
Evolving Order and Chaos: Comparing Particle Swarm Optimization
and Genetic Algorithms for Global Coordination of Cellular Automata

Anthony D. Rhodes
Intel Corporation

Portland State University

Abstract— We apply two evolutionary search algorithms:
Particle Swarm Optimization (PSO) and Genetic Algorithms
(GAs) to the design of Cellular Automata (CA) that can
perform computational tasks requiring global coordination. In
particular, we compare search efficiency for PSO and GAs
applied to both the density classification problem and to the
novel generation of ”chaotic” CA. Our work furthermore
introduces a new variant of PSO, the Binary Global-Local PSO
(BGL-PSO).

I. INTRODUCTION: CELLULAR AUTOMATA

Cellular Automata (CA) are discrete, spatially-extended
dynamical systems consisting of cells, each of which
contains a finite state machine. Given an initial configuration
of cells, CA evolve over time by performing computations
according to local rules. The input for each local rule is
a ”neighborhood” of a given cell, and all cells typically
use the same local rules – in this case we say the CA is
homogeneous. The space in which the computations of a
CA are realized is called the ”cellular space” of the CA.
The cellular space is typically divided into a 1-d or 2-d lattice
structure, although there exist analogous, higher dimensional
extensions of CA [1]. CA have been studied extensively
as mathematical objects, as models of natural systems, and
as architectures for fast parallel computation [2]. They have
additionally been applied to a wide range of applications,
ranging from particle simulation [3], image processing [4],
pattern classification [5], traffic modeling [6], computational
biology [7], disease spread [8], crystallization [9], and art
[10], among others. 1-d CA in particular represent one of
the simplest examples of decentralized systems in which
emergent computation can be studied. [11]

A. A Brief History Of Cellular Automata

CA were invented in the 1950s by John von Neumann
in an attempt to construct and analyze self-replicating
universal computers. von Neumann established universality
by proving that an automaton consisting of cells with four
orthogonal neighbors and 29 possible states can simulate
a Turing machine and self-replicate for a configuration of
approximately 100,000 cells [12]. Following von Neumann’s
work, in 1967 Konrad Zuse conceived of the whole of
space as an evolving cellular space, ”Rechnender Raum”
(”Computing Space”) [13]. In 1968 Edgar Codd produced
a universal construction with self-replication capabilities
requiring only 8 possible states for a configuration of

approximately 2 ·108 cells [14]. Abandoning the universality
constraint, in 1984 Christopher Langton discovered an 8-cell
CA that is capable of self-replication on a configuration of
only 86 cells (see ”Langton’s Loop”, Figure 1). Following
Codd’s results, John Conway [15] developed a breakthrough
2-d CA with a simple rule set meant to mimic high-level
organic properties. Conway’s so-called ”Game of Life” was
popularized in Scientific American and was later shown to
exhibit properties of universal computation [16].

In an effort to explicate the origins of complexity in
Natura, Stephen Wolfram devised a taxonomy of 1-d, 2-state
CA. He grouped CA into four general rule categories:
homogeneous, periodic, complex and chaotic structures. In
particular, Wolfram conjectured rule 110 (depicted on the
cover of his A New Kind of Science) is Turing complete
(this was proven by Matthew Cook in 2004 [17]) and
that rule 30 (see Figure 2) exhibits chaotic or random
behavior (this rule is in fact used as a random number
generator in the Wolfram language [18]). Wolfram used
these and other examples to suggest that the complexity
of the universe belies an underlying simplicity in which a
few basic rules give rise to complicated and unpredictable
behavior [19]. Drawing from Zuse’s notion of a Computing
Space (Wolfram analogously defines the term ”computational
universe”), Wolfram also proposed ”harvesting” rules that
can solve interesting problems. In this way, AI – particularly
evolutionary methods – and complexity theory provide a
framework for a novel, largely empirical approach to solving
difficult problems by appealing to a comprehensive search in
the ”computational universe” of programs.

Fig. 1: Left: Langton’s Loop, an 86-cell, self-replicating CA. Right:
Colony of Langton’s Loops. All figures best viewed in color.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Fig. 2: Naturally occurring cone snail shell structure (Left) which
bears a close resemblance to Wolfram’s CA Rule 30 (Right).

II. CELLULAR AUTOMATA: FORMAL OVERVIEW
A CA is a spatial lattice of N cells; a 1-d cellular

automaton is a 4-tuple: A = (k,Σ, r, σ), where k defines
the number of discrete states for the CA (e.g. k = 2), Σ
denotes the alphabet of cell states (e.g. Σ = {0, 1}), where
Σ = |k|; r is the radius of the CA and σ represents the CA
mapping encoded by the rule set of the CA. As in [19], with
the present work we focus on discrete, 1-d, binary CA.

The CA begins with some initial configuration (IC) of
cell states. At each time step t the CA ”evolves” and each
cell in the lattice is updated according to the rule set.
Formally, a configuration s ∈ ΣN is a concatenation of
cells, namely: s = s(0) · · · s(N − 1), where s(i) indicates
the state of the ith cell in the configuration. We will denote
the state of cell i at time t of the automaton A with initial
configuration s by At,n(s). Cell states are defined in a
recursive fashion, so that the state of a particular cell at time
t + 1 depends on the states of its neighbors, as determined
by σ : Σ2r+1 → Σ. Hence, At+1,n(s) = σ(At,n−r(s)
,..., At,n+r(s)). The (global) configuration of A(s) with
IC s at a fixed time t can be thought of as a collection
{At,i} over all cells i ∈ {0, ..., N − 1}; we denote this
configuration At(s). The evolution of a particular CA
with initial configuration s is therefore written as follows:
A0(s), A1(s),...,At(s). Oftentimes it is useful to consider a
global snapshot of the evolution of a particular CA, where
the sequence A0(s),A1(s),...,At(s)is realized pictorially,
read top-to-bottom, beginning with A0(s), see Figures 3
and 4.

We now develop an example of a simple cellular
automaton in order to help facilitate the reader’s
understanding of the previous formalism. Let the cells
of our CA be binary (k = 2, so that: Σ = {0 ≡ ”white”,
1 ≡ ”black”}); furthermore, we consider the simple case
where r = 1. Thus, σ : Σ3 → Σ and each state transition
is determined by a triplet. In following the ordering
conventions developed by Wolfram [19], we consider the
automaton Rule 250 where the rule set is defined as:
• σ(1, 1, 1) = 1
• σ(1, 1, 0) = 1
• σ(1, 0, 1) = 1
• σ(1, 0, 0) = 1
• σ(0, 1, 1) = 1
• σ(0, 1, 0) = 0
• σ(0, 0, 1) = 1
• σ(0, 0, 0) = 0


σ : Σ3 → Σ

As the reader may check, this assignment is realized

Fig. 3: Wolfram’s Rule 250 rule set.

Fig. 4: CA evolution of Rule 250 for IC 1̄.

pictorially by the rule scheme shown in Figure 3. We can
see that the sequence of global configurations for this CA is
very well-behaved; iterations beginning with the elementary
IC, 1̄, are depicted in Figure 4, where:

1̄(i) =

{
1 if i = 0

0 else

A. Computational Tasks: Global Coordination of CA

The current work builds primarily on [20], [21], [22],
and [23]. We apply two evolutionary search algorithms,
Particle Swarm Optimization and Genetic Algorithms, to two
different computational tasks requiring global coordination:
(1) the density classification problem (also called the
”majority voting problem”) for CA and (2) the generation
of general ”chaotic” (à la Wolfram) CA. For the density
classification task, the goal is to find a CA (i.e. to specify a
mapping σ) to determine whether or not an arbitrary IC s has
a majority of 1s. In literature this problem is denoted ”ρc =
1/2”, where c represents a critical or threshold value for
density classification. Concretely, if ρ0 is the true proportion
of 1s contained in the IC (assume N is odd so that ρ0 is
unambiguous), and, say, ρ0 > ρc, then within a fixed number
M timesteps, the CA should generate all 1s, i.e. At(s) =
1 ∀ t ≥ M. A solution to the density classification
task is trivial for a system with a central controller or
global memory. However, designing a solution to the density
classification task for a CA or similar system lacking a
central controller is non-trivial – particularly in systems with
significant locality constraints (e.g. r << N). The difficulty
of this task is attributable to the fact that the CA must pass
information over large distances (≈ N) and additionally
process this information across disparate parts of the spatial
lattice. Moreover, the density classification tasks requires a
system without a central controller to perform computations
that are inherently more complex than the computational
capacity of each individual cell (or any linear combination
of cells) [23]. Density classification is therefore a fitting
problem case to test the programmability of ”emergent

behavior” through the coordination of simple ”agents”. In
addition to the density classification task, we propose a
novel chaotic CA coordination task for which the objective
is to take an arbitrary input configuration and generate a
maximally ”unstructured” output. More specifically, we wish
to minimize the compressibility (in an information-theoretic
sense) of the output of the CA for any IC. From [24],
we augment the Normalized Compression (NC) metric so
that our objective function is defined as the average of the
piecewise (i.e. line-by-line output of the CA) NC measure
and the total (i.e. concatenations of the entire computational
history of the CA) NC measure. To this end, we define the
NC piecewise-total objective function for the chaotic CA
coordination task:

NCp−t(A(s)) =

∑T
i=0K(Ai(s))

T
+K(A(s)) (1)

where A(s) connotes the total CA with initial configuration
s; Ai(s) is the ith lattice of the CA output for the IC; T is the
final time step (we set T = 150 for experiments), and K(·)
represents the Kolmogorov complexity of a string, which we
approximate with the DEFLATE compression algorithm [25],
using a combination of LZSS [26] and Huffman coding [27].

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is a stochastic, metaheuristic
optimization algorithm inspired by the social behavior of
animals introduced by Kennedy and Eberhart [20]. The
algorithm simulates the motion of ”particles” (i.e. organisms)
in the search space with the goal of locating a global
optimum. Each particle in the ”swarm” is influenced by
three general factors: the current velocity of the particle, a
social component, which encodes particle interactions with
other particles in the swarm, and a cognitive component,
which is influenced by the search history of an individual
particle. PSO is in general an efficient algorithm that can
be applied across large, non-differentiable, continuous or
discrete domains [28]. In contrast to GAs (see Section
IV), conventional Particle Swarm Optimization algorithms
typically avoid the use of genetic operators.

PSO was initially developed for continuous-valued spaces.
In what follows, we first describe the original, continuous
PSO algorithm; subsequently, we adopt a version of PSO
for a binary domain appropriate to the previously described
CA density classification and chaotic problems.

A. Continuous PSO

Formally, we wish to optimize a vector-valued function
f : Rd → R; we call this function f the objective
function of our optimization problem. Define the position
of the ith particle in the swarm xi = (xi1 , ..., xid), and
denote the velocity of the ith particle for the ith particle
vi = (vi1 , ..., vid). Furthermore, at each iteration of PSO,
we define the best-visited state for the ith particle pibest =
(pi1 , ..., pid) and the global best-visited position pgbest =
(pg1 , ..., pgd).The velocity and position update formulas for

each particle are given by [22]:

vi(t+ 1) = w · vi(t) + c1φ1(pibest − xi(t))+
c2φ2(pgbest − xi(t))

xi(t+ 1) = xi(t) + vi(t+ 1)

(2)

where c1 and c2 are positive constants (we use c1 = c2 = 2
[22]); φ1 and φ2 are sampled from U [0, 1]. In this equation,
w is the inertia weight which determines the influence
of the velocity at the previous time-step. PSO can be
sensitive to the choice of inertia weight, as this parameter
affects the exploration-exploitation trade-off of the search.
Evidence supports the choice of chaotic inertia weight [29],
defined: w = (w1 − w2)MaxIterations−t

MaxIterations + w2 · z, with
z = 4 · z0 · (1 − z0), z0 ∼ U [0, 1], w1 = 0.4, w2 = 0.9. The
basic idea with this particular inertia weight is that w is
stochastically increased as a linear sequence beginning at
w1 and ending at w2 over the course of the search; in this
manner, this choice of w encourages exploration early in
the search.

Algorithm 1 Continuous PSO

1: for t in {1,...,MaxIterations} do
2: randomly initialize the position of all the particles

{xi} in the swarm
3: evaluate the performance of each particle with respect

to the objective function: f(xi)
4: if f(x+ i) > pibest then
5: pibest = f(xi)
6: end if
7: if f(x+ i) > pgbest then
8: pgbest = f(xi)
9: end if

10: set vi(t + 1) = w · vi(t) + c1φ1(pibest − xi(t)) +
c2φ2(pgbest − xi(t))

11: set xi(t+ 1) = xi(t) + vi(t+ 1)
12: end for

B. Binary PSO

Kennedy and Eberhart additionally introduced a binary
variation of the PSO alogrithm [20]. The key distcion with
binary PSO is that velocities are mapped to probabilities that
a particle bit will flip to one. The normalization function they
use to compute these probabilities is a standard sigmoid:

v′ij(t) = sig(vij(t)) =
1

1 + e−vij(t)
(3)

The particle update formula is accordingly defined as
follows:

xij(t+ 1)

{
1 if rij < sig(vij(t))

0 otherwise
(4)

where rij ∼ U [0, 1]. Khanesar et al. [22] propose several
improvements to the baseline binary PSO algorithm; these
changes were further tested and validated through several

challenging optimization experiments. Chief among these
differences is the interpretation of particle velocity. As in
the original continuous PSO algorithm, the new binary
PSO algorithm maintains velocity as the rate at which the
particle changes its bit value (the original Kennedy and
Eberhart version of binary PSO velocity in fact affects
the exploration-exploitation trade-off in a manner that is
antithetical to its intended use, see [22]). In short, Khanesar
et al. define the (velocity) probability of a change in the jth
bit of the ith particle:

vcij

{
v1ij , if xij = 0

v0ij , if xij = 1
(5)

These probabilities of a bit flip are defined as functions
of the inertia weight, the current velocity and information
conveyed through the social and cognitive components of
the particle search history, i.e. the global best and personal
best states encountered, as described above. The full set of
update formulas (see [22] for comprehensive derivation) is
given by:

v1ij = wv1ij + d1ij,1 + d1ij,2

v0ij = wv0ij + d0ij,1 + d0ij,2
(6)

where:

if pjibest = 1, then d1ij,1 = c1r1, d
0
ij,1 = −c1r1

if pjibest = 0, then d0ij,1 = c1r1, d
1
ij,1 = −c1r1

if pjgbest = 1, then d1ij,2 = c2r2, d
0
ij,2 = −c2r2

if pjgbest = 0, then d0ij,2 = c2r2, d
1
ij,2 = −c2r2

(7)

Here d0ij,2 and d1ij,2 are temporary values; c1 and c2 are fixed,
as described previously, and r1, r2 ∼ U [0, 1]. In summary,
formulas (6) and (7) encode stochastic rules which guide the
search by encouraging probabilities of a bit flip to cohere
with both global and individual search history information.

Finally, the next particle state is computed as:

xij(t+ 1) =

{
xij(t) + 1 mod 2 if rij < v′ij(t)

xij(t) if rij > v′ij(t)
(8)

where rij ∼ U [0, 1]. We summarize the Binary PSO
algorithm below.

C. Binary Global-Local PSO

Despite the efficiencies introduced in both the original
PSO and binary PSO algorithms, these techniques are still
nevertheless susceptible to converging to local extrema. This
issue is unfortunately compounded in the current problem
domain of searching for configurations of CA that solve the
density and chaotic problems, as these search spaces are
both sparse and highly discontinuous. To remedy some of
the deficiencies of PSO and binary PSO in this space, we
introduce a novel variant of PSO, the Binary Global-Local
PSO.

The key changes that we introduce in the BGL-PSO
algorithm include the addition of swarm ”locality” via
neighborhoods. For the duration the BGL-PSO algorithm,

Algorithm 2 Binary PSO

1: for t in {1,...,MaxIterations} do
2: randomly initialize the position of all the particles

{xi} in the swarm
3: evaluate the performance of each particle with respect

to the objective function: f(xi)
4: if f(x+ i) > pibest then
5: pibest = f(xi)
6: end if
7: if f(x+ i) > pgbest then
8: pgbest = f(xi)
9: end if

10: update velocity of particles according to formulas (6)
and (7)

11: calculate the change bits velocity, vcij
12: generate rij ∼ U [0, 1]; update position of particle

using (8)
13: end for

we define a topological structure across the swarm. This
structure gives rise to ”neighborhoods”, where each particle
is assigned a fixed index in Z/N = {0, ..., N − 1}, where
N indicates the size of the swarm, S. The neighborhood of
a particle xi is then defined: Nbh(xi) = {xj ∈ S s.t. |i −
j| ≤ ∆Nbh}, where ∆Nbh is a neighborhood size tolerance
parameter.

In addition to the social and cognitive components present
in the original PSO algorithm, we introduce the notion
of a topological neighborhood that yields a local-social
parameter, denoted pls. We leverage this parameter in the
course of a search to encourage the swarm to perform several
local searches in parallel, whilst still receiving information
from a ”global” source encoded via pgbest. We furthermore
include a mutation process in our algorithm to help address
the severe discontinuities present in the CA search space
problem domain. For each particle update step in our
algorithm, we accordingly sample from a mutation pmf that
determines the number of bits to randomly flip (we use a pmf
that is strongly right-tailed so as to maintain a non-aggressive
mutation procedure).

We use the following update formulas for the BGL-POS
algorithm:

v1ij = wv1ij + d1ij,1 + (d1ij,2 + d1ij,3)÷ 2

v0ij = wv0ij + d0ij,1 + (d0ij,2 + d0ij,3)÷ 2
(9)

here pjils represents the jth bit of max(f(Nbh(xi))); if
pjils = 1, then d1ij,3 = c2r3, d

0
ij,3 = −c2r3 and if pjils = 0,

then d0ij,3 = c2r3, d
1
ij,3 = −c2r3, for r3 ∼ U [0, 1].

We describe the BGL-POS in full below.

IV. GENETIC ALGORITHMS

For comparison, we likewise apply GAs to the task of
evolving CA for density estimation and chaos generation.
The purpose of comparing PSO and GAs for these
CA-related tasks is not to determine whether one approach

Algorithm 3 BGL-PSO

1: for t in {1,...,MaxIterations} do
2: randomly initialize the position of all the particles

{xi} in the swarm
3: evaluate the performance of each particle with respect

to the objective function: f(xi)
4: if f(x+ i) > pibest then
5: pibest = f(xi)
6: end if
7: if f(x+ i) > pgbest then
8: pgbest = f(xi)
9: end if

10: if max(f(Nbh(xi))) > pls then
11: pls = max(f(Nbh(xi)))
12: end if
13: update velocity of particles according to formula (9)
14: calculate the change bits velocity, vcij
15: generate rij ∼ U [0, 1]; update position of particle

using (8)
16: sample from mutation pmf; flip bits of particle

accordingly
17: end for

is incontrovertibly superior; instead, we wish to highlight
their (sometimes nuanced) differences, and in particular to
offer a potential improvement to PSO in the challenging
domain of large, sparse search spaces with a high degree of
discontinuity and non-convexity. Relative to PSO, GAs are
a well-known algorithm archetype; for readers interested in
a comprehensive treatment of GAs, we recommend: [30,31].
We henceforth assume the reader has a basic understanding
of the GA paradigm, which is summarized below.

Following [21,23] we apply a GA for the ρc = 1/2 task
with r = 3 (the CA neighborhood rule set size), which
yields a search space of size 2128, which is prohibitive for
exhaustive search. In addition, we let N = 149 (the width
of the CA input), and, as previously mentioned, we set
T = 150 (the maximum number of CA computation steps).
We additionally apply these same parameter settings to the
chaos generation problem.

The GA population is initialized as a set of 100 random
binary strings of length 128. Again, following [23], the
fitness rule F100 is defined as the fraction of 100 randomly
chosen ICs from the ”flat” uniform distribution ρ ∼ U [0, 1]
(the ICs are randomly sampled anew each generation)
which were ”classified” correctly. We remind the reader that
classification entails the following: if ρ0 is the true proportion
of 1s contained in the IC, and ρ0 > ρc, then within
T computation steps, the CA should generate all 1s. The
justification for using the ”flat” uniform distribution in place
of random distribution sampled independently for each bit,
is that the latter distribution will be biased, since it is heavily
weighted at ρ = 1/2; in this way the flat uniform distribution
is a more robust representation of the variation inherent
to the density classification problem. After evaluating each

CA in the initial population using F100, we retain (without
modification) the top 20% ”elite” group in the population; we
create the remainder of the new offspring using single-point
crossover using samples (with replacement) of chromosomes
pooled uniformly from this elite group. These offspring are
each mutated at exactly two randomly chosen positions. This
process was repeated for 200 epochs.

Algorithm 4 GA

1: for t in {1,...,MaxIterations} do
2: randomly initialize the initial population of binary

strings (initial chromosomes)
3: sample 100 ICs from the ”flat” uniform distribution:

ρ ∼ U [0, 1]
4: evaluate the performance of each chromosome using

F100

5: retain top 20% of the elites from population; apply
single-point crossover from elite group using sampling
with replacement

6: apply mutation to each offspring at exactly two
randomly chosen positions

7: end for

V. EXPERIMENTAL RESULTS

We apply binary PSO, BGL-PSO and GAs to the CA
density estimation and chaos generation tasks with common
parameter settings r = 3, N = 149, T = 150, over 200
epochs, across 10 independent trials in each case. Both PSO
algorithms utilize chaotic inertia weight schemes; we set
c1 = c2 = 2 as is conventional for PSO; we furthermore
set ∆Nbh = 5 for BGL-PSO. The mean of the best fitness
values for each method (F100 and NCp−t, respectively) at
the conclusion of the search following 200 epochs is shown
in Table 1.

Given the difficulty of the search problem, each algorithm
performed well in general. However, in each case the
GA-based search outperformed both the binary PSO and
BGL-PSO algorithms. Figures 5 and 6 demonstrate results of
a typical search for each task for the GA algorithm. Figures 7
and 8 show CA output on the best-performing chromosome
on each task generated by GA search. We conjecture that GA
search dominated PSO-based methods for the given tasks
due in part to the non-contiguous ”jumps” engendered by
the genetic crossover operation, and that this non-contiguous
behavior is beneficial in the current large, non-convex search
space. While PSO was – absent aggressive non-local jumping
– more prone to be caught in local extrema, many times these
local extrema were nonetheless found relatively early in the
search with PSO; moreover, although the GA was typically
more effective at finding a single best candidate solution, the
PSO algorithm by contrast commonly found more instances
of different quality solutions. Our BGL-PSO algorithm also
consistently outperformed the binary PSO algorithm for the
given CA-related tasks.

Fig. 5: Representative GA search result plot for density
classification task showing best fitness score (F100) per epoch.

Fig. 6: Representative GA search result plot for chaos generation
showing best fitness score (NCp−t) per epoch.

Fig. 7: Example CA computation for GA-based candidate on
density classification task (F100 = 1.00), given random IC with
ρ0 < 0.5.

Density (F100) Chaos (NCp−t)
Binary PSO 0.51 0.773410
BGL-PSO 0.62 0.777963
GA 0.90 0.779528

TABLE I: Summary of mean fitness over 10 trials at 200 epochs
each of best candidate for Binary PSO, BGL-PSO and GA search
algorithms applied to density classification and chaos generation
CA-based tasks.

Fig. 8: Example CA computation for GA-based candidate on chaos
generation task (NCp−t = 0.781003) given IC 0̄.

VI. REFERENCES

[1] Druon, S. et al. Efficient cellular automata for 2D /
3D free-form modeling. Journal of WSCG. 2003, vol. 11,
no. 1-3.

[2] Bandini, S. et al. Cellular Automata: From a
Theoretical Parallel Computational Model to its Applications
to Complex Systems. Parallel Computing 27 (2001) 539-553.

[3] Burstedde, C. et al. Simulation of Pedestrian Dynamics
Using a 2-D Cellular Automaton. Physica A: Statistical
Mechanics and its Applications Volume 295, Issues 34, 15
June 2001, Pages 507-525.

[4] Adriana Popovici and Dan Popovici. Cellular
Automata in Image Processing. AMS 2000 MSC: 68Q80,
68U10.

[5] Pradipta Maji, Chandrama Shaw, Niloy Ganguly,
Biplab K. Sikdar, and P. Pal Chaudhuri. 2003. Theory and
Application of Cellular Automata For Pattern Classification.
Fundam. Inf. 58, 3-4 (August 2003), 321-354.

[6] Rickert, M. et al. Two lane traffic simulations using
cellular automata. Physica A: Statistical Mechanics and its
Applications Volume 231, Issue 4, 1 October 1996, Pages
534-550.

[7] Hwang, Minki et al. Rule-Based Simulation of
Multi-Cellular Biological SystemsA Review of Modeling
Techniques. Cell Mol Bioeng. 2009 Sep; 2(3): 285294.

[8] Sirakoulis, G. Ch. et al. A cellular automaton model
for the effects of population movement and vaccination

on epidemic propagation. Ecological Modelling 133 (0000)
209223.

[9] Kazuhiro Hikami1, Rei Inoue1, and Yasushi Komori.
Crystallization of the Bogoyavlensky Lattice. J. Phys. Soc.
Jpn. 68, pp. 2234-2240 (1999).

[10] Hoffman, Peter. Towards an ”automated art”:
Algorithmic processes in Xenakis’ compositions.
Contemporary Music Review, 21:2-3, 121-131.

[11] Mitchell, Melanie, Peter T. Hraber, and James
P. Crutchfield. ”Revisiting the Edge of Chaos: Evolving
Cellular Automata to Perform Computations.” SFI Working
Paper 1993-03-014 (1993).

[12] Von Neumann, J. and A. W. Burks (1966). Theory
of self-reproducing automata. Urbana, University of Illinois
Press.

[13] Konrad Zuse, 1969. Rechnender Raum.
Braunschweig: Friedrich Vieweg and Sohn.

[14] Codd, Edgar F. (1968). Cellular Automata. Academic
Press, New York.

[15] Games, M. (1970). The fantastic combinations of
John Conways new solitaire game life by Martin Gardner.
Scientific American, 223, 120123.

[16] Rendell, Paul. A Universal Turing Machine in
Conway’s Game of Life. International Conference on High
Performance Computing and Simulation (2011), pp 764-772.

[17] Cook, Matthew (2004). ”Universality in Elementary
Cellular Automata.” Complex Systems. 15: 140.

[18] Sipper, Moshe; Tomassini, Marco (1996).
”Generating parallel random number generators by cellular
programming”. International Journal of Modern Physics C.
7 (2): 181190.

[19] 2002. A New Kind of Science. Wolfram Media Inc.,
Champaign, Ilinois, US, United States.

[20] James Kennedy and Russell Eberhart. Particle Swarm
Optimization. Neural Networks, 1995. Proceedings., IEEE
International Conference.

[21] Das, Rajarshi, P. James, Melanie Mitchell, and
James E. Hanson. ”Evolving Globally Synchronized Cellular
Automata.” SFI Working Paper 1995-01-005 (1995).

[22] Khanesar, Mojtaba et al. A novel binary particle
swarm optimization. Mediterranean Conference on Control
and Automation. (2007).

[23] Mitchell, Melanie et al. Evolving Cellular Automata
with Genetic Algorithms: A Review of Recent Work.
Proceedings of the First International Conference on
Evolutionary Computation and Its Applications (EVCA).
(1996).

[24] Zenil, Hector. Asymptotic Behavior and Ratios of
Complexity in Cellular Automata. International Journal of
Bifurcation and Chaos. (2013).

[25] L. Peter Deutsch (May 1996). DEFLATE Compressed
Data Format Specification version 1.3. IETF. p. 1. sec.
Abstract.

[26] Storer, James A.; Szymanski, Thomas G. (October
1982). ”Data Compression via Textual Substitution”. Journal
of the ACM. 29 (4): 928951.

[27] Huffman, D. (1952). ”A Method for the Construction
of Minimum-Redundancy Codes” (PDF). Proceedings of
the IRE. 40 (9): 10981101.

[28] James Kennedy and Russell Eberhart. A Discrete
Binary Version Of The Particle Swarm Algorithm - Systems,
Man, and Cybernetics, 1997. ’Computational Cybernetics
and Simulation’. (1997).

[29] Feng, Yong et al. Chaotic Inertia Weight in Particle
Swarm Optimization. Second International Conference on
Innovative Computing, Informatio and Control (ICICIC
2007).

[30] Holland, John (1992). Adaptation in Natural and
Artificial Systems. Cambridge, MA: MIT Press.

[31] Mitchell, Melanie (1996). An Introduction to Genetic
Algorithms. Cambridge, MA: MIT Press.

