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Abstract—Data security and privacy is a major concern for the
users while using software services on the cloud. When users want
to compute on a cloud service, traditional encryption schemes
can be applied to encrypt and transfer the data to the cloud
service. However, the service provider must decrypt the data for
input into their computational model and thus the data content is
exposed. If users do not want service providers to know what they
are computing, then computing on encrypted data preserving
privacy is an important issue. Homomorphic encryption is an
encryption method where computations can be performed on
the ciphertext, and the decrypted result of these computations
is the same as if the computations were performed on the
plaintext. However, the performance of this approach is currently
inefficient. This paper presents an application of homomorphic
encryption method on an open financial cloud framework (Finan-
cialCloud) to perform calculations on encrypted data, therefore
securing the data throughout the whole process. We demonstrate
by example, showing that by applying improved algorithms can
lessen the deficiencies induced by homomorphic encryptions.

Index Terms—Homomorphic encryption, FinancialCloud,
Cloud computing, Options pricing

I. INTRODUCTION

In financial industry, cloud computing has become a po-
tential solution since it provides the cost-saving, the mobility,
the time-to-market and the scalability characteristics. Recently,
there are cloud-based commercial software products and re-
searches which involving financial services from a desktop
model to cloud infrastructure. Chang et al. [1] presented
cloud platforms that integrate Financial Software as a Service
(FSaaS) and the IBM Fine Grained Security Framework.
They demonstrate how portability, speed, accuracy, reliability,
and security can be achieved when hosting financial services
on clouds. Peng et al. also presented that derivative pricing
process can be modularized and standardized [2] and cloud
computing could deal with complex derivative pricing and risk
management for real-time reporting limitation [3]. Misys [4],
a global company delivering application software and services
for banking, treasury, and capital markets, collaborates with
Microsoft. They target banks with an integrated platform
for portfolio management, risk management, and financial
derivative valuation using the Windows Azure cloud platform.

FINCAD [5], one of the largest financial service companies in
the world, uses Software as a Service (SaaS) model to accurate
financial reporting and necessary accounting disclosures and
lowers the total cost of customers. Pricing Partners [6], a
part of Thomas Reuters, is a service provider of derivative
pricing and offers SaaS platform a simple procedure to achieve
derivative portfolios valuation.

The SaaS is a new-style software delivery model in the
cloud environment and has become a common model for many
business applications. In the SaaS model, the users personal
data are deployed by the service providers who maintain or
use it to evaluate both the value and risk of derivatives. When
the data are transferred from one service to another, we use
data encryption mechanisms to enforce the privacy of data.
However, it is necessary to decrypt the encrypted data because
the service can only do computations on the plain data, which
affect the confidentiality of data hosted in the cloud. Service
providers can be non-trustworthy, users personal data will face
leakage risks. For example, they may disseminate or sell the
data to the competitors. This has led to increasing concerns
about the privacy of the data. To prevent malicious service
providers from disseminating users personal data, designing
methods which continue to be effective without compromising
privacy is necessary.

Homomorphic encryption mechanism allows specific types
of computations to be carried out on ciphertext and obtains an
encrypted result which, when decrypted, matches the result of
operations performed on the plaintext [7], [8]. In other words,
it allows cloud services to operate on encrypted data without
knowing the original plaintext. It has been used for supporting
simple aggregations, numeric computations on encrypted data
as well as for private information retrieval. Homomorphic
encryption includes two different types of homomorphism: the
multiplicative encryption scheme and the additive encryption
scheme. For example, the encryption schemes used by RSA is
multiplicative and Paillier is additive. An encryption scheme
is additive if:

ϵ(x+ y) = ε(x)Θε(y), (1)



Alternatively, an encryption scheme is multiplicative if:

ϵ(x · y) = ε(x)Θε(y), (2)

where ε denotes an encryption function, and Θ denotes an
operation depending on the two plaintexts x and y. There
are two different homomorphic cryptosystems, i.e., fully ho-
momorphic encryption (FHE) and partially homomorphic en-
cryption (PHE). PHE supports only single operation on the
ciphertext. This operation can be additive or multiplicative.
Alternatively, FHE supports both additive and multiplicative
operations. There are several existing applications of homo-
morphic encryption in cloud-based applications [9]. Ahmad et
al. proposed a method to perform the operations on encrypted
data by combing proxy re-encryption technique to prevent
ciphertext from chosen ciphertext attack (CCA) [10]. In the
health monitoring industry, Kocabas et al. provided a cloud-
based application to a long-term patient ECG-data monitoring
system [11]. To keep the user data secure and confidential
in a cloud environment, Brenner et al. presented a method to
compute a secret program on an untrusted server by using fully
homomorphic encryption [12]. López-Alt et al. constructed a
multi-key FHE scheme that can operate on encryptions under
different and unrelated public keys to enhance the level of
information security since the traditional FHE schemes operate
on ciphertext under the same key [13]. Abe and Suzuki [14],
Yokoo and Suzuki [15], and Suzuki and Yokoo [16] proposed
price auction schemes to offer secrecy of bidding price in
combinatorial auctions by using homomorphic encryption.

In this paper, we combine the homomorphic encryption
scheme with the FinancialCloud [2], an open cloud framework
for derivative pricing that can bring service providers together.
FinancialCloud performs a collaborative derivative pricing by
combining various cloud services since the service providers
can deliver their services into this cloud framework. The
approach in this research is to encrypt the data before sending
to the pricing services, and pricing services perform computa-
tion on encrypted data without decrypting them. It enforces
better data security which information is relayed between
services. Using the binomial option pricing model (BOPM) as
an example, we demonstrate the availability of homomorphic
encryption. Since the efficiency of homomorphic encryption
is slow, we proposed an improved algorithm of Cox-Ross-
Rubinstein binomial tree [17] to improve its efficiency.

This paper is organized as follows. In Section II, we describe
the proposed methodology of European option pricing by
using the CRR binomial tree developed by Cox, Ross, and
Rubinstein. In Section III, we demonstrate the experiment
results and the usefulness of homomorphic encryption. Finally,
we summarize our conclusions and indicate the direction of
our future work in Section IV.

II. METHODOLOGY

This research combines the homomorphic encryption
scheme with the FinancialCloud, and the goal is to force
pricing services to compute on an encrypted domain. Pricing
services must perform computation on encrypted data without

Fig. 1. System architecture of FinancialCloud.

Fig. 2. Flowchart of the homomorphic encryption mechanism.

decrypting them. It ensures improved data security in the
communication between services.

FinancialCloud is an open cloud framework for derivative
pricing that brings service providers, including pricing models,
algorithms, and market data together. Figure 1 depicts the sys-
tem architecture of FinancialCloud. The service providers can
deliver their services into the cloud framework by registering
at the authorization server of the cloud. The users can easily



integrate and host modularized financial services on demand
to meet users needs. The details of this cloud framework can
be found in [2].

Figure 2 illustrates the homomorphic encryption mecha-
nism. The user generates both private key and public key
from a specific encryption scheme. Following, the user sends
a request with a public key to pricing service, and pricing
service sends another request with a public key to the data
provider for gathering the desired data. Data provider encrypts
the raw data by using the public key then returns to pricing
service. Finally, pricing service performs the calculation based
on encrypted data. Although fully homomorphic encryption
(FHE) supports arbitrary computations on encrypted data,
some kinds of numeric computation were not discussed and
implemented in recent studies, e.g., inequality and probability-
based computations. In this paper, we apply the data interac-
tion between user and pricing service to perform these kinds of
computation. After receiving the encrypted numbers, the user
uses a private key to decrypt them, performs computation, and
then returns the encrypted result to pricing service. Finally, the
user gets the encrypted result from pricing service and decrypts
it.

A. European Option Pricing using Binomial Tree

In this paper, we use the binomial tree developed by Cox,
Ross, and Rubinstein to price European options [17]. The
binomial tree assumes that at each time interval, the underlying
stock price can only go up or down. Let u be the ratio of up
movement for a stock after each interval and let d be the ratio
of down movement after each interval. Then the values of u
and d are:

u = eσ
√
∆t

d = e−σ
√
∆t,

where σ is the volatility of the underlying, and ∆t is the ratio
of the time period of one interval to the time period for which
is calculated. The probability of the stock price moving higher
is:

p =
er∆t − d

u− d
, (3)

where r is the risk-free interest rate. Then, we can obtain the
value of each possible stock price at all of the time points in the
binomial tree as shown in Figure 3. Note that S is the current
price (spot price) of underlying. The price of a European call
and put option at each final node can be computed by the
equation below:

C(n,i) = MAX(S(n,i) −K, 0), (4)

for a call option and

C(n,i) = MAX(K − S(n,i), 0), (5)

for a put option, where K is the strike price, C(n,i) and S(n,i)

is the option value and the spot price of underlying for the i-th
node at time n, respectively. Once the terminal conditions are
established, the expectation value of option is found for each

Fig. 3. Binomial tree with height equal to 3.

Fig. 4. Flowchart of European options pricing.

final node, starting at the penultimate time step, and working
back to the first node of the tree by the following equation:

C(t−∆t,i) = e−r∆t · (p · C(t,i+1) + (1− p) · C(t,i−1)), (6)

where C(t−t,i) is the expectation value of option for the i-th
node at time t.

B. Binomial Option Pricing with Homomorphic Encryption

Figure 4 shows the flowchart of pricing European option
using homomorphic encryption. In the FinancialCloud, the
collaborative procedure is composed of three services, the
“Market Data Provider”, the “Binomial Tree Construction”
and the “Pricing Service”. We apply the data interaction
between user and pricing service to perform the inequality, the
multiply and the division computations due to the limitation
of recent studies as mentioned before. The “Pricing Service”
sends two encrypted numbers (one is the exercise value, the
other one is the expectation value of option) to the user for
performing inequality computation when it needs to calculate
the value of an option at the expiration date. After receiving the
encrypted numbers, the user uses the private key to decrypt
them, performs computation, and then returns the encrypted



Fig. 5. Improved binomial options pricing algorithm.

result to pricing service. Finally, the user gets the encrypted
result from pricing service and decrypts it.

C. Improved Binomial Option Pricing with Homomorphic
Encryption

Since the efficiency of homomorphic encryption is slow,
we proposed an improved binomial algorithm for speeding up
the option pricing procedure. Figure 5 shows the illustration
of improved algorithm. Using the European call option as an
example, the calculations, of which the spot prices of nodes
are lower than the given strike price, are unnecessary, and thus
the efficiency can be improved by pruning these nodes.

III. EXPERIMENTS

We demonstrate the usefulness of homomorphic encryption
mechanism by using the European option. The binomial tree
algorithm is used to price the option, and the parameter
settings are listed in Table I.

We used a PHE open source library, which supports floating-
point number computation and use Python to implement the
whole services. The computing environment is dual 2.93GHz
cores with a 2.00 GB RAM, and the operating system is
Window Server 2008 R2. We set the heights of the binomial
tree from 10 to 180, i.e., the numbers of node range from
55 to 16,290, and each set runs 100 iterations to obtain
average computational cost. Moreover, the elapsed computing
time excluded the communication between the user and the
services.

Figure 6 and 7 shows the comparison of computational cost
over the heights of the binomial tree, and Table II shows the
experiment results. We can see that homomorphic encryption
mechanism increases computational time drastically, e.g., as
shown in Figure 6 and Figure 7, the option pricing with
homomorphic encryption is slower than the one without homo-
morphic encryption (0.014 versus 1835.17) when we fixed the
height of the binomial tree to 180. The improved algorithm,
shown in Figure 7, gets better computation performance than
homomorphic encryption (1375.59 versus 1835.17).

IV. CONCLUSION

Cryptography lacks practical works especially in the fields
of financial computing, and this paper is one of the few
research that addresses encryption in derivative pricing process

TABLE I
PARAMETERS OF THE OPTION FOR THE EXPERIMENT.

Parameter Value
Spot Price 100
Strike Price 100
Risk-free Interest Rate (%) 1
Underlying Volatility (%) 12.5
Expiration Time (Annualized) 0.5
Heights of the Binomial Tree From 10 to 180, step size 10

Fig. 6. Normal options pricing without homomorphic encryption.

Fig. 7. Options pricing with homomorphic encryption.

on the cloud. This paper combines the homomorphic encryp-
tion with FinancialCloud, encrypting the data before sending to
the pricing services. The pricing services perform computation
on an encrypted domain, ensuring better data security in
the communication between services. By demonstrating the
availability of homomorphic encryption using the binomial
tree to price European options, we show that our approach
is doable. Since the efficiency of homomorphic encryption is
slow, we proposed an improved algorithm of the binomial
tree for speeding up the calculation. Privacy preservation
is one of the many important issues in cloud computing,
and many related research to preserve privacy have been



TABLE II
EXPERIMENT RESULT OF THE HOMOMORPHIC ENCRYPTION MECHANISM.

THE EUROPEAN CALL OPTION PRICING WITHOUT HOMOMORPHIC
ENCRYPTION MECHANISM IS NOTED AS “ORIGINAL”, THE ONE WITH

HOMOMORPHIC ENCRYPTION MECHANISM IS NOTED AS “ENCRYPT”, AND
THE OTHER ONE WITH IMPROVED ALGORITHM IS NOTED AS “IMPROVED”.

Height of Numbers of Nodes Original (s) Encrypt (s) Improved (s)
Binomial Tree
10 55 0.00030 7.08 5.54
20 210 0.00085 25.25 19.35
30 465 0.00070 54.62 39.68
40 820 0.00085 95.09 69.54
50 1,275 0.00130 146.78 110.74
60 1,830 0.00170 209.42 154.26
70 2,485 0.00230 283.60 209.17
80 3,240 0.00345 368.86 277.18
90 4,095 0.00375 467.74 350.06
100 5,050 0.00440 572.62 429.31
110 6,105 0.00525 691.49 518.11
120 7,260 0.00620 821.81 614.92
130 8,515 0.00745 962.61 720.56
140 9,870 0.00845 1113.85 834.49
150 11,325 0.00965 1278.19 956.19
160 12,880 0.01120 1452.55 1078.22
170 14,535 0.01400 1638.49 1218.24
180 16,290 0.01580 1835.17 1375.59

proposed to prevent the disclosure of data. In this paper, we
apply a privacy preserving mechanisms using homomorphic
encryption mechanism. We have taken a starting step, and the
privacy preserving mechanism needs to be further improved.
In future research, the following directions will be considered:

1) RSA-based and Paillier-based Homomorphic encryption
mechanisms are vulnerable to chosen ciphertext attack
(CCA). To prevent encrypted data from CCA, the cloud
framework should provide a kind of proxy re-encryption
algorithms to achieve good privacy preservation.

2) It is necessary to speed up the computation of homo-
morphic encryption since the exotic derivatives are more
complex than the vanilla options as shown in this paper.

3) Financial applications will require the implementation
of several functions, such as the standard deviation,
inequality, logistic regression and probability-based cal-
culations, as discussed by [9], [18].
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