating which 𝑁𝑐 better 

predicts the given sequence. This is the idea behind the 
presented generation-classification architecture.  

Eq. 4 gives the metric used in this paper to evaluate how well 
a network 𝑁𝑐 predicts the sequence 𝑢[1:𝑇].  

𝐸𝑐(𝑢[1:𝑇]) =
1

𝑇
∑𝐻(𝑁𝑐 . 𝑦[𝑡], 𝑢̂[𝑡+1])

𝑇

𝑡=1

 (4) 

where 𝑁𝑐 . 𝑦[𝑡]⁡  represents the distribution 𝑃(𝑢[𝑡+1]|𝑢[1:𝑇]) 
obtained using the network 𝑁𝑐. 𝑢̂[𝑡+1] is the one-hot encoding of 

𝑢[𝑡+1] , and 𝐻(𝑁𝑐. 𝑦[𝑡], 𝑢̂[𝑡+1])  is the cross-entropy between 

𝑃(𝑢[𝑡+1]|𝑢[1:𝑇]) and 𝑢̂[𝑡+1]. 

A model for 𝑃(𝐶|𝑢[1:𝑇])  can be constructed by evaluating 

𝐸𝑐(𝑢[1:𝑇])⁡  for all classes 𝑐 ∈ 𝐶 , using Eq. 4, and then 

introducing the values of 𝐸𝑐  into a softmax. This operation is 
expressed in Eq. 5 

𝑃(𝐶|𝑢[1:𝑇]) = Ψ([𝐸1 … 𝐸|𝐶|]𝑊𝑐 + 𝑏𝑐) (5) 

 
Fig. 3. Simultaneous generation-classification architecture  



where 𝐸𝑘  represents Eq. 4 evaluated for network 𝑁𝑘 , which 
corresponds to class 𝑘 and |𝐶| is the number of classes.  

Fig. 3. illustrates the proposed generation-classification 
architecture for a two class setting 𝐶 = {0,1} , where 0 
represents the “negative” class and 1 the “positive” class. 
Basically we have a network 𝑁1  that is trained to generate 
positive sequences and a network 𝑁0 which generates negative 
samples. It is important to note that, for the two-class setting, the 
softmax of Eq. 5 is replaced by a sigmoid function.  

IV. TRAINING OF THE SIMULTANEOUS GENERATION-

CLASSIFICATION MODEL 

This section details the training methodology used for the 
simultaneous generation-classification model.  

For training the generation-classification architecture, a 
multi-objective optimization problem which aims to jointly 
minimize the classification error together with the perplexity of 
the model, is formulated. 

The architecture is trained on a set of pairs (𝑢[1:𝑇], 𝑐), where 

𝑢[1:𝑇]  is a given sequence and 𝑐  is the class to which 𝑢[1:𝑇] 
belongs. The classification loss is defined as: 

𝐿𝑐(𝑢[1:𝑇], 𝑐) = 𝐻(𝑃(𝐶|𝑢[1:𝑇]), 𝑐̂⁡) (6) 

where 𝑐̂ is a one-hot encoding of class 𝑐. 

For sequence generation, each one of the networks 𝑁𝑐 ∈
𝑁𝑒𝑡 is desired to have a low prediction error (according to Eq. 
4) over sequences  𝑢[1:𝑇] that belong to their corresponding class 

c. Therefore, the following is the loss to reduce perplexity: 

𝐿𝑝(𝑢1:𝑇 , 𝑐) = 𝐸𝑐(𝑢[1:𝑇]) (7) 

We also would like to have high prediction errors when a 
network 𝑁𝑐  is evaluated under a sequence 𝑢[1:𝑇] that does not 

belong to its corresponding class. For this purpose, Eq. 4 is 
evaluated on a decreasing positive function that asymptotically 

converges to zero. In this case, we chose⁡exp (−𝐸𝑘(𝑢[1:𝑇])). 

The following is the loss that aims to maximize the prediction 
error for sequences that do not belong to the respective class of 
the network 𝑁𝑐 ∈ 𝑁𝑒𝑡: 

𝐿𝑐𝑝(𝑢[1:𝑇], 𝑐) = ∑{
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑘 = 𝑐

exp (−𝐸𝑘(𝑢[1:𝑇])) ,⁡⁡⁡⁡⁡⁡⁡⁡𝑜/𝑤
𝑘∈𝐶

 (8) 

Therefore, the objective function to be minimized is: 

𝐿 = ∑ 𝐿(𝑢1:𝑇 , 𝑐)

(𝑢[1:𝑇],𝑐)

 (9.a) 

𝐿(𝑢1:𝑇 , 𝑐) = 𝐿𝑐(𝑢[1:𝑇], 𝑐) + 𝛼𝐿𝑝(𝑢[1:𝑇], 𝑐)

+ 𝛽𝐿𝑐𝑝(𝑢[1:𝑇], 𝑐) 

(9.b) 

where 𝛼 and 𝛽 are hyperparameters that weight the contribution 
of each of the corresponding losses.  

Training was performed using Backpropagation through 
time [18] by unrolling 𝑇 times each one of the LSTM networks 
and minimizing Eq. 9. ADAM [19] algorithm was used as the 

gradient based optimizer. During the minimization process, 
gradient norm clipping [20] was used to alleviate the exploding 
gradient problem. To reduce overfitting problems, dropout [21] 
was introduced as a regularization scheme. The architecture was 
implemented using TensorFlow [22]

 
(a) 

 
(b) 

 
(c) 

Fig 4: Comparison of training and testing errors on a network trained to 

achieve: (a) low generation/classification errors (b) only low 

classification errors. (c) shows the testing error comparison between the 
two schemes. The error being shown is the percentage of misclassified 

sequences. These results correspond to the Twitter dataset 



(1)Code available at: github.com/MHRG-VCU   

 

 

V. EXPERIMENTS 

The generation-classification architecture was implemented 
and tested on a sentiment analysis task (1). Given a set of positive 
and negative reviews, the proposed architecture was trained to 
generate positive and negative reviews and classify a given 
review into positive or negative class.  

The architecture was tested on a dataset of tweets [24], and 
on the imdb movie review dataset [23]. The architecture shown 
in Fig.3 was used for both datasets given that both datasets were 
treated as binary classification problems. 

A. Twitter dataset results 

The Twitter dataset consisted of 5,137 tweets, divided on 
3,094 positive and 2,043 negative tweets. The dataset contained 
a total of 16939 characters [24]. 

For this dataset, the architecture was trained at character-
level, therefore 𝑢̂[𝑡]  is a one-hot encoding over a set of 

graphemes. Only lowercase characters in the English alphabet 
were considered, uppercase characters were converted to their 
corresponding lowercase grapheme.  

𝑃(𝐶|𝑢[1:𝑇]) was evaluated according to Eq. 10 instead of Eq. 

5, given that the tweets are classified only as positive and 
negative: 

𝑃(𝐶|𝑢[1:𝑇]) = 𝜎(𝐸0𝑤𝑐 − 𝐸1𝑤𝑐) (10) 

where 𝑤𝑐  is a positive scalar. Eq. 10 is basically just a soft 
threshold between the prediction errors of 𝑁0 and 𝑁1 

The dataset was divided 90% for training and 10% for 
testing, the training was performed using an unrolling of 100 
characters.  Using a network of two layers, with 50 neurons in 
each layer, the presented architecture achieved classification 
errors of 18% on testing and 6.2% on training, using early stop 
to prevent overfitting. Table I shows some of the sequences 
generated by this model.  

To evaluate the effects that the joint generation-classification 
training has on the classification performance of the 
architecture, the performance of a network trained using Eq. 9 
as the objective function was compared with the performance of 
the same network trained using only 𝐿𝑐 on Eq. 9 as the objective 
function. The idea behind the experiment was to evaluate how 
the performance of the network varied when trained for 
simultaneous generation-classification (Eq.9 which includes 

𝐿𝑐 , 𝐿𝑝, 𝐿𝑐𝑝 ) and when it is trained only for classification (i.e. 

using only 𝐿𝑐  as the objective). The architecture was kept the 
same for both scenarios to ensure that the capacity of the 
network is not changed. The network used for the experiment 

TABLE I. SAMPLES OF SENTENCES GENERATED BY THE NETWORK TRAINED 

USING THE TWITTER DATASET 
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(c) 

Fig 5: Comparison of training and testing errors on a network trained to 

achieve: (a) low generation-classification errors (b) only low 

classification errors. (c) shows the testing error comparison between the 
two schemes. The error being shown is the percentage of misclassified 

sequences. These results correspond to the imdb dataset 

http://www.github.com/MHRG-VCU


 

comprised of two layers, with 10 units in the first layer and 15 
units in the second layer. The results of the experiment are 
shown in Fig. 4, where the error (percentage of misclassified 
sequences) trough epochs is shown for both scenarios. 

The estimation of the classification error for training and 
testing set is noisy because of the mini-batch training procedure, 
therefore in Fig. 4 the error through epochs is shown together 
with an averaged version to improve analysis.  

Fig. 4 shows that for both objective functions, the 
architecture is able to achieve low training error. On the other 
hand, as seen in Fig. 4.c., using 𝐿𝑐 , 𝐿𝑝 and 𝐿𝑐𝑝 as the objective 

function gives better classification performance on testing data 
than using only 𝐿𝑐 . These experiments suggest that jointly 
training the network with the aim of achieving simultaneous 
generation-classification serves as a powerful regularization 
scheme, allowing the architecture to improve generalization.  

B. Imdb dataset 

The Imdb dataset is a movie review dataset, with reviews 
classified as positive or negative. It consists of 50,000 movie 
reviews, 25,000 positive and 25,000 negative [23]. Further, the 
dataset is divided 50%- for training and 50% for testing.  

This dataset is composed by 32,376,725 characters. Due to 
the size of this dataset, the architecture was trained in this case 
at word-level, therefore 𝑢̂[𝑡] is a one-hot encoding over a set of 

words in a dictionary. 

The dictionary is composed by the 3000 most frequent words 
that were found in the dataset. The word frequency was counted 
after a stemming process. When a word in a sentence is not 
found in the dictionary, it is ignored (eliminated) before being 
processed by the generation-classification architecture.  

The training dataset was divided 90% for training and 10% 
for validation, the training was performed using an unrolling of 
64 words.  Using a network of two layers, with 300 neurons in 
each layer, the presented architecture achieved classification 
errors of 18.5% on validation, 2% on training, and 20% on 
testing, using early stop to prevent overfitting. Table II shows 
some of the sequences generated by this model. Given that the 
training of the network was done using stem words, the 
generated sentences are composed by stem words. This is the 
reason of not having well-formed words for the generation.  

It is important to mention that given a sufficiently large 
network, the architecture can easily overfit the dataset achieving 

perfect classification on training dataset, although the 
performance in testing is significantly decreased. An overfitted 
model also generates sequences that make more sense, as shown 
in Table III. The overfitted network had perfect classification 
performance on training set, and an error of 26% on testing.  

The obtained results are slightly worse than reported in [13]. 
However, it has to be noted that a much simpler word encoding 
method was used in the presented work. Furthermore, the 
emphasis of the paper was to explore the design and benefits of 
generation-classification architectures, not on improving 
sentiment analysis classification.  Sentiment analysis was 
intended to serve as a benchmark for testing the architecture.  

The same tests performed on the Twitter dataset were 
performed on the imdb dataset to compare the classification 
accuracies with and without simultaneous generation-
classification training. The results are shown in Fig. 5. The 
model used for the experiments consisted of two LSTM layers, 
each with 100 units. The imdb dataset proved to be a more 
challenging task than the Twitter dataset. A plateau in the 
training process was found, as seen in Fig. 5.a.   

It was seen that the model could get almost perfect 
classification accuracy on training data using the simultaneous 
generation-classification training loss ( 𝐿𝑐 , 𝐿𝑝  and 𝐿𝑐𝑝 ). 

However, even when the error in training data was dramatically 
reduced, the error on testing dataset was not considerably 
reduced from the testing error that was achieved during the 
plateau. (Fig. 5.a).  

During the experiments, it was seen that the model trained 
without including the generation loss (only 𝐿𝑐), often plateaued. 
As a measure to improve the classification performance, the 
architecture of Fig. 3 was changed by bypassing the output 𝑦[1:𝑇] 
from the LSTM networks straight to the mean calculation, i.e. 
ignoring the cross-entropy term 𝐻. The results shown on Fig. 5 
used this modification. , By bypassing the cross entropy 
operation, the architecture was able to further reduce the training 
error, but as can be seen on Fig. 5. b., the generalization of the 
model is significantly reduced after the training error exits the 
plateau.. 

Comparing the testing error performance between the two 
settings, joint training for generation-classification still provides 
a better error on testing dataset, although the difference is not as 
substantial as in the Twitter dataset. Fig. 5.c. shows the 
comparison between the two approaches. Through the 
experiments, we noticed that using simultaneous generation-

TABLE II. SAMPLES OF SENTENCES GENERATED BY THE NETWORK TRAINED USING THE IMDB DATASET 
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classification training also lead to a more stable training. Fig. 5 
shows evidence for this observation. As can be seen, training 
without generation leads to a more “noisy” training (see Fig. 
5.b). Moreover, finding hyper-parameter values that result in 
stable training was more challenging than using the 
simultaneous generation-classification architecture.  

VI. DISCUSSION  

The conducted experiments showed that the presented 
simultaneous generation-classification architecture has several 
advantages. One major advantage of the presented architecture 
is that it provides a direct way for proving the model, which 
allows to understand and evaluate the performance of the 
network and how it is behaving. Another major advantage is 
that, as shown by the experimental results, the presented 
architecture enables using the generation procedure as a 
regularization technique for the optimization/training procedure. 
Furthermore, the presented architecture enables creating models 
for each concept (each class) in the form of networks, 𝑁𝑐 ∈ 𝑁𝑒𝑡. 

In addition to the advantages mentioned above, several 
drawbacks of the presented architecture were identified. One 
such drawback is that training of the “generative” model needing 
supervised data. Although a pre-training phase using 
unsupervised data could be introduced, the learning algorithm 
relies heavily on the premise that labeled data are available. 
Another drawback of the presented architecture is that since 
optimization problem is multi-objective, minimization of the 
objective function does not necessarily produce a reduction on 
the classification error. Furthermore, a major drawback of the 
system is that the number of hyper-parameters is increased. 
Therefore, the amount of parameters that needs to be tweaked 
increases, introducing variability in results depending on those 
values. 

VII. CONCLUSIONS  

This paper presented an initial version of an architecture for 
simultaneous generation and classification of sequences based 
on LSTMs. The presented architecture was implemented and 
tested on a sentiment analysis task with two different datasets. 
The experiments carried out on the two datasets revealed that the 
presented architecture had several advantages including the fact 
that the generation procedure can be used as a regularization 
technique for the classification. However, it was also noticed 
that the presented architecture had some drawbacks, which 
included the need of labeled data and the increased number of 
hyper-parameters. Several fronts of future work were identified. 

Since the presented architecture is an initial version, future work 
will be conducted to improve the classification capability and 
the generation capability of the architecture. In particular, 
different versions of loss functions will be experimented with. 
Further, the multi-objective optimization process needs to be 
enhanced to guarantee a stable reduction of generation and 
classification losses during optimization.  
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