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Abstract—Restricted Boltzmann Machines (RBM) are stochas-
tic neural networks mainly used for image reconstruction
and unsupervised feature learning. An enhanced version, the
temperature-based RBM (T-RBM), considers a new temperature
parameter during the learning process that influences the neu-
rons’ activation. Nevertheless, the major vulnerability of such
models concerns selecting an adequate system’s temperature,
which might lead them to inadequate training or even overfitting
when wrongly set, thus limiting the network from predicting or
working effectively over unseen data. This paper addresses the
problem of selecting a suitable system’s temperature through a
meta-heuristic optimization process. Meta-heuristic-driven tech-
niques, such as Particle Swarm Optimization, Bat Algorithm, and
Artificial Bee Colony are employed to find proper values for the
temperature parameter. Additionally, for comparison purposes,
three standard temperature values and a random search are
used as baselines. The results revealed that optimizing T-RBM
is suitable for training purposes, primarily due to their complex
fitness landscape, which makes fine-tuning temperatures a non-
trivial task.

Index Terms—Image Reconstruction, Restricted Boltzmann
Machine, Temperature-based Systems, Meta-Heuristic Optimiza-
tion

I. INTRODUCTION

Even with the fostering of machine learning techniques,
there are still many debatable problems on how to produce
accurate representations of the real world, such as recognizing
and classifying objects. These techniques have been widely
researched in the last years, establishing several hallmarks
in a broad range of applications, such as handwriting, face,
emotion, and speech recognition, among others.

Most of the techniques usually cope with the parameter
set up step, which may give some degree of freedom to
work on different problems. In the context of parametrized
machine learning techniques, one shall refer to two different
denominations: (i) parameters and (ii) hyperparameters. Usu-
ally, the first term stands for low-level parameters that are
not controlled by the user, such as the connection weights in
neural networks. The latter term refers to high-level parameters
that can be adjusted and chosen by the user, such as the
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temperature, learning rate, and the number of hidden neurons,
among others. Both terms are of crucial importance to amend
the performance of neural models.

The problem of hyperparameter fine-tuning in machine
learning models as a meta-heuristic-driven optimization task
has only received attention recently. In 2012, Fedorovici
et al. [1] employed the Gravitational Search Algorithm [2]
to fine-tune Convolutional Neural Networks (CNN) [3] in
the context of optical character recognition. Papa et al. [4]
employed Harmony Search in the context of meta-parameters
fine-tuning concerning RBM, Discriminative RBM [5], and
Deep Belief Networks [6]. Finally, Passos et al. [7] attempted
to address this problem in the context of temperature-based
Deep Boltzmann Machines.

Another technique has been a considerable spotlight in
recent years due to its simplicity, high level of parallelism,
and robust representation ability [8]. Restricted Boltzmann
Machines (RBM) can be assumed as stochastic neural net-
works mainly used for image reconstruction and collaborative
filtering through unsupervised learning [9]. Recently, an im-
proved version has been proposed by Li et al. [10], the so-
called “temperature-based RBM” (T-RBM), which employs
a new temperature parameter during the learning process to
manipulate the neurons’ activation.

Nevertheless, RBM usually suffers from overfitting under
the lack of data, which may cause premature convergence
and thus poor generalization over unseen data. In order to
overcome this issue, different approaches can be highlighted,
such as regularization, data augmentation, and hyperparameter
fine-tuning. In this paper, the problem of fine-tuning the
temperature parameter in T-RBM is modeled as a meta-
heuristic-driven optimization task, in which agents encode the
values of the temperature in a search problem guided by the
reconstruction error over training images. As far as we are
concerned, this is the first work that attempted to address
the problem of fine-tuning the temperature parameter in T-
RBM. In order to validate the proposed approach, we opted
to employ Particle Swarm Optimization (PSO) [11], Artificial
Bee Colony (ABC) [12] and the Bat Algorithm (BA) [13],
since these are well-known and consistent meta-heuristic op-
timization techniques in the literature. Therefore, the main
contributions of this paper are twofold: (i) to introduce meta-
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heuristic techniques to the context of fine-tuning temperature
in T-RBM, and (ii) to fill the lack of research regarding
temperature-based RBM.

The remainder of this paper is organized as follows. Sec-
tions II and III present some theoretical background concern-
ing RBM, T-RBM, and PSO, respectively, while Section IV
discusses the methodology employed in this work. Section V
presents the experimental results and Section VI states con-
clusions and future works.

II. RESTRICTED BOLTZMANN MACHINES

Restricted Boltzmann Machines are stochastic neural net-
works based on energy principles guided by physical laws
and characterized by energy, entropy, and temperature factors.
Most of the time, these networks learn in an unsupervised
fashion and are applicable to a wide variety of problems that
range from image reconstruction, collaborative filtering, and
feature extraction to pre-training deeper networks.

In terms of architecture, RBM contain a visible layer v with
m units and a hidden layer h with n units. Additionally, a real-
valued matrix Wm×n models the weights between the visible
and hidden neurons, where wij represents the connection
between the visible unit vi and the hidden unit hj . Figure 1
describes the well-know vanilla RBM architecture.

h
h …

v

1 h2 hn

vm…v3v2v1

W Wij

Fig. 1. The vanilla RBM architecture.

Mainly, the visible layer receives the data for processing,
while the hidden layer learns its pattern and probabilistic
distribution. Additionally, assume all units from layers v and
h are binary and derived from a Bernoulli distribution [8], i.e.,
v ∈ {0, 1}m and h ∈ {0, 1}n. Equation 1 models the energy
function of an RBM:

E(v,h) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
m∑
i=1

n∑
j=1

vihjwij , (1)

where a and b represent the biases of visible and hidden units,
respectively.

Furthermore, Equation 2 models the joint probability of a
given configuration (v,h):

P (v,h) =
e−E(v,h)

Z
, (2)

where Z is the partition function, which normalizes the proba-
bility over all possible configurations, considering visible and
hidden units. Moreover, Equation 3 represents the marginal
probability of an input (visible units) vector:

P (v) =

∑
h

e−E(v,h)

Z
. (3)

Note that the RBM is a bipartite graph, allowing the in-
formation to flow in a non-directional manner, from visible to
hidden neurons and vice versa. With this property, it is possible
to formulate mutually independent activations for both units.
Equations 4 and 5 describe their conditional probabilities:

P (v|h) =

m∏
i=1

P (vi|h) (4)

and

P (h|v) =

n∏
j=1

P (hj |v), (5)

where P (v|h) and P (h|v) stand for the probability of the
visible layer given the hidden states and probability of the
hidden layer given the visible states, respectively.

From Equations 4 and 5, it is possible to obtain the
probability of activating a single visible neuron i given the
hidden states, and the probability of activating a single hidden
neuron j given the visible states. Equations 6 and 7 describe
these activations:

P (vi = 1|h) = σ

 n∑
j=1

wijhj + ai

 (6)

and

P (hj = 1|v) = σ

(
m∑
i=1

wijvi + bj

)
, (7)

where σ(·) stands for the logistic-sigmoid function.
Fundamentally, an RBM needs to learn a set of parameters

θ = (W ,a, b) through a training algorithm. One can observe
this approach as an optimization problem, which aims to
maximize the product of data probabilities for all the training
set V , as stated below:

arg max
Θ

∏
v∈V

P (v). (8)

An interesting approach to model this problem is applying
the negative of the logarithm function, represented by the Neg-
ative Log-Likelihood (NLL), which represents the distribution
approximation of the reconstructed data over the original data.
Therefore, one can employ the partial derivatives of W , a
and b at iteration t to cope with this problem. Equations 9, 10
and 11 describe the parameters update rules:

W t+1 = W t + η(vP (h|v)− ṽP (h̃|ṽ)), (9)



at+1 = at + (v − ṽ) (10)

and

bt+1 = bt + (P (h|v)− P (h̃|ṽ)), (11)

where η stands for the learning rate, ṽ stands for the re-
construction of the visible layer given h, and h̃ denotes an
estimation of the hidden vector h given ṽ.

One interesting proposition by Hinton et al. [14] is to use
the training data as the initial visible units, also known as the
Contrastive Divergence (CD), which uses the Gibbs sampling
method to infer the hidden and visible layers.

A. Temperature-based Restricted Boltzmann Machines

An RBM is an approximation of a physical system that
interacts with the environment (data). As the temperature
factor plays a significant role in influencing the environment,
it is also remarkable that the temperate factor affects how the
data distribution is modeled.

One can rewrite Equations 6 and 7 into Equations 12 and 13,
respectively, and include the temperature factor as follows:

P (vi = 1|h) = σ

(∑n
j=1 wijhj + ai

T

)
(12)

and

P (hj = 1|v) = σ

(∑m
i=1 wijvi + bj

T

)
. (13)

Considering the equations mentioned above, T is responsi-
ble for scaling the system energy and changing the shape of the
probability distribution. Also, it is a new hyperparameter that
is empirically set or optimized. In other words, it is possible
to explore the parameter influence in the learning process,
searching for different values that may help the system to learn
better features and reduce the reconstruction error.

III. META-HEURISTIC OPTIMIZATION

A. Artificial Bee Colony

Artificial Bee Colony is a nature-inspired algorithm based
on honey bee swarms, which is composed of three distinct
groups of bees: employees, onlookers, and scouts. Each group
has particular importance and function to the swarm, such
as choosing a food source, going to the food source, and
randomly searching food in new areas [12]. Additionally, the
whole bee colony is split in half into employees1 and onlookers
bees. Moreover, when the employee bee exhausts its food
source, it becomes a scout bee.

Let S = (s1, s2, . . . , sM ) be a set of food sources such
that si ∈ <N stands for the position of food source i. Also,
let T = (t1, t2, . . . , tM ) be the number of cycles for each
food source, known as the “food source trials”, which is
regulated by the n_trials parameter. After exploring a food

1An employee bee is only responsible for a single food source.

source or discovering a newer one, bees share their discovered
information about the nectar (food). Hence, an onlooker bee
chooses a nectar source based on a probability associated with
its achieved fitness, as formulated below:

pi =
Fi∑M

k=1 Fk

, (14)

where Fi is the fitness value of food source i.
Finally, one can use Equation 15 to formulate a new food

source position, as follows:

si = si + φ(si − sk), (15)

where i 6= k and φ ∈ [−1, 1] denotes a random value that
controls the bee visualization of other food sources.

B. Bat Algorithm

Bat Algorithm is a biological-inspired algorithm proposed
by Yang et al. [13] primarily used for solving engineering op-
timization tasks. It takes into account the advanced capability
of the bats’ echolocation system, where they have a sonar-like
mechanism that enables them to detect food, avoid obstacles,
and communicate among themselves.

Mathematically speaking, let B = (b1, b2, . . . , bM ) be a set
of bats that compose the swarm, such that bi = (xi, zi), where
xi ∈ <N and zi ∈ <N stand for the position and velocity of
bat i, respectively. Additionally, each bat is associated with a
frequency value of f ∈ [fmin, fmax], a loudness value of A
and a pulse rate of r. Each bat is initialized with random values
for its position, velocity, and frequency. During each iteration,
Equations 16, 17 and 18 are responsible for updating their
frequency, velocity and position values, respectively:

fi = fmin + (fmax − fmin)β (16)

and

zt+1
i = zti + (xt

i − x̂)fi, (17)

and

xt+1
i = xt

i + zt+1
i , (18)

where β is a uniform random number between [0, 1], and x̂
denotes the current best global position (solution).

Furthermore, if a bat’s pulse rate is smaller than a sampled
probability p, e.g., ri < p, a new solution is generated
around the current best solution. Equation 19 formulates this
procedure, as follows:

xt+1
i = x̂+ εĀ, (19)

where ε is a random value between [−1, 1], and Ā is the mean
loudness of all bats in the swarm.



C. Particle Swarm Optimization

Particle Swarm Optimization is a swarm-based intelligence
algorithm inspired by social behavior dynamics [11]. The idea
behind employing social behavior learning is to allow each
possible solution to move onto the search space, combining
details from its previous and current locations with the ones
provided by other swarm particles. One can understand this
process as a simulation of the social interaction of birds
looking for food or even humans trying to achieve a common
objective.

Let D = (d1, d2, . . . , dM ) be a set of particles that compose
the swarm, such that di = (ψi,ρi), where ψi ∈ <N and
ρi ∈ <N stand for the position and velocity of particle i,
respectively. Also, for each particle, we know its best local
solution ψ̂, as well as the best solution (global) of the entire
swarm g. Each particle is initialized with random values for
both velocity and position. Hence, each individual is evaluated
with respect to a given fitness function, thus having its local
minimum updated. At the end, the global minimum for each
decision variable is updated with the value of the particle
that achieved the best position in the swarm. This process is
repeated until a convergence criterion is satisfied. Equations 20
and 21 present the update formulation concerning the velocity
and position of particle i at time step t, respectively:

ρt+1
i = µρti + c1r1(ψ̂i −ψ

t
i) + c2r2(g −ψt

i) (20)

and

ψt+1
i = ψt

i + ρt+1
i , (21)

where µ is the inertia weight that controls the interaction
among particles, and r1, r2 ∈ [0, 1] are random variables that
give a stochastic trait to PSO. Additionally, variables c1 and
c2 are constants that conduct the swarm’s members onto the
search space.

IV. METHODOLOGY

In this section, we present the proposed approach to fine-
tune the temperature parameter concerning T-RBM, as well as
describe the employed datasets and the experimental setup.

A. Modeling T-RBM Temperature Optimization

We propose to model the problem of selecting a suitable
temperature parameter considering T-RBM in the task of
binary image reconstruction. As aforementioned in Section II,
the learning step has three parameters: the learning rate η, the
number of hidden units n, and the system’s temperature T .
As we are interested in fine-tuning the temperature only, we
fixed the tuple (η, n) and played with parameter T in order to
minimize the mean squared error (MSE) of the reconstructed
training images.

For that purpose, we applied T on the probabilities sampled
during the contrastive divergence process, once the aim is
to support the model to converge. After that, the selected
temperature parameter is applied to reconstruct the unseen

images of the test set. One can observe that temperature may
act as a regularizer since it can modulate the weights during
the learning process, thus allowing the model to adjust to data
better.

B. Datasets

We considered three datasets in the experimental section, as
follows:
• MNIST2 [3]: set of 28 × 28 grayscale images of hand-

written digits. The original version contains a training set
with 60, 000 images from digits ‘0’-‘9’, as well as a test
set with 10, 000 images.

• Fashion-MNIST3 [15]: set of 28×28 grayscale images of
clothing objects. The original version contains a training
set with 60, 000 images from 10 distinct objects (t-shirt,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boot), as well as a test set with 10, 000 images.

• Kuzushiji-MNIST4 [16]: set of 28× 28 grayscale images
of hiragana characters. The original version contains a
training set with 60, 000 images from 10 previously
selected hiragana characters, as well as a test set with
10, 000 images.

Furthermore, Figure 2 illustrates mosaics of 100 random
training samples for every dataset.

(a) (b) (c)
Fig. 2. Random training samples from (a) MNIST, (b) Fashion-MNIST and
(c) Kuzushiji-MNIST datasets.

C. Experimental Setup

We fixed each T-RBM5 architecture parameters according
to Table I. Concerning the temperature rates, we set T ∈
[0.1, 1.5], which means we used such ranges to initialize the
optimization techniques. Such a range of values was chosen
by previous experimental analysis.

Note that the baseline experiments also use the very same
configurations. The main difference lies in the value of T ,
where the ‘low-temperature’ T-RBM uses T = 0.1 (Rlow),
the ‘no-temperature’ (Rno) T-RBM6 uses T = 1, and the
‘high-temperature’ version uses T = 1.5 (Rhigh). We also
have employed 5 epochs for the T-RBM learning weights
procedure with mini-batches of size 128. This number of
epochs was chosen considering our interest in evaluating

2http://yann.lecun.com/exdb/mnist
3https://github.com/zalandoresearch/fashion-mnist
4https://github.com/rois-codh/kmnist
5The T-RBM is available in Learnergy:

https://github.com/gugarosa/learnergy
6Such a version stands for the traditional RBM.



TABLE I
T-RBM PARAMETERS CONFIGURATION.

Parameter Value

n (number of hidden neurons) 128, 256, 512

η (learning rate) 0.1

T (temperature) 0.1, 1, 1.5

the meta-heuristics performance, instead of the “long term”
RBM learning. All T-RBMs were trained with the Contrastive
Divergence [14] algorithm, with k = 1 (CD-1).

For every dataset, each meta-heuristic7 was evaluated under
a training and testing sets, as the original datasets suggest8.
Additionally, for every meta-heuristic, 15 agents (particles)
were used over 20 convergence iterations. To provide a
thorough and fair comparison among meta-heuristics in the
context of T-RBM temperature parameter fine-tuning, we have
chosen different techniques, ranging from swarm-based to
evolutionary-inspired ones:
• Artificial Bee Colony (ABC);
• Bat Algorithm (BA); and
• Particle Swarm Optimization (PSO).
Table II exhibits the parameter configuration for every meta-

heuristic technique9. Moreover, we conducted an additional
baseline experiment through a random search, i.e., a temper-
ature value sampled randomly from a uniform distribution.

TABLE II
META-HEURISTIC ALGORITHMS PARAMETERS CONFIGURATION.

Algorithm Parameters

ABC n_trials = 10

BA f = [0, 2] | A = 0.5 | r = 0.5

PSO µ = 0.7 | c1 = 1.7 | c2 = 1.7

To perform a reasonable comparison among distinct meta-
heuristic techniques, we must rely on mathematical methods
that will sustain these observations. The first step is to decide
whether to use a parametric or a non-parametric statistical
test [17]. Unfortunately, we can not consider a normality state
from our experiments due to insufficient data and sensitive
outliers, restraining our analysis to non-parametric approaches.

Secondly, acknowledging that our experiments’ results are
independent (e.g., reconstruction error) and continuous over a
particular dependent variable (e.g., number of observations),
we can identify that the Wilcoxon signed-rank test [18] will
satisfy our obligations. It is a non-parametric hypothesis test

7All meta-heuristics are available in Opytimizer:
https://github.com/gugarosa/opytimizer

8Each dataset was evaluated 10 times in the attempt to mitigate the RBMs
stochastic nature.

9Note that these values were empirically chosen according to their author’s
definition.

used to compare two or more related observations (in our case,
repeated measurements over a certain meta-heuristic) to assess
whether there are statistically significant differences between
them.

V. EXPERIMENTAL RESULTS

Table III presents the reconstruction error and the associated
standard deviation values over the test set, considering all
techniques, architectures, and datasets. Remember that, in
order to perform a fair comparison among all T-RBMs, we
evaluated a new T-RBM using the mean best temperatures
found by each meta-heuristic. Furthermore, we calculated their
mean and standard deviation values to compose the final
results (e.g., PSO found 10 best temperatures, thus producing a
mean best temperature, which is further used to evaluate a new
T-RBM. The output of each T-RBM was used to calculate the
mean, standard deviation, and Wilcoxon’s test). Finally, every
statistically similar result, according to Wilcoxon’s signed-rank
test (5% significance), is presented in bold.

First of all, from Table III, it is notable that increasing the
models’ hidden units, it tends to learn better and generate
images with lower reconstruction errors. We can still observe
that the meta-heuristic optimizations achieved the lowest mean
reconstruction errors and small standard deviations in the
test set regarding almost all datasets, architectures, and base-
line approaches. Also, notice that these algorithms obtained
satisfactory results even in a low-dimensional search space.
Observing the baselines Rlow, Rno, and Rhigh, it is possible to
note, for all datasets, that an increasing in temperature value
also increases the MSE, being T = 1.5 the worst one. This fact
is explained by the scaling caused by the temperature factor,
which tends to increase or decrease the sampling range, i.e.,
the probabilities of activating or not the neurons.

However, one can note that for Kuzushiji-MNIST, the fewer
neurons RBMs have, the more similar are the results. Such a
fact points out that, probably, the search space for less hidden
neurons has a deeper local minimum, which made the results
so similar.

Additionally, in Table IV, one can observe and analyze the
best temperature values achieved by the optimization process.
For the sake of space, we opted not to include the randomly
initialized temperatures in Table IV, allowing us to describe
them here. Note that they follow the same [x, y, z] pattern, and
are described over MNIST, Fashion-MNIST and Kuzushiji-
MNIST, respectively: [1.104, 0.416, 1.423], [0.564, 0.511,
1.468] and [0.683, 0.488, 0.418].

Roughly speaking, low temperatures (the denominators in
Equations 12 and 13) increase the input value to the activation
function, which causes its saturation quite fastly. The learning
process tries to overcome such an issue by decreasing the
weights, thus inducing sparsity in the model. Such a process
works similarly to other regularization approaches, such as
the so-called Dropout [19]. As expected, for each dataset,
the temperature values followed a pattern between certain
limits, showing that the optimization algorithms were able to
converge even with a lower number of iterations. Also, we



TABLE III
MEAN RECONSTRUCTION ERRORS AND THEIR RESPECTIVE STANDARD DEVIATION. EACH CELL IS COMPOSED BY [x, y, z], WHERE x, y AND z BELONGS

TO THE 128, 256 AND 512 UNITS ARCHITECTURES, RESPECTIVELY.

Technique MNIST F-MNIST K-MNIST

ABC [43.29 ± 0.15, 34.76 ± 0.09, 29.39 ± 0.05] [100.95 ± 0.34, 92.13 ± 0.15, 88.77 ± 0.23] [93.94 ± 0.23, 74.76 ± 0.15, 61.77 ± 0.10]

BA [43.20 ± 0.10, 34.71 ± 0.05, 29.45 ± 0.07] [101.14 ± 0.45, 92.25 ± 0.24, 88.71 ± 0.35] [93.79 ± 0.20, 74.81 ± 0.16, 61.63 ± 0.13]

PSO [43.36 ± 0.08, 34.76 ± 0.08, 29.33 ± 0.10] [100.64 ± 0.39, 92.14 ± 0.15, 88.72 ± 0.20] [94.00 ± 0.25, 74.84 ± 0.15, 61.67 ± 0.10]

Random [47.43 ± 0.13, 39.85 ± 0.16, 46.63 ± 0.17] [101.94 ± 0.58, 93.90 ± 0.25, 118.92 ± 0.29] [95.87 ± 0.24, 74.35 ± 0.17, 75.52 ± 0.24]

Rlow [46.81 ± 0.14, 52.05 ± 0.67, 66.18 ± 1.57] [103.23 ± 0.23, 104.29 ± 0.64, 107.83 ± 1.33] [93.54 ± 0.10, 86.84 ± 0.20, 108.19 ± 1.01]

Rno [45.49 ± 0.11, 37.73 ± 0.09, 32.43 ± 0.10] [111.19 ± 0.28, 98.39 ± 0.13, 94.28 ± 0.16] [99.46 ± 0.17, 81.56 ± 0.20, 68.37 ± 0.06]

Rhigh [58.58 ± 0.33, 55.38 ± 0.18, 48.06 ± 0.24] [125.04 ± 0.28, 123.13 ± 0.23, 119.35 ± 0.30] [127.51 ± 0.69, 123.59 ± 0.46, 116.52 ± 0.48]

TABLE IV
BEST TEMPERATURES FOUND BY META-HEURISTICS. EACH CELL IS COMPOSED BY [x, y, z], WHERE x, y AND z BELONGS TO THE 128, 256 AND 512

UNITS ARCHITECTURES, RESPECTIVELY.

MNIST F-MNIST K-MNIST

Running ABC BA PSO ABC BA PSO ABC BA PSO

1 [0.780, 0.840, 0.929] [0.712, 0.840, 0.944] [0.770, 0.844, 0.918] [0.353, 0.775, 0.905] [0.385, 0.806, 0.896] [0.448, 0.778, 0.893] [0.471, 0.713, 0.894] [0.200, 0.693, 0.896] [0.295, 0.715, 0.888]

2 [0.755, 0.849, 0.931] [0.674, 0.854, 0.944] [0.816, 0.864, 0.932] [0.349, 0.759, 0.905] [0.362, 0.801, 0.905] [0.366, 0.768, 0.902] [0.363, 0.685, 0.892] [0.138, 0.733, 0.878] [0.367, 0.679, 0.893]

3 [0.787, 0.836, 0.932] [0.772, 0.870, 0.934] [0.807, 0.876, 0.931] [0.359, 0.811, 0.906] [0.363, 0.771, 0.905] [0.425, 0.791, 0.907] [0.369, 0.735, 0.901] [0.369, 0.709, 0.886] [0.324, 0.683, 0.878]

4 [0.741, 0.844, 0.935] [0.717, 0.871, 0.927] [0.813, 0.848, 0.934] [0.390, 0.774, 0.902] [0.389, 0.765, 0.926] [0.373, 0.762, 0.898] [0.341, 0.711, 0.887] [0.220, 0.717, 0.871] [0.410, 0.719, 0.871]

5 [0.737, 0.854, 0.928] [0.763, 0.868, 0.934] [0.815, 0.863, 0.928] [0.383, 0.776, 0.905] [0.403, 0.768, 0.889] [0.386, 0.785, 0.900] [0.378, 0.703, 0.890] [0.330, 0.709, 0.866] [0.272, 0.709, 0.886]

6 [0.764, 0.881, 0.929] [0.717, 0.826, 0.946] [0.809, 0.852, 0.930] [0.370, 0.794, 0.892] [0.411, 0.784, 0.911] [0.382, 0.784, 0.903] [0.381, 0.721, 0.884] [0.390, 0.718, 0.880] [0.444, 0.709, 0.876]

7 [0.773, 0.857, 0.927] [0.713, 0.842, 0.933] [0.816, 0.856, 0.937] [0.431, 0.798, 0.903] [0.400, 0.827, 0.911] [0.360, 0.767, 0.897] [0.363, 0.737, 0.878] [0.410, 0.687, 0.892] [0.412, 0.708, 0.876]

8 [0.744, 0.827, 0.932] [0.789, 0.854, 0.943] [0.802, 0.857, 0.935] [0.411, 0.783, 0.898] [0.475, 0.801, 0.894] [0.426, 0.754, 0.891] [0.252, 0.708, 0.885] [0.193, 0.714, 0.889] [0.413, 0.742, 0.879]

9 [0.727, 0.875, 0.932] [0.771, 0.843, 0.923] [0.798, 0.843, 0.928] [0.408, 0.781, 0.899] [0.426, 0.770, 0.877] [0.324, 0.781, 0.898] [0.360, 0.744, 0.877] [0.426, 0.703, 0.877] [0.376, 0.730, 0.890]

10 [0.726, 0.873, 0.925] [0.679, 0.803, 0.943] [0.808, 0.842, 0.936] [0.406, 0.783, 0.900] [0.447, 0.794, 0.876] [0.369, 0.806, 0.914] [0.300, 0.684, 0.889] [0.459, 0.686, 0.875] [0.326, 0.730, 0.900]

Mean [0.753, 0.854, 0.930] [0.731, 0.847, 0.937] [0.805, 0.854, 0.931] [0.386, 0.783, 0.901] [0.406, 0.789, 0.899] [0.386, 0.778, 0.900] [0.358, 0.714, 0.888] [0.313, 0.707, 0.881] [0.364, 0.712, 0.884]

can perceive that each dataset has a particular temperature
rate, extremely different from T = 1, which is used by
standard RBM. As already mentioned, the temperature plays a
significant role in the RBM learning process, being a suitable
hyperparameter to be optimized.

Moreover, to provide better visualization of the optimization
process, Figures 3, 4 and 5 illustrate the average MSE conver-
gence across the learning epochs (i.e., training set) considering
MNIST, Fashion-MNIST, and Kuzushiji-MNIST, respectively.
For that purpose, we used the mean temperature values from
Table IV to training the models again and then build the
convergence charts.

From all figures, it is possible to observe that all base-
lines provide the worst reconstruction errors, highlighting the
extreme temperature values, i.e., T = 0.1 and T = 1.5.
Additionally, the meta-heuristics were able to converge better
than baseline temperatures for all datasets. Nevertheless, it
is essential to highlight that these plots evaluate the learning
procedure (training set) and use the mean temperature found
by the meta-heuristics. It can serve as auxiliary support to
understand why fine-tuning the temperature hyperparameter
might improve RBMs’ learning.

Figures 6, 7 and 8 depict some reconstructed samples using
the T-RBM with the simplest architecture, i.e., 128 hidden
units, over MNIST, Fashion-MNIST and Kuzushiji-MNIST
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Fig. 3. T-RBM, with 512 hidden units, training reconstruction error conver-
gence over MNIST dataset.

datasets, respectively, such that:

• First quadrant stands for the reconstruction with PSO’s
mean temperature;

• Second quadrant denotes the reconstruction with T =
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Fig. 4. T-RBM, with 512 hidden units, training reconstruction error conver-
gence over Fashion-MNIST dataset.
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Fig. 5. T-RBM, with 512 hidden units, training reconstruction error conver-
gence over Kuzushiji-MNIST dataset.

0.1;
• Third quadrant is the reconstruction with T = 1; and
• Fourth quadrant corresponds to the reconstruction with
T = 1.5.

As previously discussed, it is clear that temperature hyper-
parameter plays a significant role in the image reconstruc-
tion task. Furthermore, meta-heuristic optimization seems to
be a better approach regarding all baselines, as they pro-
vided smaller reconstruction errors and generated images with
sharper details.

VI. CONCLUSION

This paper discussed the problem of fine-tuning the tem-
perature in Restricted Boltzmann Machines through meta-
heuristic optimization algorithms, such as Artificial Bee
Colony, Bat Algorithm, and Particle Swarm Optimization.

Fig. 6. T-RBM, with 128 hidden units, reconstructed samples over MNIST
dataset.

Fig. 7. T-RBM, with 128 hidden units, reconstructed samples over Fashion-
MNIST dataset.

Fig. 8. T-RBM, with 128 hidden units, reconstructed samples over Kuzushiji-
MNIST dataset.

All three algorithms were able to fine-tune the temperature
parameter in all datasets, supported by the reconstructed error
decay. Moreover, it is possible to correlate the reconstruc-
tion error directly to the temperature’s choice, as RBMs are
systems that interact with the data, i.e., environments with



intrinsic characteristics. Therefore, meta-heuristics are suitable
algorithms to find proper temperatures for distinct problems,
achieving better results than naı̈ve approaches, i.e., empirically
choosing parameters.

For future works, we aim to explore the correlations be-
tween the temperature hyperparameter and the RBM learning
step deeply, as well as to consider such an approach in the
context of Deep Belief Networks (DBNs) and Deep Boltzmann
Machines (DBMs).
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