An Evolution-Driven
Analog Circuit Topology Synthesis

Ziga Rojec
Faculty of Electrical Engineering
University of Ljubljana
Ljubljana, Slovenia
Email: ziga.rojec @fe.uni-lj.si

Abstract—A design of an analog circuit is often a time con-
suming, iterative procedure, which strongly depends on designer’s
knowledge and experience. A designer is facing tough require-
ments for designing within a time budget and consuming as few
resources (both human and material) as possible. We designed a
system that can assist and speed-up a design process. Based on
a high-level statement describing the circuit functionality, the
system evolves both a topology and parameters using a bio-
inspired evolutionary algorithm. Each circuit within a population
is coded as a multidimensional chromosome. Proof of concept is
given by a fully-automatic evolution of a 1 KHz low-pass passive
filter.

I. INTRODUCTION

A design of an analog circuit is roughly a three-step proce-
dure (Fig. 1) [1]. Initially, a designer collects the information
about the detailed specifications on the behavior of the final
circuit and eventual physical constraints and limitations given
by either the customer or technology. Next, the designer
chooses a suitable topology that previously performed well
for a similar task. Solution of this step is highly dependable
on designer’s knowledge and expertise. The final step is
most often a parameter tuning; in order to meet all the
desired specifications, the designer has to adjust resistances,
capacitances, transistor gate widths and lengths, and the like.
Often a parameter tuning does not give satisfactory results
already in the first trial, so a jump back to the second step (i.e.,
modifying the topology) is required. The whole design process
is an intensive, time-consuming, and iterative procedure, which
is why computer assistance and automatization of the process
is desired. A suitable computer system could help a designer
not only to speed up the whole process but even to get novel
design ideas.

The problem of parameter tuning has been studied quite
extensively (e.g., [2]-[6]), which has produced many efficient
and practically applicable methods for automatic parameter
optimization. A practitioner can choose between a number of
existent algorithms such as simulated annealing, differential
evolution, genetic algorithm, particle swarm optimization or
various hybrid methods, to name just a few.

Similarly—in order to further reduce the time and human
resources needed for a design process—the problem of circuit
topology synthesis has also been broadly investigated. As a
result, several design approaches have been proposed. With
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Fig. 1: A three-step design process scheme.

IDAC [7], OASYS [8] and OPASYN [9], the synthesis is
based on random selection of topologies from a predifined
library. In DARWIN [10], the circuit evolution uses a genetic
algorithm, which can choose between 24 predefined circuits.
Another system that is capable of evolving analog circuits
within predefined high-level topology is MOJITO [13], which
performs a search using genetic programming. All mentioned
approaches feature a rather limited search space, except for
the last one, which is searching over more than 100000 of
possible topologies. On the other hand, Koza’s WYWIWYG
[11] concept offers a search space comprising billions of
possible topologies. While using a genetic programming tech-
nique to evolve a circuit topology, each individual within a
population is represented by a computer program described
by a sophisticated tree-like syntax. However, besides its undue
complexity, there is another disadvantage of Koza’s circuit
representation technique, which is the occurrence of a pro-
gram bloat [17], a well known phenomenon in the genetic
programming community. The result of the bloat are circuits
whose sizes become enormous during the automatic synthesis.
Another approach to automatic circuit design is the Cartesian
Genetic Programming, invented by J. F. Miller [14]. The
approach was proven successful on digital circuit design and
is as well immune to bloat. However, CGP encodes a directed
graph representation, which is more natural to digital circuits
but less to analog ones.

In this paper we propose a novel evolutionary algorithm
for automatic circuit topology synthesis augmented with auto-
matic parameter optimization, which is run occasionally during



the evolution process. In Section II we introduce a specialized
analog circuit representation in a form of a two-dimensional
matrix, which is simple to define and allows both usage of pre-
defined sub-circuits as well as individual electrical elements.
Unlike the Koza’s tree-like representation, our representation
is more natural to the circuit topology and also limits the
maximum possible size of the circuit thus preventing the bloat.
Although the maximum size of the circuit is limited, our search
space is still enormous. For example, having eight two-pole
elements results in 1.65 x 10'° possible topologies. Using
the proposed two-dimensional circuit representation, we then
develop a two-dimensional genetic algorithm to effectively
search over the space of all possible topologies, which is
described in Section III. Finally, in Section IV, we show
an example of evolving an analog, passive low-pass filter,
demonstrating that our approach can evolve a simple circuit
on a personal computer within a matter of minutes.

II. ANALOG CIRCUIT REPRESENTATION

In order to be able to automatically modify the circuit
topology, we need to be able to represent this topology in
the most appropriate way. Having evolutionary terminology
in mind, we call such representation a circuit’s chromosome
(a.k.a. genotype). Changing a genotype usually results in a
modified circuit with a possibly different behavior (also called
a phenotype). Moreover, the circuit representation has to be
such as to enable an easy exchange of the genetic material
using appropriate genetic operators.

A. Connection matrix

For the purposes of our work, we represent a circuit in
a form of a logical connection matrix. Individual discrete
elements are placed in a row, where every element pin is
represented by a column of the matrix (see Fig. 2). Each one
in the matrix represents a connection to another element pin.
Note that the corresponding matrix has an upper-triangular
form with all the diagonal elements set to one because, by
definition, each pin is connected to itself. The matrix is divided
in two segments: the left one defines connections between
the elements while the right one connects the circuit to the
outer world (e.g., Vin, Vour, and GND, as seen in Fig. 2). Each
element can have two or more connection pins, which makes it
possible for each element to be either a simple discrete element
or an arbitrary complex sub-circuit, as previously proposed in
[18]. Using this setting, one can modify the circuit topology
simply by changing the positions of ones in a connection
matrix (see 4a). Note that it is not necessary that all the
elements within the matrix are actually used in the final circuit.
One can simply take out elements by disconnecting their pins
or even short-circuiting unused pins as seen in Fig. 3.

B. Value vector

Each element is also defined by one or more parameters
such as a resistance, capacitance, or the transistor gate width
and length. We represent these as components of a so-called
value vector (see Fig. 3), which are placed in the same order
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Fig. 2: An example of a matrix representation of a simple T-
circuit with the corresponding connection matrix (left), the
schematic of the corresponding circuit (top right), and a
generalization of the technique (bottom right).
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Fig. 3: A full circuit chromosome (the Connection matrix
and Value vector of a Sallen-Key low-pass filter. The arrows
are pointing to the excluded elements (right) and to their
representations in the chromosome (left).

as are the corresponding elements in the connection matrix.
Modifying the values of a value vector of a given topology
in order to achieve the best results is equivalent to circuit
parameter optimization.

III. SYNTHESIS ALGORITHM

As in any evolutionary algorithm, we start the process by
creating an initial population of randomly created individuals.
After the initial population has been evaluated and sorted by
their fitness values, we select the best individuals for creating
offspring. Using various reproduction techniques (see below),
we get new individuals (see Fig. 5).

An offspring is generated through two main reproduction
mechanisms—crossover and mutation. Based on given mat-
ing probability (mating_prob), the two chosen individuals
exchange genes either of connection matrix or value vector.
Which of those two events will occur is statistically defined
by the parameter topologyChange_prob. Moreover, when
changing a connection matrix (either in mating or mutation),
innerConnsChange_prob will define whether a reproduc-
tion mechanism will work on left of right part of connec-
tion matrix (recall Fig. 2). Mutation probability is always
1 — mating_prob. Also when mutating, two individuals are
chosen and two children are created, each of the two is a
mutation of its parent.
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(a) The position of the capacitor C; is changed after moving a
connection in a matrix.
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(b) An inclusion of the previously hidden resistor R3 into the
evolving circuit.
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Fig. 4: Two cases of possible topology changes caused by
a chromosome modification for the Sallen-Key low-pas filter
example.
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Fig. 5: An evolutionary algorithm flow chart with the listings
of the input parameters.

It can happen that after the reproduction phase we get
some identical individuals. Experiments have shown, having
duplicates in a population slows-down the convergence sig-
nificantly. Because we want to maintain the population as
diverse as possible, we remove all the duplicates at the end
of each iteration. We search the population for duplicates by
comparing hash values of the population members. In order to
maintain a fixed population size, we add randomly generated
new individuals to replace the removed ones. After a new
population has been completed, we evaluate the unevaluated
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Fig. 6: Mating possibilities.
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Fig. 7: Possible mutations of Parent 1.

individuals, choose the best ones and repeat the reproduction
step.

After every generation, we check whether the stopping
criterion of the procedure is reached. If at least one of
the individuals meets all the specifications or the number
of generations exceeds the specified maximum, we stop the
algorithm.

A. Crossover and mutation

Because the circuit topology is represented by a two-
dimensional chromosome, we need two-dimensional genetic
operators similar to those previously proposed for two-
dimensional genetic algorithms [19], [20]. In this section we
present some solutions that yielded good results when used
with our circuit representation.

1) Connection matrix: Two parents can exchange genetic
material by exchanging parts of their connection matrices (see
Fig. 6). One of the simplest solutions is to exchange rows
of two logical matrices (lineCrossover). Note that we only
exchange parts of matrices where the inner connections are
defined while the connections to the outside of the circuit
stay intact. A second alternative is to exchange parts of matri-
ces with multiple inner-connections (horizontalCutCrossover).
The third approach is to use pinWiseCrossover, which ex-
changes every connection to one element pin. Mutating an
individual is easier. Plausible possibilities are adding a connec-
tion, removing a connection, and moving a random connection
as shown in Fig. 7.

2) Value vector: A crossover of value vectors is carried
out through some well-known crossover techniques such as
one-point, two-point, or interpolation crossover [21]. We can
mutate a value vector by simply choosing a random gene and
set it to a random value (within predefined margins).



B. Cost function

In order to evaluate individuals and compare them between
each other we propose a cost function that returns a higher
value for circuits that behave bad, and returns a lower value
for circuits that work better. During the evolution, a circuit
topology may be changed in such a manner that it becomes
useless (e.g., if there is a short-circuit between any of the
outer-connections of the circuit). A cost function must penalize
such an event, since it does not work beneficially for the
genetic pool. Similarly, a cost function has to penalize failed
measurements when circuit evaluation fails or returns a non-
physical value (e.g., an infinite gain). If no forbidden short-
circuits are found and all the measurements are successfully
evaluated, then a circuit score S is calculated. Usually one of
the requirements is to evolve the cheapest working solution.
In case of circuits, designing a topology with less elements
is desired. That is why we add a small punishment to the
score, which depends on the number of the used elements. As
a result, the evolution algorithm will tend to produce solutions
with less elements. In summary, this is how our cost function
looks:

Wy % eNse ,ifNge >0
C = { Wy x eNsait yifNpqit >0 (1)
Wik (S + Netm ¥ S*1%) ,if Neym > 0,

where the numbers Ny, Nyqi1, Neim represent the number of
short circuits in outer connections, number of failed measure-
ments, and the number of used elements, respectively. Since a
short circuit is a greater failure than a failed measurement,
and both are a lot worse than a fully operational circuit,
a clear distinction between these is necessary. That is why
we chose the values of the weights in our experiment to be
W3 >> Wy >> W, in particular, we selected W5 = 104,
Wy = 103, and Wy = 1.

C. Selection

We select individuals to participate in reproduction using
tournaments (TOURNAMENT_SIZE). Every individual gets
a pair among others from the mating pool. We also define the
size of the elite (ELITE_SIZE), which is automatically taken
from the previous generation and copied into the next one. In
every generation there is also a part of random individuals de-
fined by RANDOMS_SIZE that improve population diversity.

D. Local minimum detection

Global search algorithms often get stuck in a local mini-
mum. We can infer that this has happened from the observation
that the cost function value remains relatively high across
several generations. Should this happen, we trigger a parameter
optimization on several best individuals using the PSADE
hybrid optimization method [2].

IV. SYNTHESIS EXAMPLE

In this section we describe an example of a circuit evolution
using a case of an analog, passive low-pass filter with the
cutoff frequency of 1 kHz, a signal damping of more than

TABLE I: The input parameters for a low-pass filter evolution.

NofRs 3
NofCs 3
NofLs 3
NofOPAMPs 0
POP_SIZE | 200

ELITE_SIZE 4
RANDOMS_SIZE | 40

TOURNAMENT_SIZE 3
mating_prob | 0.4

topologyChange_prob | 0.6

innerConnsChange_prob | 0.5

TABLE II: The upper and lower bounds for the parameter
values.

Ry, Ra, R3  C1,C2,C3 Ly, Lo, L3
Lower 1092 2.5nF 2.5uH
Upper 500k€2 2.8uF 2.8mH

20 dB, a 0 dB gain and ripple of less than 0.5 dB. The used
input parameters are listed in Table 1. The lower and upper
bounds of the parameter values are presented in Table II. The
goal of the algorithm is to construct the filter using at most
nine discrete passive elements: three resistors, three capacitors,
and three inductors. The pinWiseCrossover method was used
for a crossover, while for a mutation, one of the add-, remove-,
and moveNode methods was randomly chosen using a uniform
selection probability.

A. Score function

In order to evaluate the performance of each working filter,
we measured three parameters: ripple, gain and damping. The
score function was computed as:

S = wy x ripple + ws x damping + ws * gain, 2)

where w; = 10, we = 10, and ws = 1. The weights
were chosen empirically after the first few algorithm runs in
which we experienced a high ripple and slow slope-off. Setting
the ripple and damping weights to higher values attributed
significantly to the convergence. For the core circuit simulation
the SpiceOpus package [22] was used.

B. Results

We ran the algorithm on a Core i5 Linux machine, eval-
uating four individuals at a time using parallelization tools
provided by [23]. After 480 generations (approx. 30 minutes),
the best individual fulfilled all the requirements and the
evolution was stopped (see Fig. 8). The resulting circuit is
shown in Fig. 9.

The evolution resulted in a topology comprising all the
available resistors and capacitors (i.e., three of each). The
inductors, however, were discarded during the evolution alto-
gether. An analog circuit designer might notice that the resistor
Ry is not critical for the performance of this low-pass filter
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Fig. 8: The progress of the evolution and the properties of the last generation. Top left: the diversity of the connection matrices
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Bottom right: the best filter connection matrix.
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Fig. 9: The evolved passive LP-filter after 480 generations.

although it decreases input resistance (a higher input resistance
is better). After running the algorithm further, we could as well
observe omission of Ry since, having two circuits delivering
the same performance, the cost function value will be lower
for the circuit with fewer elements.

C. Search commentary

One can observe the population diversity in top four plots
of Fig. 8.

1) Connection matrices: Diversity of the connection ma-
trices (in top left of Fig. 8) is the highest for the initial
population, where the connections are uniformly randomized.
After some generations, the algorithm finds some possible
solutions and focuses on search around them. That is why at
the end of the evolution, the connection matrix diversity plot
shows the highest degree of similarity exactly where the ones
are placed in the matrix of the final solution (in bottom right).
One should regard this diversity plot as the sum of all the
matrices from the population—the darker points correspond
to the connections that are used in many matrices. Note that
the diagonal connections are omitted from this plot for better
image contrast.

2) Topology and value uniqueness: In order to inspect and
visualize possible repetitions of the same genetic material in
the population we translate the circuit chromosome into a



unique 64-bit integer. We do that separately for the connection
matrix and the value vector of an individual using a hashing
algorithm (see top middle left of Fig. 8).

3) Cost values: We can observe that several individuals
share the same cost function value (in top middle right of Fig.
8). This is especially true for values above 10%, which corre-
spond to the circuits with a poor performance and forbidden
connections (e.g., short-circuits). We can hardly distinguish
such circuits from each other from the phenotypic point of
view, but we still keep some of them in the genetic pool in
order to maintain genetic diversity.

4) Connection matrix fill-factor: If the cost function is
poorly defined, the algorithm tends to evolve a circuit with
every element connected to ground. Because we wanted to
detect such a scenario, we defined a so-called fill-factor, which
is a number between one and zero which shows the percentage
of ones contained in the connection matrix. One can observe
in top left if Fig. 8, that all the fill-factors are less than 0.5.

V. CONCLUSION

We proposed a procedure for analog circuit synthesis using
the principles of evolutionary algorithms. A circuit topology
was represented using a connection matrix capable of encoding
all the possible connections between a fixed set of elements
that can be used for circuit evolution. Such a representation
technique allows a designer to use both simple elements as
well as arbitrary complex sub-circuits as basic design blocks.
We proposed various crossover and mutation methods for
a two-dimensional connection matrix that result in changes
to the circuit topology. An experiment of a successful fully
automatic evolution of an analog passive low-pass filter on a
personal computer was presented. We are currently working
on a synthesis of more complex circuits, both active and
integrated.
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