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Abstract—In radio frequency identification (RFID) networks,
designing the positions and the transmitter power parameters
of readers to achieve optimal coverage, interference, load bal-
ance, power consumption, and total cost is the task of RFID
network planning (RNP) problems, which is the core challenge
and an NP-hard optimization problem, where nature-inspired
optimization methods have been proved extremely useful. In this
paper, on account of the well-known multi-objective evolutionary
algorithm based on decomposition (MOEA/D), we propose a
Decomposition-based Multi-objective Self-adaptive Differential
Evolution algorithm (MOSDE/D), in which all these objective
functions are optimized simultaneously in a single run by
decomposition, and the improved cyclic crowding distance sorting
strategy is introduced to ensure the diversity of solutions. Our
approach is tested on standard static RFID networks and
compared with other algorithms. Our approach is better than
other compared methods in terms of the coverage, interference,
load balance, number of readers, and power consumption.

Index Terms—RFID network planning, Multi-objective differ-
ential evolution algorithm, Decomposition, EA.

I. INTRODUCTION

The Radio Frequency IDentification (RFID) technology is
widely used in automatic identification systems. It automati-
cally identifies items and transfers data between readers and
tags by wireless communication. The RFID technology has
the advantages of working in harsh environment, low cost
and fast response. According to the movement state of tags,
readers and the variability of readers’ power, RFID networks
are divided into static RFID networks and dynamic RFID
networks. Static RFID networks have been proved useful in
many industrial applications, such as supply chain manage-
ment [1], innovative application [2], and asset tracking [3]. The
research of static RFID network planning is very important
for industrial applications. It is also the subject of this paper.
A standard RFID system usually consists of tags, readers for
tags detection, and a central host system, which is used to
process the information received by readers. Generally, a RFID

network consists of many tags. Due to the scant coverage of
a single reader, it is necessary to deploy enough readers in
appropriate locations to cover all tags. This problem is called
the problem of RFID network planning (RNP), which aims
to optimize four objectives: coverage, total cost, interference,
and load balance [4]–[6]. The RNP problem has been proved
to be NP-hard [4]–[10].

The RNP problem is a typical multi-objective problem.
Generally, transforming the multiple objectives into a single
objective by the weighting methods is a strategy. However,
it is hard to set the appropriate weight to obtain optimal
solutions. Recent years, nature-inspired optimization methods
have been widely used. The most successful of them are
genetic algorithm (GA) [10]–[12] and Swarm Intelligence (SI).
In [4], Gong et al. proposed a particle swarm optimization
(PSO) combined with a reader elimination strategy to solve the
RNP problem. In [14], Tao et al. transformed three objectives,
namely coverage, signal interference and load balance, to a
single objective by a linear weighted method. They combined a
PSO algorithm and a simulated annealing algorithm to deploy
RFID readers. In [13], differential evolution is used to solve
multi-objective optimization. J. H. Seok et al. [13] were also
solve the multi-objective problem by forming an objective
through a linear weighted method. However, it is hard to set
the appropriate weights.

In this paper, we propose a multi-objective evolutionary
algorithm based on decomposition, named as Decomposition-
based Multi-objective-Self-adaptive Differential Evolution al-
gorithm (MOSDE/D), to solve the static RNP problem. We
use the decomposition strategy to solve the RNP problem as
a multi-objective problem. In other words, each objective is
considered and optimized at the same time, which improves
the performance. In addition, because the performance of
differential evolution algorithm is susceptible to parameters,
we design a parameters self-adaptive differential evolution
algorithm whose parameters are constantly modified in the
process of evolution, which makes the solution more accurate.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



The major contributions of our work include:
1. In MOSDE/D, five objectives, namely, coverage, interfer-

ence, power cost, the number of readers and load balance, are
considered simultaneously. These five objectives conflict with
each other, and the previous algorithms for the RNP have not
considered them simultaneously.

2. A self-adaptive differential evolution algorithm based on
decomposition approach is proposed to solve the RNP problem
which is a multi-objective problem. Our proposed algorithm
optimizes every objective function simultaneously in a single
run by decomposition.

3. The parameter adaptive method we propose enables
differential evolution algorithms to get better solutions for
RNP problems. Due to adopting the improved cyclic crowding
distance sorting strategy to ensure the diversity of solutions,
the performance of the algorithm is improved.

In the experiments, we test the performance of MOSDE/D in
six RNP instances, and compare with curling algorithm (CA-
RNP) for RNP problems and PSO with TRE operator. The
results show that MOSDE/D obtains better results.

The rest of the paper is organized as follows. A multi-
objective RNP problem modelling is formulated in Section II.
The self-adaptive differential evolution algorithm (MOSDE/D)
is introduced in detail in Section III. In Section IV, the
experimental results are presented. Finally, conclusions are
given in Section V.

II. MULTI-OBJECTIVE RFID NETWORK PLANNING
PROBLEM MODELLING

A. RFID system

A standard RFID system usually consists of tags, readers,
and a central host system, as shown in Fig.1.

Fig. 1. RFID system.

Readers and tags transmit data wirelessly. Tags record data,
while readers collect tags’ data and transmit them to the central
host system.

The RFID tags have two types: active tags and passive
tags. Passive tags receive electromagnetic wave from readers
and transfer the data back. Because of the characteristics and
advantages of passive tags, they are often used in reality. We
also use passive tags in this paper.

The reader provides energy to the tag through
electromagnetic waves. According to the Frist equation,
the power received by a tag from a reader Pt and the power
received by a reader from a tag Pr are defined as follows
[7]–[9],

Pt = P1 +Gt +Gr − 20log (4πd/λ) (1)

Pr = Pb +Gt +Gr − 20log (4πd/λ) (2)

where P1 is the operating power of the reader, Gt and Gr are
the antenna gain of tag and reader, d is the distance between
the reader and the tag, and λ is the wavelength. Pb is the
transmitted power of the tag. According to the Frist equation,
Pb = δ2 Pt; If Pt and Pr are simultaneously larger than
the threshold value Tt and Tr, it is considered that the tag
is covered by the reader. From the above equation, we find
that the reader can be simplified to an effective range model
when the parameters are set. The simplified reader model is
presented in Fig.2.

Fig. 2. Simplified reader model.

If the tag is within the power radius of the reader, the tag
will be covered; otherwise, the tag is uncovered.

B. Multi-objective RFID network planning

In the RFID network, there are many objectives, such as
coverage,total cost, interference, and load balance. A good
planning of the RFID network needs to achieve these re-
quirements as much as possible. The evaluation indexs for
evaluating RFID systems are given as follows:

1) Coverage: The most important objective in the RFID
network planning is coverage. We should try to make the
coverage as close as possible or even equal to 1. The coverage
is defined as follows:

COV=
∑
t∈TS

Cv(t)

Nt
× 100% (3)

Cv(t) =

{
1, if∃r ∈ RS, dr,t < Radiusr
0, else

(4)

where TS is the set of tags, RS is the set of readers, Nt is
the total number of tags, dr,t is the distance between reader r
with tag t and Radiusr is the power radius of reader r . Any
tag t ∈ TS will be considered to be covered by the reader if
there exists a reader r ∈ RS and dr,t ≤ r . Cv(t) is 1 if tag
t is covered; otherwise, Cv(t) is 0.

2) Interference: If a tag is covered by multiple readers at
the same time, communication will be unstable and unreliable.
This interference should be minimized. For each tag, the more
readers that cover it, the larger the amount of interference.The
total interference of RFID network is defined as follows:

ITF =
∑
t∈TS

In(t)

Nt
(5)

In(t) =

{
C(t)− 1, if C(t) > 1

0, else
(6)



3) Power: In the simplified reader model, power is con-
verted into power radius. Therefore, we can convert the total
power of all readers in the RFID system into the total power
radius, which is more convenient to use in calculation. The
total power radius is defined as follows:

POW =
∑
r∈RS

Radiusr (7)

where Radiusr is the power radius of reader r.
4) The number of readers: Assume that the maximum num-

ber of readers could be deployed is Nmax. The final number
of readers NR should be as small as possible. Obviously, NR

should not be larger than Nmax.
5) Load balance: Load balance means a more reliable

RFID network. It is an important objective of RFID system
and defined as follows:

LB =

m∏
r=1

1

Nr
(8)

where Nr is the total number of tags covered by reader r. A
reasonable reader Nr should be greater than 0. If Nr is zero,
it means that the reader does not cover any tag. It is redundant
and should be moved.

Summarize the above analysis, the multi-objective RFID
network planning problem can be formulated as follows:

MAXCOV = MinF1(X,P, S) = 1−
∑
t∈TS

Cv(t)

Nt
(9)

MinF2(X,P, S) = ITF =
∑
t∈TS

In(t)

Nt
(10)

MinF3(X,P, S) = POW =
∑
r∈RS

Radiusr (11)

MinF4(X,P, S) = NR (12)

MinF5(X,P, S) = LB =

m∏
r=1

1

Nr
(13)

s.t.X ∈ DR (14)

Pmin ≤ P ≤ Pmax (15)

where F1(X,P, S) is the tag uncoverage, F2(X,P, S) rep-
resents the interference of the system, F3(X,P, S) is the
power cost of the system, F3 is the number of readers and
F5 is the load balance of the system. The vector X represents
coordinates of existing readers, the vector P is the power
radius of readers and the vector S is switch of readers
which means whether the reader is used. In order to use
the Tchebycheff decomposition, we transform the coverage
into uncoverage. Thus, all five objective functions need to be
minimized.

III. METHODOLOGY

In this section, a multi-objectives evolution algorithm based
on decomposition is proposed.

First, the basic differential evolution algorithm is briefly
introduced and a multi-objective self-adaptive DE for the RNP
problem is shown, including solution representation and up-
dating. Then, the improved cyclic congestion distance sorting
strategy is introduced. Finally, based on the decomposition
method, the framework of MOSDE/D is proposed.

A. Differential Evolution

Differential Evolution algorithm (DE) is a population-based
optimization algorithm, which is a type of evolutionary algo-
rithms. Compared with other EAs, DE has lots of advantages,
such as simple structure, easier to implement, faster conver-
gence, and stronger robustness. DE uses a greedy approach
to solve problems. DE continuously optimizes the quality of
the whole population by fusing differential operations into
crossover and mutation operations to generate new individuals.

B. Multi-objective Self-adaptive DE for RNP

1) Definition of individual: To solve the RNP problem, we
design each individual as follows:

Fi = {xi,1, xi,2, ..., xi,Nmax , yi,1, yi,2, ..., yi,Nmax , pi,1, pi,2,
..., pi,Nmax

, si,1, si,2, ..., si,Nmax
}, i = 1, 2, ...pop

(16)
where pop is the population size, Nmax is the maximum
number of readers. (xi,d, yi,d) is the coordinate of reader d
of individual i. pi,d is the power of reader d and si,d is the
switch flag of reader d. If reader d of individual i is used,
si,d is 1;otherwise, si,d is 0.

2) Initialization of individual: To make the population have
better diversity, a good initialization strategy is proposed. In
this paper, each reader should not only meet the requirements
(14) and (15) in the initialization, but also be screened by
coordinates. A reader will be reinitialized when it is too close
to previous readers in the initialization, which prevents the
generation of redundant readers in advance.

3) Evolutionary operation of individual: The basic differ-
ential evolution algorithm mainly includes mutation, crossover
and selection, which are given as follows:
• Mutation:

vi = xr1 + F (xr2 − xr3) (17)

where vi is variation of xi, and i, r1, r2, r3 ∈
{1, 2, ..., pop} are different indexes. F ≥ 0 is the scaling
factor. What should be noted is that in one mutation
operation, only one sid is randomly selected for updating.
Others remain the same as xi. The purpose is to avoid
frequent variation of sid.

• Crossover:
In order to ensure that ui and xi are different, at

least one dimension of ui and the same vi are randomly



selected. Other dimensions are generated in the following
way:

uij =

{
vij , if(r < Rc)
xij , if(r ≥ Rc)

(18)

where j=1, 2, ..., Nmax, r is a uniform random number
between 0 and 1. Rc is cross probability factor. Like
mutation operations, cross operations allow only one sid
to be updated in once cross operation.

• Selection:
For multi-objective optimization problems, we use the

following standard to select the offspring:
– If ui Pareto dominates xi, ui is chosen as the

offspring; If xi Pareto dominates ui, xi is chosen
as the offspring;

– If they do not dominate each other, ui is chosen
as the offspring to maintain diversity of external
population (EP).

• Self adaptive:
At the early stage of evolution, the values of F and

Rc should be larger in order to control the number of
non-dominant individuals and ensure the diversity of the
population. At the later stage of evolution, in order to
retain good information, the values of F and Rc should be
reduced. So the adaptive operator F and Rc is designed
as follows:

F (t) = Fmin + (Fmax − Fmin)× e− 2t
Gen (19)

Rc(t) = Rcmin + (Rcmax −Rcmin)× e− 2t
Gen (20)

where t is the number of generations and Gen is the
maximum number of generations.

4) Improved cyclic crowding distance sorting strategy:
In MOEA/D, EP’s diversity is maintained indirectly through
uniform weight vectors instead of directly using diversity
preservation strategy. The crowding distance ranking strategy
does not consider the effect on adjacent solutions after a
solution is deleted [16]. In this paper, only one solution with
the smallest crowding distance is deleted at a time, and then
the crowding distance of its adjacent solutions is updated.
This process is repeated until the number of individuals
in EP decreases to the specified number of non-dominated
solutions–K.

5) The framework of MOSDE/D: MOEA/D decomposes
multi-objective optimization problems into N scalar single ob-
jectives optimization sub-problems, and then optimizes these
sub-problems while evolving. In this paper, we used the
Tchebycheff approach for the multi-objective decomposition,
which is defined as follows [17]:

gte(x|w, z∗) = max
1≤i≤n

wi |fi(x)− z∗| st.x ∈ Ω (21)

where z∗=(z∗1 , z∗2 , ..., z∗n) is the reference point. The weight
vector w1, ..., wM are all the weight vectors in which each
individual weight takes a value from { 1

H , 2
H , ...,HH }. Here,

M = Cm−1
H+m−1, where M denotes the number of weight

vectors and m is the number of objective functions. The pa-
rameters for dealing with different problems are also different.
Details about parameters setting are shown in Section IV.

The framework of MOSDE/D for MORNP is shown in
Fig.3.

Fig. 3. The framework of MOSDE/D

The specific process is given as follows:
• Step 1: Initialization

1) Input: GEN , H , T , m, Fmax, Fmin, Rcmin, Rcmax

and network configuration;
2) Setting EP=∅;
3) Generate M weight vectors and compute the T

closest weight vectors to the ith weight vector and
record their indexes as a set denoted as B(i)={i1,...,
iT }, where wi1,...,wiT is the neighbor weight vector
of wi;

4) Set t=0, initial the population by the initialization
method mentioned above;

5) Take the minimum of each objective as the reference
point z∗=(z∗1 ,z∗2 ,...,z∗n );

• Step 2: Update



For i=1,...,M , do
1) Reproduction: Randomly select three indexes, k, l,

q from B(i), and then generate a new solution y
from xk, xl, xq by using self-adaptive differential
evolution;

2) Update z: For each j=1, ... , Nmax, if zj >fj(y),
then set zj = fj(y);

3) Update neighboring solutions: For each index k ∈
B(i), if gte(y|wk, z∗) ≤ gte(xk|wk, z∗), then set
xk = y, f(xk) = f(y);

4) Update EP:
Remove all the vectors dominated by f(y) from EP;
Add f(y) to EP if no vectors in EP dominate f(y);
If the number of non-dominant solutions in EP ex-
ceeds the limit, we use the improved cyclic crowd-
ing distance sorting strategy to maintain diversity of
EP;

• Step 3: If stopping criteria are satisfied, then stop; other-
wise, go to Step 2.

IV. EXPERIMENTS

In the experiments, we test the performance of MOSDE/D
on six RNP instances. All instances are taken from [15],
which are divided into two types: Samples with clustered
distributed tags and samples with randomly distributed tags.
Static RFID networks can be divided into random distribution
type and clustering distribution type according to the different
distribution types of tags. The first letter of the instances’ name
represents the type of the instance, and the number represents
the number of tags in the instance.

The parameters of these RNP instances are given as follows:
a 50 m 50 m working space, and the range of radius of power is
[8m, 15m]. The parameters of MOSDE/D are given as follows:
M=pop=715 (H=9, m=5), Gen=2000, T=10, Fmax =0.95,
Fmin =0.5, Rcmin =0.8, and Rcmax =0.95.

The result of MOSDE/D on these six instances are shown
in Figs.4-9. MOSDE/D has a good performance on these
six instances. The coverage is 100% in all instances. The
interference is almost zero on the RFID network with cluster-
ing distribution instances. In larger-scale random distribution
networks, the amount of interference increases slightly. In each
instance, the number and power of readers are small, which
means the total cost is low. It shows that MOSDE/D realizes
multi-objective optimization and obtains good solutions. No
matter the clustered distribution or the random distribution,
MOSDE/D can well solve RNP problem.

Next, CA-RNP and PSO TRE are selected for comparison.
They have been optimized especially for the static RFID
network planning, and have achieved excellent performance. In
Tables I-VI, we compare MOSDE/D, CA-RNP and PSO TRE
on every instance. We record the best, average, and the worst
results for each algorithm over 30 independent runs. The
performance of MOSDE/D is similar to others in small scale
networks. With the increasing number of tags, MOSDE/D
shows better performance. In larger scale RFID networks,
MOSDE/D always has the best performance in the best case.

However, in the worst case, MOSDE/D has the worst per-
formance. Due to the randomness of evolutionary algorithm,
MOSDE/D is not stable enough. But MOSDE/D has the best
optimization ability, which has the best performance in terms
of every objective in the best cases. When the minimum
number of readers are the same, MOSDE/D can find the
solutions with the lowest power, which means the lowest cost.

In Table VII, the average value of each system index is
shown. Each experiment runs 30 times independently and
MOSDE/D has a good performance for every instance. At
the same time, we find that the coverage decreases with the
increase of the number of tags. This appearance is more
obvious in the random distribution. After analysis, we consider
that two of the five objectives are emphasizing low-cost (power
and number). When there are more outlier tags in random
distribution, the coverage will be sacrificed to ensure the low
cost.

Fig. 4. C 30

Fig. 5. C 50



Fig. 6. C 100

Fig. 7. R 30

Fig. 8. R 50

TABLE I
COMPARISON AMONG DIFFERENT ALGORITHMS ON C 30

MOSDE \D CA POS TRE
Worst Mean Best Worst Mean Best Worst Mean Best

Coverage 0.97 0.98 1.00 0.98 0.99 1.00 0.96 0.98 1.00
Interference 0.05 0.02 0 0.05 0.02 0 0.06 0.04 0
LB(10−6) 22.3 20.17 19.88 20.46 19.74 16.55 26.54 23.14 21.08

Power 49 42 38 44 40 39 46 45 41
Reader number 3 3 3 3 3 3 3 3 3

Fig. 9. R 100

TABLE II
COMPARISON AMONG DIFFERENT ALGORITHMS ON C 50

MOSDE \D CA POS TRE
Worst Mean Best Worst Mean Best Worst Mean Best

Coverage 0.91 0.99 1.00 0.95 0.99 1.00 0.93 0.97 1.00
Interference 0.09 0.04 0 0.04 0.02 0 0.06 0.03 0.01
LB(10−6) 18.7 11.5 9.88 19.7 12.3 11.9 20.3 14.5 13.4

Power 65 54 44 58 51 46 61 58 51
Reader number 5 5 5 5 5 5 5 5 5

TABLE III
COMPARISON AMONG DIFFERENT ALGORITHMS ON C 100

MOSDE \D CA POS TRE
Worst Mean Best Worst Mean Best Worst Mean Best

Coverage 0.91 0.98 1.00 0.88 0.95 1.00 0.91 0.96 0.99
Interference 0.29 0.11 0.01 0.31 0.17 0.02 0.15 0.06 0.04
LB(10−6) 3.2 2.14 0.88 4.00 2.67 1.01 2.55 1.27 1.01

Power 75 64 52 80 68 54 75 69 64
Reader number 5 5 5 6 5.3 5 6 5.5 5

TABLE IV
COMPARISON AMONG DIFFERENT ALGORITHMS ON R 30

MOSDE \D CA POS TRE
Worst Mean Best Worst Mean Best Worst Mean Best

Coverage 0.93 0.98 1.00 0.94 0.97 1.00 0.93 0.96 0.99
Interference 0.06 0.03 0 0.05 0.03 0 0.08 0.04 0
LB(10−6) 19.7 15.5 13.5 18.9 15.2 12.8 20.4 17.7 14.4

Power 57 49 43 54 48 46 59 53 49
Reader number 5 5 5 5 5 5 5 5 5

TABLE V
COMPARISON AMONG DIFFERENT ALGORITHMS ON R 50

MOSDE \D CA POS TRE
Worst Mean Best Worst Mean Best Worst Mean Best

Coverage 0.88 0.95 0.97 0.90 0.94 0.96 0.88 0.93 0.95
Interference 0.17 0.11 0.07 0.14 0.11 0.09 0.15 0.13 0.10
LB(10−6) 12.41 7.79 4.43 10.54 8.86 5.69 13.61 9.88 8.12

Power 69 60 54 68 64 59 71 64 60
Reader number 7 6.2 5 7 6.4 5 7 6.5 6



TABLE VI
COMPARISON AMONG DIFFERENT ALGORITHMS ON R 100

MOSDE \D CA POS TRE
Worst Mean Best Worst Mean Best Worst Mean Best

Coverage 0.87 0.93 0.95 0.88 0.91 0.93 0.85 0.88 0.91
Interference 0.29 0.17 0.11 0.26 0.19 0.16 0.28 0.21 0.19
LB(10−6) 1.85 1.43 1.05 1.91 1.53 1.31 2.02 1.77 1.31

Power 70 62 59 69 64 61 73 69 66
Reader number 8 7.7 7 8 7.6 7 8 8 8

TABLE VII
THE COMPARISON IN TERMS OF INDEXES AMONG DIFFERENT INSTANCES

C 30 C 50 C 100 R 30 R 50 R 100
Reader number 3 5 5 5 6 7

Coverage 1.00 0.99 0.98 0.98 0.95 0.93
Interference 0.02 0.04 0.11 0.03 0.11 0.17
LB(10−6) 20.17 11.5 2.14 15.53 7.79 1.13

Power 42.55 54.52 63.82 49.53 59.93 62.21

V. CONCLUSIONS

In this paper, we propose a Decomposition-based Multi-
objective-Self-adaptive Differential Evolution algorithm for
the static RFID network planning. We use the decomposi-
tion method to treat the RNP problem as a multi-objective
optimization problem and optimize all sub-objectives simulta-
neously to ensure that the optimal solution can be obtained.
We use a simple, efficient and robust differential evolution
algorithm as the basic evolutionary algorithm of MOEA/D.
We design a set of strategies for multi-objective evolutionary
algorithm to solve RNP problems, including coding, mutation,
crossover, selection, and so on. At the same time, we improve
its static parameters to self-adaptive parameters, which can
make algorithm run more efficiently. Moreover, we also im-
prove the diversity protection strategy of EP in MOEA/D to
make final solutions more accurate.

The experimental results show that MOSDE/D has a good
performance in different instances. MOSDE/D can also obtain
better solutions than PSO TRE and CA-RNP. MOSDE/D is
more accurate than two other methods in those more complex
instances. Based on more detailed objective decomposition,
each objective can be considered and optimized. MOSDE/D
can usually obtain better and more accurate solutions. How-
ever, for the same reason, the calculation cost of MOSDE/D is
larger and the time to obtain the optimal solution is longer than
that of CA-RNP. When the number of tags is huge, we have
to put lots of readers into working space at the beginning to
ensure full coverage. Although we use tricks in the population
initialization and evolutionary algorithms to speed up as much
as possible, we still spend more time than CA-RNP. Thus, we
plan to combine MOSDE/D with some parallelize methods in
the future to reduce the running time while guaranteeing the
performance.
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