
The Satellite Stem Cell Architecture
A. O. Erlank, C. P. Bridges

Surrey Space Centre (SSC)
University of Surrey

Guildford, Surrey, United Kingdom
{a.erlank, c.p.bridges}@surrey.ac.uk

Abstract—Low-cost satellites continue to grow in popularity
and capability, but have shown poor on-orbit performance to
date. While traditional satellite missions have relied upon expen-
sive fault prevention techniques, such as component screening, the
use of radiation hardened components, and extensive test cam-
paigns, low-cost missions must focus on fault tolerance, instead.
This paper describes a novel, fault-tolerant system architecture,
named Satellite Stem Cells. The Satellite Stem Cell Architecture,
which is based on artificial cells, evolved from research into
traditional reliability theory, bio-inspired engineering, and agent-
based computing. Traditional reliability theory points towards
k-out-of-n architectures for their superior reliability, while cell
biology demonstrates how to build extremely multifunctional
subsystems. Finally, agent computing provides a solution for
facilitating the cooperation of a set of autonomous cells in a
peer-to-peer environment. This paper describes the development
of the architecture, details the artificial cell design, and gives
preliminary implementation details.

I. INTRODUCTION

The intrinsic physical and managerial limitations of low-cost
satellite missions, such as Cubesats, have led to the popularity
of commercial, off-the-shelf (COTS) components, single-string
architectures, and reduced test campaigns. Unfortunately, these
design decisions have also contributed to the poor on-orbit
reliability of low-cost satellite missions seen to date [1], [2].

This research describes a novel, bio-inspired system ar-
chitecture, named Satellite Stem Cells, which aims to in-
crease system reliability, while minimising implementation
overheads.

Three areas of research contributed to the development of
the Satellite Stem Cell Architecture. Firstly, traditional relia-
bility analysis points towards k-out-of-n system architectures
for their increased reliability over other forms of redundancy
[3].

Secondly, the study of biological life reveals nature’s tech-
niques for making highly multifunctional subsystems and
highlights the benefits of a multicellular architecture. Bio-
inspired computing is a large research field and many projects,
including Embryonics [4], SABRE [5], eDNA, [6] and eTissue
[7], have gained inspiration from multicellular organisms.
However, this research aims to extend the multicellular concept
beyond the cell-based computation aims of these projects, to
a practical satellite avionics architecture.

Finally, the field of agent computing demonstrates how
pieces of software can be viewed as living entities, granting a
system autonomy, flexibility and fault tolerance. While agent-
based systems have been implemented in a diverse range of

applications, including traffic control, network management,
scientific computing, and real-time control systems, appli-
cations on board satellites have been limited [8]. The first
example of an agent running on board a satellite occurred
in 1999 on the Deep Space One mission, where control of
the satellite was temporarily handed to a single, experimental
agent [9]. More recently, Princeton Satellite Systems devel-
oped the ObjectAgent environment for the Techsat 21 mission
[10], and Bridges proposed using existing agent environments
on board satellites using a hardware Java interpreter [11].
However, neither of these systems have been demonstrated
on-orbit. This research aims to contribute to the state of the
art by developing a real-time agent environment focused on
reliability and low power consumption, making it particularly
well suited for low-cost satellite applications.

II. RELIABILITY ANALYSIS

Techniques for increasing reliability can be divided into
two broad categories, namely, fault intolerance and fault
tolerance. Fault intolerance attempts to prevent failures from
occurring in the first place. Techniques in this category include
component screening, using radiation hardened components,
and performing extensive test campaigns. These techniques
are typically time consuming and expensive to implement,
but have been a staple of the space industry for decades.
Fault tolerance, on the other hand, accepts the fact that
failures will occur. It focuses on ensuring that the system
can survive or recover from foreseeable failures. Techniques
in this category include most forms of redundancy and error
detection and correction (EDAC) algorithms. Since low-cost
satellite missions are typically forced into the extensive use of
COTS components and reduced test campaigns, focus should
be on fault tolerance.

The probabilistic time before failure of every component in
a system can be described with a failure distribution. The fail-
ure distribution gives information about the expected lifetime
of the component and about its instantaneous failure rate at
any moment in time. Failure rates can be constant, indicative
of charged particle damage, decreasing, indicating infant mor-
tality, or increasing, due to component wear-out. Determining
the failure distribution of an individual component, such as
an integrated circuit (IC), can be done through accelerated
life testing. Since accelerated life testing typically involves
thousands of the component under test to gather statistically
relevant results, it is impractical for determining the reliability



0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mission Time (Days)

R
el

ia
bi

lit
y

Comparison of Reliability Plots for Various System Architectures

Independent Strings
Cross−Strapped Strings
1 pool of 72 subsystems
2 pools of 36 subsystems
3 pools of 24 subsystems

Fig. 1. Reliability plots of systems with comparable amounts of physical re-
dundancy, but different system architectures. The 3 most reliable architectures
are versions of k-out-of-n architectures

Common Support
Subsystem

p

Subsystem
1

At least
k

Common Support
Subsystem

p

Subsystem
1

Support

Fig. 2. An enhancement to the traditional k-out-of-n system architecture
involves splitting the pool of components into a number of smaller pools,
each with their own support and common components.

of a complex system such as a satellite. Instead, in the case
complex systems, an analytical solution for reliability can
be derived using knowledge about the individual component
failure distributions and the system architecture.

The simplest system architecture is a series system, also
known as a single-string architecture. In such a system, the
failure of any component in the string causes system failure.
To improve system reliability, without increasing component
reliability, redundancy can be added. There are many ways
in which redundancy can be added, but every form comes
with overheads. For all satellite missions, but particularly for
low-cost missions, it is vital to maximise reliability while
minimising these overheads. Therefore, how redundancy is
added is important.

Figure 1 shows reliability plots for five different system
architectures, each containing a comparable amount of phys-
ical redundancy. In each case, the system is composed of
24 subsystems, with a level of redundancy equal to each
subsystem being triplicated. Identical, continuous failure rates
are assumed for all subsystems. The simplest forms of re-
dundancy involve arranging the subsystems into three inde-
pendent strings of 24 subsystems each, or cross strapping
the subsystems across strings. Figure 1 shows that improved
reliability can be achieved if each subsystem can be made
multifunctional and placed into a global pool, which is known

as an k-out-of-n architecture. In this case, as long as any 24
subsystems are still functional, the system remains functional.
In practice, in addition to the pool of subsystems, any k-
out-on-n architecture will require supporting and common
components. Supporting components are interfaces between
subsystems, such as communication and power buses. The
reliability of supporting components decrease as more subsys-
tems are added to the system. Common components represent
infrastructure required to keep all subsystems operational, such
as a power supply. The support and common components
can present weak points in the system. Figure 2 depicts an
enhancement to the traditional k-out-of-n architecture, where
the subsystem pool is split into smaller sets, each with their
own common and support components. The benefit, in terms of
reliability, offered by such an architecture is evident in Figure
1, where the systems composed of multiple smaller pools of
components show superior reliability during early life. A full
reliability analysis and comparison to traditional architectures
is given in [12].

III. BIOLOGICAL INSPIRATION

Biological life has achieved an impressive level of robust-
ness, flourishing in even the harshest locations on Earth. Simi-
larly, satellites are expected to display high robustness, having
to operate in the extreme environment of outer space. In many
ways, a satellite can be viewed as an artificial organism. Like
its biological counterparts, a satellite requires a way of har-
vesting energy, hardware which continues to function without
external maintenance, and the ability to make life-preserving
decisions. In addition, just as biological organisms are under
constant attack from environmental and biological hazards, so,
too, a satellite must endure hazardous temperatures swings, a
barrage of charged particles and micrometeorites. Therefore,
it seems feasible that the reliability increasing techniques
employed by biological organisms may be well suited for
implementation on satellites, too.

The earliest forms of life were single celled organisms.
Despite being comparable to single string systems, unicellular
life has shown a remarkable level of robustness. This robust-
ness is achieved through a variety of techniques, including
genetic redundancy, physical adaption to the environment, and
techniques for gene repair. While initially promising, these
techniques turn out to be comparable to traditional reliability
engineering techniques and therefore come with high im-
plementation overheads. For example, genetic redundancy is
comparable to discrete functional redundancy, physical adap-
tions to the environment are comparable to utilising specially
radiation-hardened components, and techniques for gene repair
are comparable to EDAC techniques commonly implemented
on satellite memory.

In addition to these techniques, unicellular life relies on
survival through sheer numbers. Interestingly, with the rise of
small, low-cost satellites, this technique is becoming feasible
for satellite missions, too. For example, the QB50 upper
atmosphere studying mission [14] and the Planet Labs earth
observation mission [15], are each composed of tens of



MCU

MCU

MCU

Generic
I/O

Generic 
I/O

Generic 
I/O

DNAMacromolecular
Machinery

Non-Volatile 
Memory

MCU

Protein

Protein

Protein

Cell Membrane

El
ec

tr
ic

al
 S

ig
n

al
s

M
o

le
cu

la
r 

Si
gn

al
s

Artificial Cell

Biological Cell

Fig. 3. A simplified depiction of the differentiation process in a biological
cell and a proposed artificial implementation. Adapted from [13].

Cubesats. The loss of a few Cubesats would be acceptable,
and is likely expected, for both missions. While conceptually
interesting, it remains to be seen whether this strategy can be
financially and operationally successful.

The discussion on redundancy in Section II highlighted
the improved reliability offered by k-out-of-n architectures.
Therefore, it is not surprising that a similar architecture
emerged in nature in the form of multicellular organisms. Mul-
ticellular life has evolved from unicellular life multiple times
during the Earth’s past. In a simplified sense, multicellular
organisms start out as a collection of identical cells, called
stem cells. During the organism’s development the stem cells
adapt through a process known as differentiation to take on
specific roles within the organism. In addition, some cells have
the ability to continuously re-differentiate throughout their
lifetimes. This change of specialisation, if possible, typically
occurs in response to damage sustained by the organism. For
example, a zebra fish can survive losing up to 20% of its
heart, because fully differentiated cells in its heart will attempt
to dedifferentiate before redifferentiating and proliferating to
restore the missing tissue. Similarly, when the lens of a newt’s
eye sustains damage, nearby cells will redifferentiate to replace
the damaged lens cells [16]. Thus, the cells in a multicellular
organism are comparable to the multifunctional subsystems of
a k-out-of-n architecture.

While both the analytical reliability analysis and investiga-
tion of biological life point towards k-out-of-n architectures
for reliability, implementation of such an architecture faces
three major engineering challenges.

Firstly, k-out-of-n architectures require highly multifunc-
tional subsystems, which are traditionally complex to imple-

ment. Therefore, it is beneficial to understand how biological
cells adapt to perform such a wide variety of tasks. Figure
3 shows a simplified, schematic representation of biological
cell differentiation. Within biological cells, large molecules,
known as proteins, are the workhorses. Proteins are essen-
tially built-for-purpose pieces of machinery, meaning the set
of proteins in a cell determine its capabilities. Proteins are
manufactured inside cells from blueprints stored in the cell’s
DNA by a collection of large molecules, known collectively as
macromolecular machinery (MM). The macromolecular ma-
chinery responds to internal and external conditions by reading
different sets of blueprints and building the corresponding
proteins. Therefore, the process of differentiation occurs when
the macromolecular machinery of different cells respond to
different local conditions by manufacturing different sets of
proteins.

Learning from biology, the Satellite Stem Cell concept
proposes building the subsystems of a k-out-of-n system out of
artificial cells. Figure 3 depicts the differentiation process of
an artificial cell. In this case, proteins are implemented using a
set of discrete, reprogrammable processing elements, such as
microcontrollers (MCUs) or field-programmable gate arrays
(FPGAs). Each artificial protein is customised to perform a
specific task by programming it with the appropriate firmware.
A separate processing element acts as the macromolecular
machinery. It responds to internal and external conditions,
such as available power, by loading particular sets of firmware
from non-volatile memory into the artificial proteins. The
non-volatile memory, or DNA, on every cell is identical and
contains programs for all system tasks, even though only a
subset will be implemented on each cell at a time.

In the described artificial cell, the macromolecular machin-
ery presents a potential single point of failure, while in a
biological cell, the macromolecular machinery is highly redun-
dant. To improve the reliability of the artificial macromolecular
machinery, it is important to realise that the macromolecular
machinery is, itself, largely composed of proteins. Therefore,
it can be implemented in the same way as the artificial
proteins. This results in the architecture shown in Figure 4.
Every cell is composed of a set of artificial proteins, one of
which is implementing the macromolecular machinery at all
times. Thus, if the protein implementing the macromolecular
machinery fails, another protein on the same cell can become
the new macromolecular machinery. In this way, the potential
single point of failure is eliminated.

The second engineering challenge involves interfacing to
a variety of peripherals. While the described artificial protein
design allows reprogramming to perform any required process-
ing task, in practice, many tasks additionally require interfaces
to the outside world. Peripherals such as reaction wheels and
attitude sensors are not intrinsic to the cells and must therefore
be interfaced to. Ideally, every protein should be interfaced to
every peripheral, but this is impractical. Therefore, peripheral
interfaces will place restrictions on cell differentiation. Such
restrictions are not unfamiliar in biology, where localisation
plays an important role in cell differentiation. For example,



Internal buses

MM
Protein

Protein

Protein Protein
MM

Protein
Protein

DNA

ProteinProtein

ProteinProtein

MM
Protein

Protein

I/O I/O

I/O I/O

I/O I/O

I/OI/O

I/O

I/O I/O

I/O

Actuator Sensor

Actuator

Sensor

Sensor ActuatorSensor

DNA DNA

Inter-cell bus

1 2 n

Fig. 4. A schematic representation of a system based on artificial cells. At any point in time, one protein per cell has the role of the cell’s macromolecular
machinery (MM). Peripherals interface to proteins via general purpose I/O circuitry and can be cross-strapped between proteins, or between cells.

there is little purpose in a heart cell redifferentiating into a
retinal cell.

Any interface to the outside world additionally presents
a potential hazard to the cell. In a biological cell, proteins
send and receive chemical messages across a cell membrane,
which protects the cell from the outside world. Therefore,
a general purpose input/output (GPIO) interface is proposed
which allows a protein to interface to a large variety of sensors
and actuators, at high and low currents, while protecting
the protein from unexpected behaviour from the attached
peripheral. In addition, the GPIO interface allows peripherals
to be cross-strapped between proteins. Implementation details
of the GPIO circuitry are given in Section V.

Finally, there is the challenge of distributing tasks across
the cells. In complex multicellular organisms the coordination
of bodily functions is largely centralized through a central
nervous system and brain. This is analogous to the design of
most satellites in which the coordination of tasks is handled
by a central onboard computer (OBC). However, the brain in
an organism, and OBC in a satellite, present potential single
points of failure. In contrast, simple multicellular organisms,
like sea sponges, have no central nervous systems. In these
organisms, all coordination is achieved through cellular, peer-
to-peer communication.

For reliability purposes, a distributed task management
strategy, as seen in simple multicellular organisms, is pre-
ferred. In practical terms, this requires the implementation of
middleware running on the artificial cells. A novel middleware,
based on the active research area of Agent Computing, is
described in the Section IV.

IV. MULTI-AGENT SYSTEM

Agent-based computing emerged in the 1990s as a powerful
new programming paradigm [8]. The term ’agent’ is loaded,
having different definitions in different research areas. How-
ever, a broad description can be found in [17]: ’An agent is a
computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to
meet its design objectives’. Essentially, agents are convenient
and powerful high level abstractions that allow complex pieces
of hardware or software to be described in terms of behaviours.
Agents work towards goals, have life cycles and may have a
certain level of mobility. Similarly to proteins in a biological
cell (or cells in a multicellular organism), agents in a multi-
agent environment allow the decomposition of complex tasks
into a set of simpler goals, which can be pursued by individual
agents.

Agent technology provides a natural solution for achiev-
ing cooperation amongst the artificial proteins described in
Section III. To date, many bespoke agent systems have been
designed, with little or no compatibility between implemen-
tations. Therefore, to facilitate future interaction with other
agent-based satellites and ground station services, the design of
the agent middleware for the Satellite Stem Cell Architecture
is based on the Foundation for Intelligent and Physical Agents
(FIPA) Abstract Architecture and Agent Communication Lan-
guage (ACL) specifications.

FIPA was formed in 1996 with the aim of standardising the
interaction of heterogeneous agents and agent-based systems
[18]. Figure 5a shows the architecture of a FIPA compliant
software agent environment, typically called an agency. An
agency is a piece of middleware which provides an execution
environment and a set of services for agents. The execution
environment allows agents to be dynamically loaded and
executed. It is usually based on a virtual machine, such as
the Java Virtual Machine (JVM), or a runtime interpreter.
Services provided by the agency include communication chan-
nels, allowing agents to communicate with one another and
other agencies, an Agent Management System (AMS), which
controls the lifecycle of agents, and a Directory Facilitator
(DF), allowing agents to discover services provided by other
agents. In addition, since the agency and all local agents are
typically running on the same physical hardware, an Agent
Security Manager (ASM) ensures that agents cannot access



Agent Security 
Manager

(ASM)

Agent 
Management 

System
(AMS)

Directory 
Facilitator

(DF)

Agent Execution Engine (AEE) – VM/Interpreter

Agent
n

Agent
1

Agent
2

Protein Communication Channel (PCC) – CAN bus

Protein (MM) MCU

Protein 
Lifecycle 

Management
(PLM)

Directory 
Facilitator

(DF)

Protein 1 MCU Protein 2 MCU Protein n MCU

Agent
1

Agent
2

Agent
n

Agent Communication Channel (ACC)

Router
(Part of PCC)

Agency

Cell

a)

b)

Fig. 5. The architecture of a typical FIPA software agent environment a), and
a distributed version optimised for the artificial cell hardware b).

restricted resources.
The Satellite Stem Cell hardware architecture focuses on

reliability and low power consumption, making it poorly suited
for porting existing agent environments. Instead, the FIPA
Abstract Architecture is distributed, as shown in Figure 5b,
to make best use of the fault tolerant characteristics of the
hardware.

In the Satellite Stem Cell Architecture, each artificial cell
is seen as an agency. Within each cell, agents are executed
on the discrete MCUs of the artificial proteins. Thus, each set
of protein hardware can be seen as a blank protein prototype,
which becomes unique and active once loaded with an agent.
Running agents on discrete MCUs allows for natural real-time
operation. One protein on the cell is reserved for the task of
providing agency services to the rest of the cell (previously
referred to as the cell’s macromolecular machinery). The
unique design of the cell hardware ensures that the agency
services are always provided, even as protein failures build up.
The services include Protein Lifecycle Management (PLM),
which is responsible for health monitoring and reprogramming
proteins, and a Directory Facilitator. A physical communica-
tion bus links proteins within the same cell. This bus supports
FIPA Agent Communication Language (ACL) communication
between agents and agency services, as well as real time traffic.
Inter-cell (inter-agency) communication occurs over a separate

Fig. 6. Functional prototype cell with four proteins. Notice the GPIOs
(partially populated) along the top and bottom edges of the PCB.

physical bus. Protein messages intended for recipients on other
cells are automatically routed onto the inter-cell bus by a router
service. Implementation details are given Section V.

Advantages of the cell agent environment over traditional
software agent environments include:

• Discrete hardware execution environments provide intrin-
sic real time agent execution and security

• Agents have direct access to hardware interfaces
• Agency services are ensured through redundant hardware
The main disadvantage of the cell agent environment is the

lack of compatibility between agents developed for different
implementations of the cell environment. Agents must be
compiled for the specific MCU on which the artificial proteins
are based. However, porting an agent between implementations
is expected to simple, consisting mainly of adapting hardware
abstraction layers for communication and GPIO control.

V. IMPLEMENTATION DETAILS

This section provides preliminary implementation details of
the cell hardware, GPIO circuitry, and agent middleware.

A. Cell Hardware

A full cell prototype is being developed to fully understand
the implementation overheads of the Satellite Stem Cell Ar-
chitecture. For comparison purposes, the prototype is being
developed at a CubeSat scale, and will be compared in volume
and power consumption to typical CubeSat avionics.

An operational cell prototype, containing four proteins, is
shown in Figure 6, while Figure 7 gives implementation details
on the cell design. Each protein is composed an ARM Cortex
M0 MCU with internal CAN bus controller and transceiver,
a secondary, external CAN bus controller and transceiver IC,
GPIO circuitry, power switches, and a discrete I2C I/O node.
Three communication buses span the cell: An internal CAN
bus, an internal I2C bus, and an inter-cell (external) CAN
bus. As described in Section III, one protein acts as the cell’s
macromolecular machinery (MM) and has certain control over
the other proteins through the I2C bus. Using this bus to



Cell Protein 1 of nProtein (MM)

I2C EEPROM

MCU

Power Switch

External 
CAN

I2C 
Watchdog

Discrete I2C I/O Node

GPIOMCU

Power Switch

Internal CAN 
+ Bootloader

Discrete I2C I/O Node

GPIO
External 

CAN

Internal 
I2C

Internal CAN 
+ Bootloader

Internal
I2C

Internal CAN Bus

Inter-cell CAN Bus

Internal I2C Bus

CAN Bridge

Fig. 7. Scematic representation of the artificial cell hardware design. Proteins are linked by internal Controller Area Network (CAN) and I2C buses. The
protein acting as MM has a level of control over the other proteins through the I2C bus and discrete I2C nodes. Only the MM has access to the external
CAN bus.

send commands to the discrete I2C nodes present in each
protein, the MM can power cycle a protein, or put it into
bootloader mode. Once in bootloader mode, a protein’s MCU
can be reprogrammed by the MM over the internal CAN
bus, using firmware stored in central, non-volatile memory.
Proteins communicate with one another and the MM protein
using the internal CAN bus. Only the MM has access to the
external CAN bus, onto which it forwards messages addressed
to proteins on other cells.

The MM monitors the health of the proteins on its cell by
polling them over the internal CAN bus and by polling the
I2C nodes. If a failure is detected, the MM will attempt to
activate a redundant protein and then recover the failed protein
through power cycling or reprogramming. To guard against
MM failures, every protein monitors for a loss of polling from
the MM. In addition, the MM is required to continuously kick
an I2C watchdog IC. In the event of an MM failure, one of the
proteins will be first to notice the loss of polling. That protein
will enter bootloader mode and wait. The other proteins will
notice the loss of polling, too, but will detect that they were not
first and proceed normally. Moments later, the I2C watchdog
will timeout, activating a CAN bus bridge between the internal
and external CAN buses. At this point, a second cell in the
system will notice the presence of a bootloader-state protein
on the external CAN bus, indicating the loss of an MM on
another cell. The second cell will then proceed to reprogram
the bootloader-state protein into a new cell MM.

The CAN bus bridge serves a secondary purpose. During
normal operation, the MM acts as a router between the internal
and external CAN buses. Therefore, MM failure cuts off
communication between the proteins on the stricken cell and
the rest of the system. The CAN bridge resolves this issue,
allowing the proteins on the stricken cell to continue to operate
while a new cell MM is being programmed.

The cell prototype measures approximately 100 x 110 mm,
making it comparable to a single PC104 CubeSat subsystem.

The MM protein, operating at 50 Mhz and utilising the external
CAN bus, consumes 90mW, while the normal proteins, which
can be operated at lower clock frequencies, consume as little as
15mW each. These values are in the range of typical CubeSat
subsystems. A more accurate comparison to COTS CubeSat
subsystems will be possible once the middleware has been
completed and a representative set of tasks is loaded onto the
system.

B. General Purpose I/O

Each protein of the cell prototype has six general-purpose
I/O lines, which are visible along the edges of the PCB in
Figure 6. The GPIO circuitry has multiple duties. Firstly, it
must enable proteins to interface directly to a large variety
of peripherals typically found on small satellites. Examples
include magnetorquers, reaction wheels, and analogue and
digital sensors. Secondly, the GPIO circuitry must allow
peripherals to be cross strapped between proteins and should
preferably fail in such a way as to not disable a cross-
strapped peripheral. Finally, the GPIO circuitry must protect
the cell from unexpected peripheral behaviour. To fulfill these
duties, the GPIO circuitry was designed with the following
specifications:

• Minimise physical changes required for different opera-
tion modes

• Operate at voltages from 3V3 to 9V
• Support digital I/O at baud rates of at least 100 kb/s
• Support analogue input voltages from 3V3 to 9V
• Provide drive and sink capability of at least 1A
• Provide current measurement when driving or sinking
• Support a high impedance state
• No single component failure should prevent entry into the

high impedance state
High GPIO toggle rates are required to support digital

communication protocols, such as Inter-IC (I2C), and for
implementing pulse width modulation (PWM). A high current



Half H-Bridge

Schmitt

Gain

Drive 
Logic

ADC

P
ro

te
in

 F
P

G
A

3.3V – 9V

I/
O

 P
ro

te
ct

io
n

Fig. 8. Block diagram of the GPIO hardware design.

drive and sink capability, together with current monitoring,
are required to drive actuators. The high impedance state is
used during input modes and when acting as a backup for a
cross-strapped peripheral.

A key principle of the Satellite Stem Cell Architecture is
that each cell is manufactured identically, leading to lower
costs and simplified testing. Therefore, ideally, the GPIO
circuitry should support all operational modes (eg. analogue
input, high current output) without requiring any physical
changes. However, since the operational mode of each GPIO
will be determined by the attached peripheral, scenarios where
on-orbit operational mode changes would be required are
few. Therefore, small physical changes, such as installing
jumpers or changing a minimal set of resistors during satellite
development, are deemed acceptable.

A simplified representation of the GPIO circuitry is shown
in Figure 8. It is comparable to the design of GPIO circuitry
found in most MCUs, but with several enhancements. The
output stage is based on a half-H-bridge, which is capable
of driving up to one amp for directly interfacing to actuators
(typical MCU GPIOs can deliver 5-20 mA). The input stage
is based on an amplifier which feeds an analogue-to-digital
converter and a Schmitt trigger. Unlike in most MCUs, the
input stage can also be used to measure the current being
delivered by the output stage.

GPIOs have been demonstrated directly interfacing to a
brushed-DC motor (Figure 9), I2C devices such as gyroscopes
(Figure 10), and analogue sensors.

C. Agent Middleware

The agent middleware is under development, but current
implementation details are given.

The agent middleware operates on top of FreeRTOS, a free,
real-time operating system which has been used on board sev-
eral low-cost satellites [19], [20]. The middleware is composed
of two parts. The first part consists of a set of agency services,
such as the PLM, DF and Router, executed as FreeRTOS
threads on the MM protein. The second part is a template
on which agents are typically based. The template includes a

−2 0 2 4 6 8 10 12 14

0

5

0

5

10

Time (s)

G
P

IO
1 

V
ol

ts
 (

V
) 

G
P

IO
2

Brushed DC Motor Driving Modes: Coast, Brake, Instant Reverse

Fig. 9. Voltage traces demonstrating a pair of GPIOs operating as a full
H-Bridge to drive a brushed-DC motor in coast and brake modes.

−50 0 50 100 150 200 250

0

2

4

6

8

Time (us)

S
D

A
 &

 S
C

L 
(o

ffs
et

) 
V

ol
ts

 (
V

) ~100kb/s I2C Transaction using Generic I/O

Fig. 10. A 100kb/s I2C transaction performed via the GPIO hardware.

set of FreeRTOS threads for handling ACL messages, and a
set of libraries for interacting with the GPIO hardware, MM
protein, and other proteins.

Agents interact with one another and the agency services
over a physical CAN bus using the FIPA Agent Commu-
nication Language. Specifications for XML, string, and bit-
efficient representations of ACL messages are provided by
FIPA. The bit-efficient representation is chosen to limit pro-
cessing overhead and power consumption. FIPA also provides
specifications for two message transport protocols, namely
HTTP and IIOP. However, neither of these protocols were
designed to operate over a physical CAN bus. Therefore,
an alternative message transport protocol, based on slightly
modified ISO-TP, was developed.

ISO-TP, or ISO 15765-2, is an international standard for
sending messages exceeding eight bytes over CAN networks.
ISO-TP prepends one or more bytes of protocol control infor-
mation (PCI) to each 8-byte CAN frame. The first PCI byte
always indicates one of four frame types. A transaction begins
with the transmitter sending a start frame, which includes a
PCI byte describing the total message length, and the initial
bytes of the message. A receiver will reply with a flow control
frame, which describes how the transaction will continue. A
flow control frame can request the transmitter to wait until
further notice, or to proceed with sending the message at a
defined rate.

A problem arises when considering the situation in which
a single receiver is receiving ISO-TP messages from two or
more transmitters simultaneously. All transmitters except one



should be told to wait using flow control frames. However,
the CAN bus protocol uses message IDs instead of sender
and receiver addresses. A CAN network can be configured so
that message IDs are treated as intended recipient addresses,
however, the recipients have no information about message
origins. Therefore, it is unclear where to send frame control
messages. To solve this problem, the ISO-TP protocol is
modified slightly by adding an additional PCI byte with the
transmitter’s address into each start frame.

The limited RAM available in the protein MCUs prompted
placing some restrictions on the ACL implementation. Firstly,
agent identifiers, which are encoded as strings, are limited to
two characters each. Secondly, the message content of ACL
messages is restricted to 11 bytes. Despite these restrictions
and the use of the bit-efficient representation for ACL mes-
sages, significant overhead is incurred by following the FIPA
specification. A FIPA ACL message, containing 11 bytes of
message data, is typically 70 bytes long. Thus ACL messaging
is only utilised for low data rate applications, such as system
reconfiguration, health monitoring and task configuration. For
all other communication, real time CAN messages can be
passed throughout the system unrestricted. As an example,
consider a producer-consumer situation between two proteins,
which may or may not be on the same cell. ACL messages are
used to initially tell the producer at what rate the consumer
requires data, after which the data transfer proceeds using
regular CAN packets.

The official port for the LPC11C24 MCU, based on FreeR-
TOS V7.1.0, was used, together with the LPCXpresso devel-
opment environment. When compiled with size optimisation,
the MM firmware is 28.7 kB, occupying 90 percent of the
MCU’s available flash memory. The protein template compiles
to 24.9 kB, or 78 percent of the available flash. While the
remaining space available for user protein code is limited, the
template’s extensive libraries should allow user code to focus
on high level functionality. Nevertheless, MCUs with larger
flash memories, or even softcore MCUs, should be considered
for future cell implementations.

VI. CONCLUSION

This paper described the development and early implemen-
tation details of the Satellite Stem Cell Architecture, which
aims to improve low-cost satellite reliability, while minimising
overheads. The architecture is the result of contributions from
three fields of research, namely, traditional reliability analysis,
bio-inspired engineering, and agent-based computing. Novel,
highly-fault tolerant, artificial cells form the core of the
Satellite Stem Cell Architecture. Each cell is based on an en-
hanced k-out-of-n architecture and mimics the protein-driven
reconfigurability of biological cells. To facilitate cooperation
amongst the cells composing a complex system, a novel
version of the FIPA Abstract Architecture for agent-based
middleware has been developed. It makes maximum use of
the fault-tolerant properties of the the artificial cell hardware.
CubeSat-scale implementations of the cell hardware and agent-
based middleware are well underway. Preliminary comparisons

with traditional CubeSat avionics, in terms of volume and
power consumption, suggest the practical feasibility of the
architecture.

REFERENCES

[1] J. Guo, L. Monas, and E. Gill, “Statistical analysis and modelling of
small satellite reliability,” Acta Astronautica, vol. 98, pp. 97 – 110, 2014.

[2] M. Swartwout, “The first one hundred cubesats: A statistical look,”
Journal of Small Satellites, vol. 2, no. 2, 2013.

[3] H. Pham, “Optimal design of k-out-of-n redundant systems,” Microelec-
tronics Reliability, vol. 32, no. 1, pp. 119 – 126, 1992.

[4] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “Toward self-
repairing and self-replicating hardware: the embryonics approach,” in
Evolvable Hardware, 2000. Proceedings. The Second NASA/DoD Work-
shop on, 2000, pp. 205–214.

[5] P. Bremner, Y. Liu, M. Samie, G. Dragffy, A. G. Pipe, G. Tempesti,
J. Timmis, and A. M. Tyrrell, “Sabre: a bio-inspired fault-tolerant
electronic architecture,” Bioinspiration and Biomimetics, vol. 8, no. 1,
p. 016003, 2013.

[6] M. R. Boesen and J. Madsen, “edna: A bio-inspired reconfigurable
hardware cell architecture supporting self-organisation and self-healing,”
in Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Con-
ference on, July 2009, pp. 147–154.

[7] J. Xu, Y. Dou, Q. Lv, and J. Zhang, “Etissue: A bio-inspired match-
based reconfigurable hardware architecture supporting hierarchical self-
healing and self-evolution,” in Adaptive Hardware and Systems (AHS),
2011 NASA/ESA Conference on, June 2011, pp. 311–318.

[8] B. Chen, H. H. Cheng, and J. Palen, “Mobile-c: A mobile
agent platform for mobile c-c++ agents,” Softw. Pract. Exper.,
vol. 36, no. 15, pp. 1711–1733, Dec. 2006. [Online]. Available:
http://dx.doi.org/10.1002/spe.v36:15

[9] D. E. Bernard, G. A. Dorais, C. Fry, E. B. Gamble, B. Kanefsky,
J. Kurien, W. Millar, N. Muscettola, P. P. Nayak, B. Pell, K. Rajan,
N. Rouquette, B. Smith, and B. C. Williams, “Design of the remote
agent experiment for spacecraft autonomy,” in Aerospace Conference,
1998 IEEE, vol. 2, Mar 1998, pp. 259–281 vol.2.

[10] D. M. Surka, M. C. Brito, and C. G. Harvey, “The real-time objectagent
software architecture for distributed satellite systems,” in Aerospace
Conference, 2001, IEEE Proceedings., vol. 6, 2001, pp. 2731–2741
vol.6.

[11] C. P. Bridges and T. Vladimirova, “Agent computing applications
in distributed satellite systems,” in 2009 International Symposium on
Autonomous Decentralized Systems, March 2009, pp. 1–8.

[12] A. Erlank and C. Bridges, “Reliability analysis of multicellular system
architectures for low-cost satellites,” submitted for publication.

[13] A. O. Erlank and C. P. Bridges, “A multicellular architecture towards
low-cost satellite reliability,” in Adaptive Hardware and Systems (AHS),
2015 NASA/ESA Conference on, June 2015, pp. 1–8.

[14] J. Thoemel, F. Singarayar, T. Scholz, D. Masutti, P. Testani, C. Asma,
R. Reinhard, and J. Muylaert, “Status of the qb50 cubesat constellation
mission,” in 65th International Astronautical Congress, 2014.

[15] C. Boshuizen, J. Mason, P. Klupar, and S. Spanhake, “Results from the
planet labs flock constellation,” in 28th Annual AIAA/USU Conference
on Small Satellites, 2014.

[16] C. Jopling, S. Boue, and J. C. I. Belmonte, “Dedifferentiation, transd-
ifferentiation and reprogramming: three routes to regeneration,” Nature
Reviews Molecular Cell Biology, vol. 12, no. 1, pp. 79–89, 2011.

[17] G. Weiss, Ed., Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Cambridge, MA, USA: MIT Press, 1999.

[18] FIPA. Welcome to the foundation for intelligent physical agents.
Accessed June. 09, 2016. [Online]. Available: www.fipa.org

[19] C. Bridges, S. Kenyon, P. Shaw, E. Simons, L. Visagie, T. Theodorou,
B. Yeomans, J. Parsons, V. Lappas, C. Underwood et al., “A baptism
of fire: The strand-1 nanosatellite,” in AIAA/UTU Small Satellite Con-
ference, 2013.

[20] I. Sünter, “Software for the estcube-1 command and data handling
system,” Ph.D. dissertation, Tartu Ülikool, 2014.


