
Automatic Energy Management Controller Design
for Hybrid Electric Vehicles

Tobias Rodemann
Honda Research Institute Europe

Carl-Legien-Strasse 30
63073 Offenbach/ Main, Germany

Email: tobias.rodemann@honda-ri.de

Lars Gräning
Honda Research Institute Europe

Carl-Legien-Strasse 30
63073 Offenbach/ Main, Germany
Email: lars.graening@honda-ri.de

Ken Nishikawa
Graduate School of Information

Science and Engineering,
Tokyo Institute of Technology,
O-okayama 2-12-1, Meguro,

Tokyo 152-8552, Japan
Email: nishikawa.k.af@m.titech.ac.jp

Abstract—Due to strict CO2 emission limits, the optimal
design of controllers for hybrid cars is an increasingly important
topic for the automotive industry. Most current approaches to
controller design rely solely on engineering knowledge. Utilizing
technologies from computational intelligence is not yet common
practice. In this work we evaluate how simple controllers
can automatically be extracted from optimal control strategies
computed by Dynamic Programming. We compare artificial
neural network and decision tree based controllers in terms
of performance (fuel consumption), stability, robustness, and
interpretability, and we investigate the dependency on specific
drive cycles used for generating optimal control. Our findings
indicate that automatically derived controllers can result in a
performance 1-2% below optimal fuel economy, but we observe
a large variety in performance and in the controller structure
for different drive cycles, thus, underlining the relevance of the
correct choice of the drive cycles used for controller development.
We also outline the impact of typical learning related issues like
overfitting on the practical development process.

I. INTRODUCTION

The design of energy management controllers for hybrid
cars is still a largely manual process. Based mostly on en-
gineering knowledge, compact controllers are developed that
determine the most efficient usage of the hybrid power sources
in a car, e.g., fuel-powered combustion engine and battery-
powered electric motors. In the academic community the
design process is often supported by an initial determination
of optimal control strategies specialized on individual drive
cycles, i.e., assuming complete knowledge of the track to be
driven, without any constraints on the controller architecture.
Earlier [1] we have shown that both Dynamic Programming
(DP) [2] and Evolutionary Algorithms (EAs) are suited to
derive optimal control curves for an a-priori defined drive
cycle. The optimal control curves are the basis to derive simple
control rules, e.g., nested if-then-else statements or look-up-
tables. This process is often done manually using visual data
inspection and engineering knowledge, in a process that is
probably approximated by a process akin to decision trees (see
below). An alternative, more academic and basic approach,
would be to use black-box learning methods like Artificial
Neural Networks (ANNs).

Since driving patterns in different countries might vary,
controllers will need to be adapted or even reimplemented

from scratch for all major markets, thereby increasing the
development costs. Here, we analyze if simple controllers
automatically extracted from the optimal control results can
produce a performance close to the optimal control and how
the resulting control architecture depends on the selection
of a specific drive cycle. Specifically, we investigate the
performance loss when running a controller on a drive cycle it
was not trained for. This is important when the same controller
has to be used in a variety of countries with different driving
characteristics.

We note that there is an extensive list of works focusing on
optimizing a given controller, assuming a fixed controller ar-
chitecture but some flexible control parameters (see reviews in
[3], [4]). In such a setting even a many-objective optimization
is feasible [5]. In the present work we investigate the preceding
development step - the determination of the best controller
architecture, for example in the form of a set of if-then-else
rules, or the determination of the most relevant controller
inputs. Obviously, the two steps are linked, since the chosen
architecture limits (and guides) the parameter optimization of
a controller.

We also need to mention that DP can be used to provide an
optimal control given a driving profile, but due to an excessive
computational demand and the difficulty in predicting driving
profiles in real-world conditions, DP is so far not used online
in the car during operation but mostly for assessing the
upper performance limits and to derive real-world controller
architecture as described in this work.

A more complete review on various strategies for hybrid car
controller optimization can be found in [6].

II. SIMULATION AND EVALUATION OF HYBRID ELECTRIC
VEHICLES

As basis for our studies, we employed a simple parallel
hybrid electric vehicle (HEV) model in Matlab as used in
[7], conceptually described in [8], [9], [10]. The HEV model
is simulating a vehicle where the combustion engine and the
electric motor can work in parallel to provide the requested
torque. The HEV model is depicted in Fig.1. It is composed of
four subsystems: gearbox, internal combustion engine (ICE),
electric motor (EM), and a battery. The modeled car has a total

Fig. 1. Parallel hybrid electric vehicle configuration

weight of 1800 kg, a battery capacity of 6 Ah, a maximum
electric motor torque of 160 Nm and a maximum ICE torque
of 200 Nm. The HEV is simulated by a quasi-static discrete-
time model [10]. The variation of the battery state-of-charge
(SOC) and the total fuel mass consumption J are computed
by the HEV model as,

SOCt+1 = f(SOCt, ut, vt, at, it) + SOCt (1)
J = ΣT−1

t=0 ∆mfuel(ut, vt, at, it) · Ts (2)

where t=0, 1, ..., T represents discrete time steps, SOCt the
battery state of charge, ut the torque split input, vt the vehicle
speed, at the vehicle acceleration, it the gear number and
∆mfuel(t) the fuel mass consumption at t. The time step is
Ts = 1[s] in this study. When vt, at, and it are known from
a target driving cycle and a gear control strategy, the HEV
model (1), (2) can be modified by including t into the model
arguments:

SOCt+1 = ft(SOCt, ut, t) + SOCt, (3)
J = ΣT−1

t=0 ∆mfuel,t(ut, t) · Ts. (4)

A final penalty melec(SOCT) is computed depending on the
difference between the final battery level SOCT and the target
value SOCtar. The objective is to find the best torque split
input ut at t = 0, 1, ...T , which minimizes the equivalent fuel
consumption and satisfies all constraints:

min
ut∈Ut

ΣT−1
t=0 (∆mfuel,t(ut, t)) + melec(SOCT) , (5)

s.t. SOC0 = SOCinit and SOCt ∈ [SOCmin, SOCmax],
where SOCinit is the initial state of charge. The SOCmin

and SOCmax are the minimum and maximum limitation of
the SOC.

With respect to the HEV model used in this work, there is
a significant difference between u(t)=1.0 and u(t)∈[0.0, 1.0)
at time t. The model will decouple the ICE if and only if
u(t)=1.0. In general, we have to follow two control strategies,
one to decide for decoupling the ICE (binary decision) and one
to control the continuous torque split value u(t). For brevity

we will mostly show the results for the continuous torque split
control in the present work.

The performance of a hybrid electric vehicle is judged based
on standardized drive cycles, which are defined as a time
series that represents the speed of a vehicle at each time
step. Different countries implement different drive cycles for
the evaluation of HEVs in terms of fuel consumption and
emissions, wherein each drive cycle targets to represent typical
driving situations of a particular country. In this study, we
consider driving situations based on drive cycles from six
regions: Japan, Europe, USA1, USA2, India, World, shown
in table I.

Reduction of fuel consumption and CO2 emissions is one of
the most important targets for the global automotive industry.
For example, the European Union (EU) defined a regulation
limit regarding CO2 emissions from vehicles and penalty
payments are imposed if the average CO2 emissions of a
manufacturer’s fleet exceeds a limit value, that is going to
decrease over time [11]. Fuel consumption and CO2 emissions
are measured on specified drive cycles, making these profiles
highly relevant in practice. There are substantial fines for
exceeding the CO2 emission limits for the fleet average: up to
95 Euro per car per g /km of CO2 above the limit value. This
translates into approximately 100 Euro / car fines for every
percent of additional CO2 emission on the standardized drive
cycles. As we will later see, the difference between controller
architectures is often just a few percent, but this might translate
into substantial costs if emission limits are violated.

III. LEARNING OPTIMAL ENERGY MANAGEMENT
CONTROL

The overall process for learning an optimally performing
energy management controller for HEVs is depicted in Fig.
2. Based on one or more drive cycles and the HEV model,
first, optimal control strategies are derived (using Dynamic
Programming or Evolution Strategies [1]), resulting in an
optimal torque split u(t) at each time step t along the drive
cycle. The resulting optimal torque split data together with

TABLE I
DRIVE CYCLES

name Distance Total time Average speed Region Type
[km] [s] [km/h]

JC08 8.17 1204 34.7 km/h Japan city
10-15 mode 4.16 661 33.1 km/h Japan city
UDC 1.02 195 27.7 km/h Europe city
EUDC 6.96 400 69.7 km/h Europe city
Artemis(urban) 4.87 920 24.7 km/h Europe city
Artemis(road) 17.27 1081 59.3 km/h Europe rural road
Artemis(motorway) 29.55 1067 101.1 km/h Europe highway
UDDS 11.99 1369 38.9 km/h USA(1) a city
HWFET 16.51 765 78.2 km/h USA(1) a highway
IM240 3.15 240 49.6 km/h USA(1) a -
SC03 5.76 596 42.8 km/h USA(1) a -
LA92 15.80 1435 47.3 km/h USA(2) b -
India(city) 17.49 2690 26.0 km/h India c city
India(high way) 11.65 882 47.7 km/h India c highway
WLTC(low) 3.09 589 25.3 km/h World city
WLTC(medium) 4.76 433 44.5 km/h World city
WLTC(high) 7.16 455 60.7 km/h World rural road
WLTC(extra) 8.25 323 94.0 km/h World highway

Fig. 2. Overview of the process for automatic HEV controller learning

input data like current speed, SOC or requested torque forms
the training data for learning a controller, which optimally
manages the two energy sources, namely ICE and electric
motor. This controller would also be simple and fast enough to
be used in a real car. In this work we compared two different
controller models, one based on the classical artificial neural
network architecture and one based on decision trees. The
former method is a very basic and well-understood black-
box learning approach while the latter has some similarities to
the manual development process and the resulting controller
structures. Both approaches have well-known limitations and
flaws like overfitting, limited interpretability (for NNs) or
limited modeling capacity for DTs. This study will analyze
how much these issues influence the performance of the
controller in this specific application case.

The resulting controller is implemented into the HEV model
to decide online about the torque split, given the data of the
predefined input signals for different driving conditions.

A. Optimal Control Strategy

As stated above, finding an optimal control strategy for a
drive cycle of limited length is equivalent (under the assump-
tion of discretized time) to finding the optimal sequence of
u(tk), k ∈ [1, T] with T as the length of the drive cycle. In
[1] we have investigated two different methods to compute
the optimal control. In the following we summarize the most
relevant findings.

Dynamic Programming (DP) [2] is commonly used to find
the optimal control by means of an optimal torque split
[12], [10]. The DP can deal with highly non-linear systems
and derive the optimal control under time-variant complex
constraints, however suffers from an exponential increase in
computational costs with respect to the number of state and
target variables. In the basic application [7], that we are also
considering in this work, DP outperformed EAs both in terms
of solution quality (fuel consumption) and run-time

Alternatively, Evolutionary Algorithms (EAs) can be
adopted to search for an optimal control strategy. EAs are
generic population-based meta-heuristic algorithms following
concepts from natural evolution. In [1] we have shown that for
a less constrained controller optimization task (the controller
was allowed to control the car’s speed in addition to the torque
split), an EA based approach can outperform DP in both
computation time and solution quality, especially for larger
number of state and target variables.

In this study, we used DP to calculate the optimal control
prior to the extraction of the control rules, since only a single
target variable u(t) and a single state variable SOC(t) are
under consideration.

B. Neural Network based Controller

Inspired from biological neural networks, artificial neural
networks (ANNs) are established universal function approx-
imators often used in machine learning applications due to
their good generalization capabilities. Commonly, ANNs are
trained in batch mode using offline available data. In this
manner, we adopt ANNs for learning the potentially complex
nonlinear relationship between the input signals to the energy
management controller and the torque split u(t). In this study,
a multi-layer feed forward neural network, a fast and simple
neural network model, was used. Figure 3 depicts the multi-
layer feed forward neural network structure used, which is
composed of 3 input units, 4 hidden units, and one output

input

layer

hidden

layer

output

layer

bias bias

��

��
�

��

��

��

��

��

��

�� = 1

vehicle speed

required torque

current SOC

input

torque split

control

output

Fig. 3. Configuration of a neural network

unit. We used the local adaptive learning scheme “Rprop” [13]
to optimize the weights of the neural networks. It is a first-
order learning method and typically convergences faster than
standard back prop. The nets were trained for 10000 epochs
using Rprop. Independent of the performance of the trained
ANN, the predictive model based on the neural network is
“black box”. It might be difficult to get any insight from the
network structure and to predict how the network behaves
especially when operating outside the known data range.

Two separate ANNs computed the control of torque split
factor and the engine coupling decision. Therefore, we trained
two types of the network controller, for the torque split
factor u, “u-net”, and for the decision of engine decoupling,
“coupling-net”. In the output layer, the u-net returns the sum
of inputs from the hidden layer while the coupling-net uses the
sigmoid function as activation function. The HEV decouples
the ICE when the output of the coupling-net is larger than 0.5.
The u-net and coupling-net were trained for 10000 and 5000
epochs using Rprop respectively.

C. Decision Tree based Controller

The second approach for an automatic controller design
is based on decision trees (DTs) [14]. DTs are supervised
learning methods and are commonly used for data mining.
DTs classify the training data into several generalized classes
by splitting the training data into subsets based on the refer-
ence values of the input variable. This splitting procedure is
represented by a tree-like graph. An example of a decision
tree is shown in Fig.4.

The tree consists of attribute nodes, branches, and decision
nodes. The attribute nodes represent tests based on the input
variables, whereas the branches represent the outcome of the
test and the decision nodes denote the predicted target output
values. Algorithms for constructing decision trees work by
splitting a training data set into subsets at each node using
splitting criteria such as Gini impurity or information gain
[15], [14] to measure the homogeneity of a split. Finally,
pruning techniques are applied to reduce the complexity of
the trained DT to avoid over-fitting. DTs were used as binary
trees in this study. The merit of decision trees is that a tree
can represent the predictive model visually and makes it easy
to understand and to interpret. The resulting tree can directly

be translated into a set of nested if-then-else rules. Gini’s
diversity index and root mean square are used as splitting
criteria to predict the coupling decision and torque split value
respectively. Note that the coupling-tree is a classification tree
while the u-tree is a regression tree. When u = 1, the engine
is disconnected from the power train and the engine drag
torque is removed from the required torque Tdem. Therefore, it
makes a large difference for the reduction of fuel consumption
whether the torque split factor u is exactly one or is close to
one. The coupling-tree considers only whether the ICE should
be connected to the power train or not. The u-tree is trained by
the data taken when the ICE was connected to the power train
(−1 ≤ u < 1) and computes continuous values u. The u-tree
and coupling-tree were pruned to 10 and 5 levels respectively
to avoid over-fitting.

IV. EXPERIMENTAL RESULTS

For the purpose of evaluating DTs and NNs, and comparing
controllers from different driving situations, we generated
controllers using DTs and NNs trained by different drive
cycles. We generated 50 sample drive cycles each, which were
modifications of 6 types of original drive cycles. The length
of each sample driving cycle was around 3600 seconds. The
DP calculates the optimum torque split control for 5 different
SOCinit[%] = 35, 45, 55, 65, and 75 so that we would get
various types of data in SOC space. Target state SOCtar was
55% in all sample drive cycles. Total number of training data
is about 100,000 each. DTs and NNs were trained separately
for each training data set.

First of all, we compared the optimal control from the DP
and a “no HEV” baseline strategy that means the EM is not
used in driving (u(t) = 0 for all t), which is one of the worst
possible controls. These controllers were simulated on 50 test
drive cycles newly generated from each original drive cycle
pattern. The average of equivalent fuel consumptions (eFCs)
[g/km] on the test driving cycles are shown in table II. This
result shows that the optimal control realizes approximately
20%-40% fuel reduction from the performance of the base-
line control. Standard deviation for example for the relative
consumption between DP and ”no HEV” is between 1.3%
(Japan) and 6.8% (EU), showing a certain variation in fuel
consumption for different randomly assembled drive cycles,
which could only be avoided by a very careful design of the
drive cycles. However, general trends are remarkably stable
over drive cycle variations.

TABLE II
EFC [G/KM] FROM THE “NO HEV” STRATEGY AND DP, VALUES IN

BRACKETS ARE PERCENTAGES RELATIVE ”NO HEV”, AVERAGED OVER 50
RANDOM VARIATIONS OF THE BASIC DRIVE CYCLES.

Test Driving cycle
Japan Europe USA1 USA2 India WLTC

DP 30.3(63) 41.5(79) 33.5(74) 39.6(73) 29.1(59) 36.8(76)
No HEV 47.7 52.2 45.3 54.4 49.7 48.5

We evaluated fuel reduction performance of controllers gen-
erated from DTs and NNs. When control of DTs or NNs

Is required torque larger than ��?

Is vehicle speed faster than ��? Is current SOC larger than ��?

Yes No

Yes No

root node

attribute nodebranch

decision node

�� 		�� ��

Is required torque larger than �	?

Yes No

�	 		�

Start

(output: torque split control)

Yes No

Fig. 4. An example of a decision tree: ca, cb, cc, and cd are reference values regarding three inputs, vehicle speed, required torque, and current SOC.
Ya, Yb, Yc, Yd, and Ye are predicted torque split factors.

exceeds limitations, the control was replaced by feasible
maximum/minimum values to satisfy the constraint using
predefined safety filters. Fig. 5 shows the average of equivalent
fuel consumption (eFC) [g/km] on the test drive cycles from
the DT and the NN controller relative to the values from the
DP averaged over 50 different random variations of the basic
drive cycles.

When training data was equal to test data, the performance
of DTs and the NNs is not very different. It indicates that
both methods learned the training data correctly. Also fuel
consumption is just 1-2% above the value from the DP.
However, when training drive cycle and test drive cycle are
not the same, performance of trained controllers gets worse
for particular data sets such as USA2 and India because SOC
reaches minimum or maximum limits. Here, fuel consumption
values more than 10% above DP levels are possible. Very good
generalization is achieved for the WLTC protocol as training
data which gives good results on all test drive cycles.

To find detailed characteristics of controllers, we compared
control policies extracted by the DTs and the NNs. The models
of the DTs and the NNs have three input variable, v, Tcouple,
and SOC, and one output u. Figure 6 shows as an example
the control policy maps from the DTs and the NNs trained
from drive cycle sets for Japan. The policy from the DP at the
indicated SOC level (as 3rd input) is shown on the left side.
The control policies from the DTs and the NNs are shown in
the middle and on the right side. Ranges colored by dark brown
in dotted lines indicate areas where the HEV should employ
only the EM to provide all required power and the ICE should
be decoupled from power train. The figure of control policies
shows five basic types of decisions (in some other tests, also
invalid outputs were generated by NNs):

Fig. 5. eFC for DTs (top) and NNs (bottom) relative to the value for DP
with different training and test data, averaged over 50 randomly generated
test cycles. Standard deviations over the 50 test cycles were on average 1.7
% for DT and 1.3 % for NN.

• u = 1, Tcouple > 0 (dark brown): pure electric driving,
• u = 1, Tcouple < 0 (dark brown): full regenerative

braking,
• u < 0 (blue): recharging battery by the ICE,
• u ≈ 0 (green): driving using only the ICE,
• 0 < u < 1, Tcouple < 0 (red or yellow): partly

regenerative braking,
The control map of the DT shows that the DT could extract
the basic structure of the DP data, including the striped pattern
for higher torque at SOC = 55% which is due to gear shift
effects. The NN in this example did not extract the partly
regenerative braking area because of too few training data. The
NN also smoothly interpolated the gear shift pattern. For some
drive cycles we observed that NNs produced invalid outputs
even if the training data does not contain any invalid outputs.

We also compared the control rules extracted by DTs from
different drive cycles. Figure 7 shows examples for extracted
control trees using three different drive cycles. For most data
sets trees had the criterion of torque as the first (top) node
to separate the decision for regenerative braking. For the
remainder, trees could be classified into three types depending
on the type of dominant input that is placed on the second
highest level. We found all three inputs as second level
decisions nodes and a large variety further down the decision
tree, meaning that the basic structure of the controller differs
substantially depending on the type of drive cycle used. It is
therefore unlikely that a controller can be adapted to a specific
drive cycle by simply changing decision nodes or attribute
node thresholds within a fixed architecture.

Is is also interesting to note that the top three decision layers
use different inputs: for Japan it is torque, speed and SOC,
but for Europe and the US only torque and speed are relevant.
Based on EU or US data, the developer might be tempted
to ignore SOC as controller input, limiting the potential for
adapting this very controller to Japanese conditions.

V. DISCUSSION AND OUTLOOK

We have shown that DTs and NNs can learn on-line torque
split control from the results of the offline optimization using
DP. Control policy maps from the DTs and the NNs showed
different characteristics, but resulted in similar performance
levels. The training with different drive cycles than those
used for testing can result in significant performance losses.
Comparing DTs and NNs we found that DTs are better
capable of modeling discontinuities in the torque split because
DTs implement crisp decision boundaries. In contrast, NNs
attempt to approximate the training data using continuous base
functions. DTs are also better to derive control rules from only
a few samples, which are often ignored by NNs. However, DTs
might not fit well if more complex decision boundaries have
to be modeled. An additional benefit of DTs is that they are
much easier to interpret and to adapt like for incorporating
engineering constraints than NNs. For example, we learned
from the analysis of DTs that controllers from different regions
could be structurally different, providing evidence for the need
of a region specific controller adaptation.

The presented work is basically a study to assess the current
situation and the potential for nature-inspired methods like
EAs and NNs to improve the process of controller develop-
ment in various directions. A future target is the integration
of methods for optimal control and automatic rule extraction
for arbitrary drive cycles and a better assessment of the
quality of extracted rules in terms of performance and stability,
including robustness to unseen input parameter configurations.
A more automated process for controller design is necessary
due to the potentially large performance differences between
controllers trained for different drive cycles. If controllers can
be quickly adapted to the specific driving conditions, develop-
ment costs could be reduced substantially. But we have also
seen that an automatically derived controller might provide
invalid controls. A potential remedy could be a cascade or
modular architecture of controllers, with individual parts that
are flexible and can automatically be learned and some parts
being fixed, e.g., to certify parts that would guarantee a safe
operation of the car or that guarantee a minimum driving
efficiency. How a controller can be modularized and learned
in such a way is an open research question.

In our previous work [1] we also discovered that DP
will probably not be able to provide optimal control curves
for more complex scenarios. We are therefore planning to
derive optimal control using Evolutionary Algorithms, which
would also open up possibilities to include multiple additional
objectives like emissions, drivability, battery lifetime or others
into the controller design process similar to the work described
in [5].

ACKNOWLEDGMENTS

Ken Nishikawa acknowledges the financial support from
Honda Research Institute Europe.

REFERENCES

[1] T. Rodemann and K. Nishikawa, “Can evolutionary algorithms beat
dynamic programming for hybrid car control?” in EvoApplications, ser.
LNCS 9597, G. Squillero and P. Burelli, Eds., vol. 1. Springer, 2016,
pp. 1–14.

[2] R. Bellman, “Dynamic programming and stochastic control processes,”
Information and control, vol. 1, no. 3, pp. 228–239, 1958.

[3] E. Silvas, T. Hofman, and M. Steinbuch, “Review of optimal design
strategies for hybrid electric vehicles,” in IFAC Workshop on Engine
and Powertrain Control, Simulation and Modeling, vol. 3, no. 1, 2012,
pp. 57–74.

[4] F. R. Salmasi, “Control strategies for hybrid electric vehicles: Evolution,
classification, comparison, and future trends,” Vehicular Technology,
IEEE Transactions on, vol. 56, no. 5, pp. 2393–2404, 2007.

[5] T. Rodemann, K. Narukawa, M. Fischer, and M. Awada, “Many-
objective optimization of a hybrid car controller,” in Applications of
Evolutionary Computation, ser. Lecture Notes in Computer Science,
A. M. Mora and G. Squillero, Eds., vol. 9028. Springer International
Publishing, 2015, pp. 593–603.

[6] E. Silvas, T. Hofman, N. Murgovski, P. Etman, and M. Steinbuch,
“Review of optimization strategies for system-level design in hybrid
electric vehicles,” IEEE Transactions on Vehicular Technology, vol. PP,
no. 99, pp. 1–1, 2016.

[7] O. Sundström and L. Guzzella, “A generic dynamic programming
Matlab function,” in Control Applications, (CCA) Intelligent Control,
(ISIC), IEEE, 2009, pp. 1625–1630.

[8] L. Guzzella and C. Onder, Introduction to Modeling and Control of
Internal Combustion Engine Systems. Springer, 2004.

(a) at minimum SOC (SOC = 30%)

(b) at middle SOC (SOC = 55%)

(c) at maximum SOC (SOC = 80%)

Fig. 6. Control policy maps of the DT and the NN from the Japanese driving cycles: Ranges colored by dark brown in dotted lines indicate areas where the
ICE should be decoupled from power train. The three rows present control policy maps for three different current SOC level. Note the substantial structural
differences between especially NNs and DTs.

(a) Japan

(b) Europe

(c) US

Fig. 7. Decision ’u’ tree from Japanese (top), European (center), US (bottom) drive cycles. Note that the decoupling tree is not shown. Trees structurally
differ already at the second level from the top. Note that the details of the trees have been pruned to increase visibility.

[9] L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems: Introduction
to Modeling and Optimization. Springer Berlin Heidelberg, 2005.
[Online]. Available: http://books.google.de/books?id=zMEsWs9S7u8C

[10] O. Sundström, L. Guzzella, and P. Soltic, “Optimal hybridization in
two parallel hybrid electric vehicles using dynamic programming,”
Proceedings of the 17th IFAC world congress, vol. 17, no. 1, pp. 4642–
4647, May 2013.

[11] “Regulation (EU) No 333/2014 of the European Parliament and of the
Council of 11 March 2014 amending Regulation (EC) No 443/2009
to define the modalities for reaching the 2020 target to reduce CO2

emissions from new passenger cars,” pp. 15–21, April 2014, official
Journal of the European Union, L103, p.15-21.

[12] F. Millo, L. Rolando, R. Fuso, and F. Mallamo, “Real CO2 emissions
benefits and end users operating costs of a plug-in hybrid electric
vehicle,” Applied Energy, vol. 114, pp. 563–571, 2014.

[13] M. Riedmiller and H. Braun, “A direct adaptive method for faster

backpropagation learning: the RPROP algorithm,” in Neural Networks,
1993., IEEE International Conference on, 1993, pp. 586–591 vol.1.

[14] L. Rokach and O. Maimon, Data Mining with Decision Trees: Theory
and Applications. River Edge, NJ, USA: World Scientific Publishing
Co., Inc., 2008.

[15] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

