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Abstract—In this paper, we propose an Interactive Learning
and Adaptation framework for Human-Robot Interaction in
a vocational setting. We show how Interactive Reinforcement
Learning (RL) techniques can be applied to such HRI applica-
tions in order to promote effective interaction. We present the
framework by showing two different use cases in a vocational
setting. In the first use case, the robot acts as a trainer, assisting
the user while the user is solving the Towers of Hanoi problem.
In the second use case, a robot and a human operator collaborate
towards solving a synergistic construction or assembly task. We
show how RL is used in the proposed framework and discuss its
effectiveness in the two different vocational use cases, the Robot
Assisted Training and the Human-Robot Collaboration case.

I. INTRODUCTION

In the past few years, intelligent and autonomous robotic
systems have been applied to vocational and manufacturing
environments with a variety of applications, ranging from
identifying training needs to risk prevention. Some of these
robotic systems are fully-automated and placed in restricted
area without interacting with humans for safety concerns.
Nowadays, it became very essential to have humans and robots
collaborate and work side by side, and this can be seen in
vocational education, training and rehabilitation [1], [2], as
well as in human-robot collaboration applications [3]. The
development of such automated systems requires computa-
tionally advanced intelligent mechanisms in order to ensure
safe and efficient interaction between the robotic system and
the involved human worker, as the environment may involve
heavy machinery [4], [5].

We can observe two main contributions of intelligent robotic
systems in a vocational setting; (1) Robot-Based Vocational
Training and (2) Human-Robot Collaboration. In the first
case, robotic systems are deployed to train human workers
in specific task, in a physical or simulated vocational setting,
in order to enhance their abilities and thus their performance
[6]. On the other hand, as more industrial robotic systems
are being developed to operate and collaborate with human
workers in the same physical space, there is increased need to
advance technologies that enable safe, effective and efficient
human-robot teamwork.

The deployment of robotic systems, either as robotic trainers
or as teammates, raises the need of development of com-
putational advancements. In particular, an important attribute
of such robotic systems, is the development of agents that

have behavior adaptability in enabling properties such as
user modeling and user intention prediction, task planning,
scene understanding, as well as understanding and adjusting
to the abilities and preferences of the human user [7]. An
important attribute of such robotic agents is the adaptability
of their behavior towards the goal, as well as the abilities
and preferences of the human user. Recent works discuss the
aspect of co-adaptation in Human-Machine interaction [8],
[9], referring to the process of adjustment of both the machine
and the human operator during the interaction, considering
both goal-oriented and human-centered approaches [10]. In
this paper we consider the concept of ”co-adaptation” between
a human operator and a machine interface and we formulate
its application in the context of the two different scenarios
mentioned earlier, the robot as a trainer and the robot as a
team member.

In the first case of the Robot Assisted Training (RAT)
systems, the robotic trainer must be able to adapt the training
session to each specific user, in order to enhance specific and
personalized attributes of each specific worker. In the second
case, when a robot is employed as a team member, the robotic
agent should be able to adjust its behavior towards the different
set of abilities and preferences and the personalized style of
each human member in the team. In both cases, the robot
should also adjust its behavior according to the evolution of
human skills and performance.

Considering the above, a dynamic adaptation mechanism
is required to continuously adapt and adjust the robots pol-
icy towards each specific user’s needs and abilities. In this
paper, we present a unified computational framework that
focuses on the adaptation mechanism of such robotic assistants
under both aforementioned vocational settings. The paper is
organized as follows: in Section II, we discuss our approach
and methodology for modeling the robots behavior during the
interaction with a human worker. In Section III, we present
our proposed framework and its application to the different
vocational settings. In Section IV, we present our use cases,
illustrating our framework and we conclude, in Section V,
presenting our future work.

II. APPROACH AND METHODOLOGY

As already mentioned, we focus on two applications of
robotic assistants in a vocational setting; Robot Assisted



Training and Human-Robot Collaboration. In both settings, the
robot must be able to perceive and act based on its environment
(task and human), adapting to environmental changes in order
to ensure a safe and effective interaction. It is essential that
these robotic agents follow a computational mechanism to
encode how human users act towards the completion of a
certain task.

To this end, we adopt the approach of Shared Mental Models
as a computational model that captures the knowledge about
the robot itself, the human user and task than needs to be
performed. In [11], they represent the robot mental model as
a Markov Decision Process (MDP). In the following sections,
we present a basic introduction about MDP, as well as how
we represent the mental models for the two use cases.

A. Markov Decision Processes

An MDP is described by a tuple < S, A, T, R > where:
• S is a finite set of states - state space
• A is the finite set of available actions – action space
• T is the transition model where T(s, a, s) denotes the

probability of moving from state s to state s by perform-
ing action a

• R(s, a) is a reward function that gives a numerical reward
of going to state s performing action a

The solution of an MDP results to an optimal policy. An
optimal policy π is the mapping from states to actions that
maximizes the total expected reward the agent receives, as it
interacts with its environment. In order to solve an MDP, we
follow the Reinforcement Learning framework [12].

However, finding an optimal policy often requires a large
number of iterations, making it inappropriate for a real-time
HRI application. Moreover, an optimal policy is learned based
on specific environmental parameters and not to a dynamic
environment, as when a human user is involved in the inter-
action. In our case, the environment is described by the task
and the human user’s abilities, preferences and intentions. As
we already mentioned, an effective robotic assistant should
be able to refine its policy based on each specific user, in
order to adapt to the different user’s set of abilities and skills.
Taking these into consideration, we propose an Interactive
Learning and Adaptation Framework [13], [14], that utilizes
Interactive Reinforcement Learning methods to facilitate the
safe adaptation of an agent to a different user.

III. INTERACTIVE LEARNING AND ADAPTATION
FRAMEWORK

In this section, we present an interactive learning and
adaptation framework that integrates Interactive Reinforce-
ment Learning approaches to the adaptation mechanism. In-
teractive Reinforcement Learning (IRL) is a variation of RL
that studies how a human can be included in the agent
learning process. Human input can be either in the form
of feedback or guidance. Learning from Feedback treats the
human input as a reinforcement signal after the executed
action [15], [16]. Learning from Guidance allows human
intervention to the selected action before execution, proposing

1: procedure INTERACTIVE POLICY ADAPTATION(π,B)
2: s = start state
3: N = 0
4: while s 6= goal state do
5: Select action a based on s, π
6: if guidance:
7: if a 6= guidance and N ≤ B
8: a = guidance
9: N = N + 1

10: observe user action, next state s′ and reward r
11: Q(s, a) += α · (r + γmaxaQ(s′, a)−Q(s, a))
12: if feedback:
13: Q(s, a) = Q(s, a) + β · feedback
14: Record [s, a, s′, r, feedback, guidance]
15: s = s′

16: end while
17: end procedure

Fig. 1. Interactive Policy Adaptation with Q-learning

(corrective) actions [17]. To our knowledge, IRL methods
have not been investigated for the adaptation of an agent to
a new environment. Hence, we propose their integration to
the adaptation mechanism, as policy evaluation metrics used
to evaluate and modify a learned policy towards an optimal
one, following proper transfer methods [18], [19]. Moreover,
Learning from Demonstration, another IRL approach which
studies how robots can learn a policy from observed or
given example state-to-action mappings, can be applied to
this framework, to provide the robot with prior knowledge
about the task. A comprehensive survey of robot learning from
demonstration can be found in [20]. In Figure 1, we present
the algorithm for the proposed framework.

The algorithm is a variation of Q-learning [21], modified
for the interactive adaptation of a learned policy. We extend
the algorithm by adding the two additional communication
channels; feedback and guidance. During the interaction, the
agent chooses an action a based on its current state s and its
learned policy π (Line 5). This action can be modified (Lines
6–9) following the teaching on a budget approach [22]. Based
on this approach, the user can provide a limited amount of
guidance (B), when needed, correcting the selected action.
After the Q-value update, feedback provided by the user can
be used to modify the policy, following the Q-augmentation
combination technique (Line 13) [15]. After each interaction
step, the algorithm records the interaction data (Line 14), that
can be used for a model-based approach. In the next sections,
we show how this interactive policy adaptation algorithm
applies to the different settings.

1) Robot Assisted Training: In a Robot Assisted Training
(RAT) task, a robot acts as a human trainer. Robot Assisted
Training has been extensively applied to assist users during
cognitive and physical tasks, aiming to enhance certain user
abilities in a vocational setting [23], [24]. The robot must be
able to perceive the user’s state, providing them a personalized



training session based on the specific set of abilities and skills.
It is shown that personalized training is more effective than a
generalized, maximizing user’s performance and engagement.

In Figure 2, we outline our proposed framework in a RAT
application, where a human user interacts with a robot during
a training (physical or cognitive) task. In that case, the robot
mental model captures all the required information to represent
the task and user progress, formulating its state space S. Each
state includes important task and user information (e.g., task
difficulty, task duration, user performance, etc.), based on
which it performs an appropriate action (e.g., task difficulty,
hint type, encouragement, etc.). The transition model captures
how the human user reacts under different robot actions. The
optimal policy, the one that will maximize the expected total
reward, will result to a personalized training session that will
eventually assist the user to train specific skills and abilities.

Fig. 2. Outline of the proposed framework in a Robot-Assisted Training
task. We extend the RL framework by adding two additional communication
channels; feedback and guidance. Their integration to the adaptation module
can enable the agent to continuously adapt towards the current user, ensuring
a safe and personalized interaction.

Interactive learning methods (learning from feedback and
guidance) are integrated to the learning mechanism, facilitating
the policy adaptation of the robotic agent to the current user.
Feedback is considered to be a personalization factor, as it is
provided implicitly by the primary user (trainee), in the form of
facial expressions, speech, haptic or visual feedback, etc. User
feedback is task-related and provides the agent with useful
information about its current policy. To ensure an effective
and safe training session, a secondary user (human trainer)
can guide the early interaction steps, providing the system with
suggested or corrective actions [22], [25]. In our preliminary
results [13], we have shown that the integration of interactive
learning methods facilitated the adaptation of a learned policy
to a new user.

2) Human-Robot Collaboration: In a Human-Robot col-
laboration task, human users and robot are considered to
work together towards a common task. Under this case, the
robot should be able to recognize user’s intentions, skills
and coordinate with human workers in order to perform a

task, in a synergistic manner. In order to achieve such a
coordination, the robot is required to develop, maintain and
keep track of the team’s participants mental models including,
among others, team member roles, intentions, intended goals,
performed actions and so forth.

In a synergistic task, such models are mostly referred as
shared mental models [26], [11], representing the knowledge
of an individual (human or robot) about how team members
should coordinate towards a common goal. This requires the
ability of a robot to adapt to each different teammate, in terms
of preferences, skills and intentions. A robot that works with
a person according to another user’s preferences and skills
is highly likely to be ineffective. Moreover, even the same
person’s intentions and abilities are subject to change over
time, or even within the task, as human skills, preferences
and performance may evolve (co-adaptation). Based on these,
we argue that an online adaptation mechanism is needed, to
enable the robotic team member to continuously adapt to the
current member’s expertise and preferences. In Figure 3, we
illustrate our proposed framework in a synergistic task.

Fig. 3. Illustration of the proposed framework in a human-robot collaboration
task. The robot can learn an initial policy by observing two or more user during
a collaborative task. Feedback from the primary user is used to dynamically
adjust the learned policy towards the needs and abilities of the current user.
Moreover, a human trainer can dynamically define a training protocol by
providing guidance directly to the system.

An initial policy can be learned by (or provided to) the
robot from observed or demonstrated examples between two or
more human workers. This enables the robot to acquire prior
knowledge of the task and the human selection mechanism
during a collaborative task. This initial policy needs to be
refined as the robot collaborates with a new worker to meet the
specific individual set of abilities and work plan. Even if the
robot is used to substitute a member of a known team (from
the observed team), a refinement of the model is needed to
ensure a safe and efficient coordination. IRL methods can be
applied to enable the human team member(s) provide the robot
with feedback (after a robot selected action) or with guidance
(prior to robot action execution).



IV. USE CASES

In this section, we present two use cases, covering the
aforementioned scenarios and the application of the proposed
framework for each one.

A. Robot-Assisted Training: The Tower of Hanoi task

In this section, we illustrate our proposed framework with
a use case in Robot Assisted Training. We follow a specific
scenario, where the user is asked to perform the ’Tower of
Hanoi’ task1. The Tower of Hanoi has been used in many
studies to determine the user planning and problem solving
abilities [27], [28]. Similarly, in this framework, we use
it to identify, appraise and evaluate an individuals level of
functioning for employment decision making in industries and
to test their problem solving skills. A NAO robot is employed
to assist the user by providing hints, when needed, as shown
in the experimental setup in Figure 4.

Fig. 4. The experimental setup for the ’Towers of Hanoi’ training session.
The NAO robot provides hints to the user during the interaction. A secondary
user is able to control the robot’s action selection mechanism (learning from
guidance). We plan to measure user’s engagement and integrate it as feedback
to the learning mechanism (learning from feedback).

We follow the approach of an adaptive Socially Assistive
Robotic (SAR) system ([29], [30]), where the robot follows a
personalized strategy for each individual. Each trainee has to
complete the task within a predefined amount of time. After
the end of the session, the user receives a score which is a
function of the number of movements, and the elapsed time,
and the number of errors (rules violations)/extra steps. The
user’s goal is to maximize their score during each session
by finishing the task in a shorter time while making less
errors and steps. The state space includes the user’s last move
(correct, wrong), task completion (yes or no), the elapsed

1https://en.wikipedia.org/wiki/Tower of Hanoi

time (in time units). Based on this information, the robot must
learn when to provide the user with a hint. The robot can
follow three different training strategies:

1) No hint,
2) Inform the user if the last move was correct or not
3) Provide the user with the correct action to perform
The core RL agent will receive a positive reward under

a successful task completion, relative to the user’s score.
Individuals of different abilities and task expertise require
different strategies, so as to maximize their score and their
engagement to the task.

In the initial development stage, we have implemented a
simple and robust vision-based algorithm that can track user
movements during the task. This algorithm analyses the Hue-
Saturation-Value (HSV) color space of the input video from an
external web-cam facing the Tower of Hanoi. The algorithm
determines the position of each ring and detects whether the
user is interacting with the system. Based on the current
position of the rings, the process provides the trainer (human
and robot) with real-time feedback whether the previous move
was correct and finds the best next movement.

Apart from the objective user’s performance (game perfor-
mance), we propose to measure psychological data to estimate
user’s engagement during the task. Psychological data may
be very essential in monitoring users state to optimize their
performance [31]. Therefore, to make the interaction between
the robot (trainer) and the user (trainee) more adaptive, we
propose adding a Brain-Computer Interface (BCI) that can
provide the user’s engagement as implicit feedback to the
adaptation mechanism. In our previous work [32], we have
developed a method for evaluating user engaged enjoyment,
using a commercially available EEG tool (Muse2). Our method
is able to measure brain activities, reflecting user enjoyment
in a given task, which allows for task comparison, in terms of
enjoyment. This mental feedback is essential to assist the robot
to refine its policy to follow when the user (trainee) makes a
mistake or takes a longer time to perform a single move. Task
engagement can be derived from the MUSE EEG output as
a function of the alpha, beta and theta bands [33]. We define
the task engagement levels as three states: bored, engaged and
stressed. This implicit user feedback can be exploited as a
policy evaluation metric, considering the correlation between
task difficulty and user expertise [34], [35]. For example,
if an expert user is continuously provided with hints, their
engagement may decrease. The received feedback will help
the system refine this non-optimal policy and adapt it to the
specific user. In order to ensure more reliable readings, we will
follow self-calibrating methods to enhance the sensor output
data fidelity [36].

On the other hand, in order to facilitate the policy adaptation
and the effectiveness of the training session, our framework
supports the participation of a secondary user, who observes
the interaction and is able to control the action selection mech-
anism by intervening with corrective or suggesting alternate

2http://www.choosemuse.com



actions, until the robot acts effectively in an autonomous way.
Feedback and guidance can be used as an adaptation parame-
ters following the algorithm showed in Figure 1. Considering
the form and the amount of guidance, we investigate methods
that enhance expert’s decision making, while minimizing their
workload, by making the learning process transparent [37],
[17].

B. Human-Robot Collaboration: Lego Construction task

Human-robot coordination is considered a challenging task,
in terms of safety and efficiency, especially when human and
robot need to cooperate in the same physical space [38].
Moreover, collaborative robots need to act in a contextually-
rich environment, dealing with various objects during the syn-
ergistic task [39]. In this work, we focus on the collaborative
task modeling, to enable the robot adapt to the different set of
preferences and abilities of each human coworker, following
our proposed framework.

In our use case for a collaborative task, a robot and a
human need to work together to assemble a specific LEGO R©

construction (Figure. 5) using the available parts; red and blue
parts and screws (white parts). The role of both teammates
(human and robot) is interchangeable, i.e. they both have the
same set of available actions. The challenge in such a task
is to enable the robot learn a personalized strategy according
to each teammate. Moreover, the robot can learn a training
strategy, by altering its policy, to train the human user how to
perform the task in different ways, or under a task-switching
[40] or cross-training environment [11].

Fig. 5. Lego assembly task simulation using the Oculus Rift and a custom 3D
structural game. In the left image, we show the virtual environment, where
the user and the robot perform an assembly task. In the right photo, we show
the final construction – the goal state.

For example, one worker prefers placing the blue parts first,
then assign to the robot to place (drill) the screws and then
the human places the red parts. In a different case, a worker
may need the robot to hold a specific part as they place a
screw, or another part. Consequently, there is a variety of
policies that the robot can learn and apply. We argue that
our framework enables the robot to update its current policy
towards each specific user in an online fashion, since each
user provides the robot with direct feedback and guidance
during the interaction that matches their working profile. The
policy is updated following the proposed algorithm (Figure 1).
Feedback and guidance can be provided to the robot, in real
time, via predefined speech commands.

The action space includes the available actions (by both
human and robot) defined by the tuple [action, object], where
action = [place, pick, drill] and object = [red, blue, white].
Moreover, no action is included. The state space includes
information about the task completion (yes or no) and the cur-
rent human action e.g., [places, red]. The core RL algorithm
will receive a positive reward for the task completion. Based
on the state and its current policy, the robot performs an action.
The human trainee performs and the user can either guide
the robot (by suggesting an alternate action) or by providing
feedback (positive or negative) for the executed action. In the
case of human training in a collaborative task, an expert human
trainer can define their own training strategies and goals by
altering robot’s policy through guidance.

Our initial experimental setup (before the physical experi-
ments) is on a simulation environment. To capture the users’
hand, we are using the Kinect’s skeleton tracker and the
Leap Motion’s fingers tracking module. Also we are using the
Barrett WAM Arm manipulator because of its backdrivability
and its high sensitivity features. Finally, we employ the Oculus
Rift and a custom 3D structural game at the Unity platform
to boost the user’s immersion for these simulated cases.

V. CONCLUSION AND FUTURE WORK

In this work, we outlined an Interactive Learning and Adap-
tation framework that facilitates the adaptation of a robotic
agent towards the current user, in a Robot-Based vocational
training and collaboration setting. We discussed the need of an
online adaptation mechanism and we illustrated our framework
in two use cases, covering different applications in a vocational
setting.

Our future work includes data collection from users in-
teracting with the two presented applications, under the
proposed framework. These data will be used to develop
user models for further investigation and improvement of
the presented algorithm, in the form of interaction data
([s, a, s′, r, feedback, guidance]). For the Tower of Hanoi,
these data include physiological data from the MUSE sensor,
the guidance from the secondary user, given the current state,
as well as visual data from the webcam that estimate the
current state of the task and the action to be taken. During the
assembly task, our data collection plan includes acquisition of
the state-action trajectories, as well as the provided feedback
and guidance in the form of simple voice commands, that will
be used for the RL policy evaluation. Moreover, user studies
will be conducted on both use cases, to receive evaluative
feedback for both the proposed framework and the user
experience during the interaction.

In this ongoing work, we investigate different techniques of
how feedback and guidance can be integrated to the adaptation
mechanism. We will compare our results with other exist-
ing frameworks [25], [29], [11], aiming to minimize human
workload as the agent learns. We are conducting user studies,
following these use cases, to investigate how human users
provide an interactive agent with feedback and guidance and
we will refine both our framework and the use cases. The



long-term goal of this research is to develop progressively-
autonomous systems that learn as long as they interact with
real users, maximizing their efficiency and effectiveness in
vocational settings.

ACKNOWLEDGMENT

This material is based upon work supported by NSF under
award numbers CNS 1338118, 1035913. The authors would
like to acknowledge the work of the following REU and Ph.D.
students on the use cases: Ashwin Ramesh Babu, Akilesh
Rajavenkatanarayanan, Joseph Tompkins and Dylan Ebert.

REFERENCES

[1] J. L. Schuyler and R. M. Mahoney, “Assessing human-robotic perfor-
mance for vocational placement,” IEEE Transactions on Rehabilitation
Engineering, vol. 8, no. 3, pp. 394–404, 2000.
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