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Abstract—Path planning is a key technology to realize the
automatic navigation of unmanned aerial vehicles (UAV), which
has great significance both in theory and practical application.
Evolutionary algorithms (EAs) are a type of nature-inspired
computational methodologies for addressing complex real-world
problems that cannot be solved well by mathematical or tradi-
tional modeling. However, the huge calculation of each iteration
in the EAs greatly reduces the efficiency of the algorithm. In this
paper, to accelerate the search speed of EAs and consider the
dynamics of the environment, we propose a hierarchical recursive
multi-agent genetic algorithm that can perform path planning in
real time, termed as HR-MAGA. We used a strategy of layer-by-
layer optimization on 3D maps with different resolution in the
optimization process. The local search ability of the algorithm is
improved by competition and self-learning process. In addition,
the hierarchical recursive optimization process can greatly reduce
the amount of computation and effectively deal with the dynamic
characteristics of the environment. The experimental results show
that HR-MAGA not only has strong global optimization ability,
but more importantly, is able to generate collision free paths in
real time after considering the physical limitations of the UAV
and the dynamics of the environment.

Index Terms—Path Planning of UAVs; Multiagent Genetic
Algorithm; Hierarchical Recursive Optimization; Dynamic En-
vironment

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have demonstrated their
irreplaceable role in military and civil applications. The path
planning problem is a key element of the UAV autonomous
control module [2]. It is a complex optimization problem
which allows the UAV to autonomously compute the optimal
path from a start point to an end point. The difference with
the ordinary commercial route is that the UAV’s trajectory
must constantly change depending on the particular terrain
and conditions prevailing at the time.

In the past research, there are many methods to solve
the traditional 2D path planning problem, such as Dijsktra’s
algorithm [21], A* algorithm [22], D* algorithm [23], and
rapidly exploring random tree RRT algorithm [24], [25]. These
methods usually model the environment as a network topology
connected graph model, and the result of path planning is the
shortest path on the connected graph. Compared with 2D path
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planning, the environment targeted by 3D path planning is
more complicated and the traditional 2D environment mod-
eling methods are not applicable. It is very difficult to deal
with the dynamic factors in the 3D environment using the
traditional 2D path planning methods. In the optimization of
3D path planning, the best path is not always associated with
the shortest path simply, more importantly, the factors like the
effects of terrain, the requirements of mission and the physical
limitations of aircrafts, should be also taken into consideration.
A series of methods have been proposed to deal with this
complicated optimization problem [2]-[4].

In the past few decades, many new algorithms from various
fields have been designed to optimize this problem. Based
on the cognitive behavior, Cai et al. in [18] proposed an
optimization algorithm and designed a tri-level programing
(TLP) model to generate a smooth path. Zammit et al. in [19]
Compared A* with RRT algorithms for the UAV path planning
problem. Lin et al. in [20] developed and demonstrated a
method for UAV collision avoidance based on the closed-loop
rapidly-exploring random tree algorithm. As examples of arti-
ficial intelligence algorithms, Roberge et al. in [6] compared
the parallel genetic algorithm (GA) with the particle swarm
optimization (PSO) algorithm in the real-time 3D path plan-
ning problem. To improve the efficiency of decision-making,
Kumar P et al. in [7] proposed meta-heuristic optimization
schemes for reactive path planning of UAVs while designing
a UAV path planning problem using multi-verse optimizer
(MVO). Duan et al. in [8] developed Hyperid PSO and GA
for Multi-UAVs formation reconfiguration. Chen et al. in [9]
proposed an improved PSO algorithm to optimize the global
best solution during the evolutionary process of particles. In
this method, the competition strategy was introduced into the
standard PSO to improve the convergence speed and the search
ability of particles. Phung et al. in [10] converted the UAV
path planning model into a discrete TSP problem, and the
discrete particle swarm optimization (DPSO) algorithm was
then proposed to solve the TSP. Cheng et al. in [11] also
used the GA, but during the evolutionary process, they added
the artificial immune system to maintain superior population



diversity. Volkan in [12] proposed a vibrational GA to improve
the exploration, which can better avoid local minima when
searching for the optimal path. Based on a discrete UAV
dynamic model, Chen et al. in [13] reformed this problem
into an optimal control problem. By establishing dynamic and
static models, Yin et al. in [15] proposed the use of offline and
online method to improve the efficiency of UAV path planning
in the dynamic urban environment.

In summary, those methods represented by EAs are able to
solve the UAV trajectory planning problem quite effectively in
the existing researches [6]-[9], [11]-[14]. However, EAs have
a high time complexity and lack effective strategies for timely
re-planning to cope with the complex and volatile environmen-
tal conditions. Besides, using 2D traditional methods need to
sample environment as a series of nodes, or a tree, or in other
forms [16]-[19], [21]-[25], which is not applicable in the 3D
space. Moreover, some of these models consider the static
threat only or just give a single path [24], [25]. Therefore, it
is hard to improve the efficiency of these algorithms under the
complex environmental conditions.

In [26], Zhong et al. proposed an effective evolutionary
algorithm, namely Multi-Agent Genetic Algorithm (MAGA),
which has been proved to be an excellent algorithm for solving
complex optimization problems and has been widely applied to
various fields [27]-[29]. In this article, the method that MAGA
is directly applied to the path planning problem is called P-
MAGA. To deal with the uncertainties timely in the envi-
ronment and improve the efficiency of the algorithm, we use
a hierarchical recursive optimization strategy, which improve
convergence speed by reducing the number of path points in
each optimization. Moreover, uncertainties in the environment
can be effectively addressed in the deep recursive optimization
process. Based on this, we propose an optimization algorithm
termed as HR-MAGA. In HR-MAGA, during the process
of evolution, agents can sense the environment and interact
with its neighbors and reduce its own loss by utilizing the
corresponding operators, which instantly find a good solution.
In the hierarchical recursive process, the algorithm is able
to optimize the local path to get a more refined path. By
comparing P-MAGA and HR-MAGA, the experiment verifies
the effectiveness of the hierarchical recursive strategy, which
can be also effectively applied with other EAs. In summary,
HR-MAGA has higher efficiency compared with P-MAGA
and GA [6] , and can be effectively applied in a complex
and volatile environment.

The rest of this paper is organized as follows. In Section
II, we briefly introduce the model of UAVs path planning. In
Section III, the details of the proposed HR-MAGA are intro-
duced. The experimental results and discussions are presented
in Section IV. Finally, conclusions and future work are given
in Section V.

II. PATH PLANNING MODEL

A. Environmental model

The first step of three-dimensional path planning is to
discretize the world space into a representation which is mean-
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Fig. 1: Path planning example: (a) 2D matrix representation of
the map after 40 times sampling. (b) agent matrix. (c) agent
representation on the map.

ingful to the path planning algorithm. With the development
of simulation technology, there are many approaches to build
a three dimensional environment in this area [5], [18], [30].
In this paper, we approximate the terrain using a 2D matrix,
where each element of the matrix represents the elevation of
terrain. Then, we can add ¢ cylindrical hazardous areas to the
environment, where coordinates (z;,y;) and radii d; can be
saved to a matrix as shown in Eq. (1).

r1 y1 da
danger_areas = oo (D)
xc yC dC
To represent m uncertainty regions, we use a rectangle
starting at (xr;,yr;) with width w; and height h;, and save
them as a matrix shown in Eq.(2).

rr1 yr1 w1
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In the planning space, we discretize the trajectories into a
series of waypoints connecting by straight lines. Then, the
path planning task is transformed into function optimization
problems by optimizing the coordinate point sequence. When
optimizing this problem, each route represents an agent whose



encoding is the coordinates of the waypoint as shown in Eq.
(3).
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The 2D matrix in Fig. 1(a) shows the terrain map after
sampling 40 times, which is available from geoshow [1]. Each
element in the matrix represents the terrain elevation at that
location. Fig. 1(c) shows a simple example of planning a route
on a map, and the corresponding agent matrix is shown in
Fig. 1(b). As shown in Fig. 1, the first line element of agent
is [0,0,0], indicating that the starting point of the route is set
as the origin. The coordinates of the next point [220,40,30]
represent the point to be passed at the next moment, and the
coordinates at the end point are [360,180,15].

B. Loss function

It is known that searching for the best path is often asso-
ciated with searching for the shortest path. In the situation of
UAV path planning, the optimal path is more complex and
includes many different characteristics, like the complexity
of environment and the physical limitations of aircrafts. To
take into account these desired characteristics, we design a
comprehensive loss function consisting of multiple optimiza-
tion goals for path planning to minimize. A path that meets
various conditions has lower loss at a high probability. Our
loss function is defined as follows:

Fioss(agent, map, danger_areas) = wy X Lpgin+
wa X Laltitude + w3 X Ldanger

“4)

where Fj,ss consists of three parts, namely the path’s length
loss Lyqtn, the loss of average altitude of path Lgtityde, and
Lganger penalizing the path going through danger areas. wy,
wy, and ws denote the weight on each part.

Considering the maneuver performance of UAVs and mak-
ing the path as smooth as possible, we design a vector © to
evaluate the corner of each path. Eq.(5) is designed to calculate
the track’s angle 6.

A1k
O = 3)
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where A\, means (Tp+1 — Tk, Yk+1 — Yk, Zk+1 — 2k), k =
1,2,...,n — 1. Then, the optimization model of the path

planning problem can be defined as follows:
min  Fj,ss(agent, map, danger_areas) ©)
st. 0, >0 k=1,2,--- ,n—1

The length of the planning path is a key factor for most path
planning missions. Obviously, the shorter path can save more
fuel and more time. In our cost function, the term associated
with the length of a path is defined as Eq. (7):

n—1

Lpatn = Y [(@k41, Ykt 2041) = (@8, 0, 20) 2 (D)
k=1

where (zy, g, 2;) means the k-th waypoint of the agent.
The altitude of the path is also an important characteristic.
On one hand, the flight height is limited by UAV’s physical
constraints. On the other hand, the low altitude flight can
also reduce the probability of being captured by enemies, and
this means that the safety of tracks is increased. The term
associated with the altitude of path is defined as Eq. (8):

n—1
Lattitude(agent, map) = 3 mean(map N agenty) ~ (8)
k=1
where mean represents the averaging function and map N
agenty, represents the altitude of the position which is the k-
th path of the agent projected on the map. Lgtituqe depends
mainly on the altitude of the area where subsections of the
trajectory go through.
In the real life, there are many no-fly zones or dangerous
areas. Therefore, the term associated with the violation of the
danger areas is defined as Eq. (9):

c n—1

Lianger = Z Z length(danger_areas; N agenty) (9)
i=1 k=1

where ¢ is the total number of danger areas,

danger_areas; N agent represents the intersection between
the i-th danger_area and the agent; on the map , and
length is a function calculating the length of the intersection.
The result of Lggnger is the total length of subsections of
trajectory which goes through danger areas.

ITII. HR-MAGA

In this section, we describe HR-MAGA for optimizing the
UAV path planning problem in details.

A. Definition of agent-lattice

In HR-MAGA, an agent is defined in Eq. (3). All agents
live in a lattice-like environment L called agent-lattice with the
size of Lg;ze X Lgize, Where Lg;.. 1s an integer, and the agent
has the ability to perceive and respond to the environment it
lives [23]. Each agent is fixed on a lattice-point, and can only
exchange information with its neighbors. We define the agent
located at (i,j) as L;;,i,j7 = 1,2, ..., Ly, then the set of
neighbors of L;; is denoted as Neighbor;; ,

Neighbori,j = {Li/J‘,Li’j/,Li//J,L,"j// (10)
L, =1 iAo -1 j#1
where " = Lsize i=1 7 ;= { Lsize ] =1 ’
i = i+1 7& Lgize o J +1 ] 7é Lgize
1 1= Lsize »J 1 ] = Lsize ’

Fig. 2 shows the model of agent-lattice, where each circle
represents an agent. The data in a circle denotes the agent’s
location, and the agent can communicate with each other when
they are connected directly.

In traditional EAs, the individuals used to generate off-
spring are selected from the population based on their fitness.
However, this kind of behavior based on fitness for global



Fig. 2: Model of the agent-lattice.

selection and global comparison does not exist in the real
world. In fact, the process of real natural selection to generate
children always happens in a local environment, and each
individual can only interact with those around it [26]. For
the purpose of achieving a better simulation of this natural
law, the agent need to compete with its neighbors so that they
can gain more resources. Based on this, a series of behaviors
are designed for agents to realize their purposes. At the agent
level, the competitive behavior and the self-learning behavior
are designed as individual behaviors, which are directly related
to the fitness of agents. During the execution of individual
behavior, the algorithm further operates on the encoding of the
agent. Therefore, the crossover behavior, the mutation behavior
and the smooth behavior are designed as genetic behaviors.

B. Competitive and self-learning behavior

Let L;; be an agent in L. If L;; satisfies Eq. (11), it is a
winner; otherwise, it is a loser.

F‘loss(Li,j) < F‘loss(Mini,j) (11)

where Min;; is the neighbor of L;; with the lowest loss. If
L;; is a winner, it can live in the lattice. If L;; is a loser,
it will be occupied by a new agent called New;;. This new
agent is generated using the genetic behavior based on parentl
L;; and parent2 Min;; , and the details are shown in Fig. 3.

First, the new agent is created from the selected parents
using the single point crossover as shown in Fig. 3(a). In
the process of crossover, the algorithm needs to randomly
select the intersection and connects Parentl’s coordinates
before the intersection with Parent2’s coordinates after this
position. Then, the child agent is subject to the mutation as
shown in Fig. 3(b). The algorithm randomly selects a pair
of genes and replaces it with the adjacent coordinate point
during the mutation process. Finally, in the smooth behavior,
the algorithm calculates the various corners of the new path
according to Eq. (5). The process of smoothing the route by
changing the coordinates of points whose 6 less than O is
shown in Fig. 3(c).
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Fig. 3: Genetic behaviors used in HR-MAGA: (a) single-point
crossover, (b)mutation, (c) smooth.

Each agent has local information of this problem. To obtain
a better solution, the agent changes independently for lower
loss. In this paper, all agents live in the lattice. In the process
of competitive behavior, the position with the smallest loss
value is marked. Those agents whose location are marked in
competitive behavior can execute self-learning behavior with
a probability of 0.5. In this process, eight agents are generated
separately by mutating from each selected agent. These nine
agents make up a new local lattice, labeled as Ljc,,. Then,
the competitive behavior, the crossover behavior, the mutation
behavior and the smooth behavior are implemented on Ly, -
In addition, elite retention strategy is used in this process. At
last, the initial agent is replaced by the best performing agent
in Lyeq.

C. Summary of P-MAGA

Hence, based on the above description, the detail process of
P-MAGA is summarized in Algorithm 1, where trajectories
represent 3 agents with the smallest loss value among L, and
U(0,1) returns a uniformly distributed random real number
ranged from O to 1. In P-MAGA, first, the algorithm performs
the competitive behavior and marks each winning agent. For a
failed agent, it forms a pair of parental agent with the winning
agent, and the parent agents generate superior offspring agent
through crossover behavior, mutation behavior and smoothing
behavior. Then, on those agents winning in the competitive
behavior, the self-learning behavior is conducted. In the self-
learning behavior, agents mutate to produce multiple variants
and form a new lattice. In the new lattice, agents perform
crossover, mutation and smoothing to complete the self-
learning process. The new lattice outputs the optimal agent to
replace the agent in the current position after several iterations.

D. Hierarchical recursive strategy

During the process of evolution, there is no way to optimize
the uncertain factors of the future. When using EAs to opti-
mize this problem, the resulting trajectory is approximate due
to the influence of agent size. To reduce the complexity of the



Algorithm 1 P-MAGA

Input: 3D environment, hazardous areas and uncertainties: maps;
start point: St; end point: Ed
Parameters: Lattice size: Lgize X Lsize; maximum number of
iterations: GG; number of waypoints optimized for each recursion:
num; Crossover rate: P.; Mutation rate: P,,.
Output: trajectories.
1: L' < Initial-population(maps, St, Ed, G, Lsize X Lsize )
2: Fitness(L"', Lsize) according to Eq. (4)
3: for k=1to G do

4 for L} in L* 4, =1,2,..., Ly;.c do

5: Competition(Lf;)

6: if L% loses in Competition(ij) then

7: Li%- — Evolutionary—operate(ij, P., Pp)
8: Li—“j +— Smooth(Li-“j)

9: else

10: if U(0,1) < 0.5 then

11: ij — Self—learning(ij, P., Py)
12: end if

13: end if

14:  end for

15:  Fitness(L*, Li..) according to Eq. (4)

16: end for

17: three agents with the minimum loss value in LS are recorded as
trajectories(l : 3,1 : num)
18: return trajectories(1l: 3,1 : num)

search space, we use a recursive approach. When the algorithm
recurs to a deeper level, it calls a finer map to optimize the
sub-paths of the previous hierarchical result in turn. If there
is an uncertain area on the planned point of the upper layer,
the point can be reinitialized as the coordinate closest to the
point and outside the uncertain area in the deeper planning.
In the process of optimization, the algorithm first plans on a
local high-precision map, and then returns the partial results
to the upper layer for integration. The great benefit of using
hierarchical recursive optimization is that the length of the
agent for each level of optimized sub-path length can be set
to a small value. Therefore, this strategy can fundamentally
solve the dimensionality disaster caused by the increase of
optimization parameters in EAs. As shown in Fig. 4, we adopt
the hierarchical recursive strategy to optimize the segments
obtained from the previous layer optimization. Fig. 4(a) shows
the optimization process of several points on a low-precision
map using HR-MAGA, using straight lines to form the result
of path planning. Fig. 4(b) shows the algorithm’s more refined
recursive optimization process for the results of the previous
layer. The process of integrating the optimization results of
sub-paths is shown in Fig. 4(c). This recursive strategy creates
new flight routes by adding new flight points to the sub-flight
segments and makes the algorithm more adaptable in complex
environments.

E. Summary of HR-MAGA

Algorithm 2 summarizes the details of HR-MAGA. The
algorithm first plans on a low-precision map and then grad-
ually recursively optimizes the path. To deal with uncertain
factors, the algorithm can update the planned path on a higher-
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Fig. 4: Process of hierarchical recursion: (a) result of path
planning on the first layer. (b) example of recursion. (c) the
process of integrating paths and selecting the optimal path.

resolution map through a layered recursive strategy. To ensure
the global optimality of the path, the algorithm integrates
the multiple optimized path segments. Fig. 4(c) shows the
integration process. The algorithm first connects all the sub-
paths, and then calculates the loss values of all the global paths
obtained by the permutation and combination. The final output
is the newpath with three smallest loss value agent.

Algorithm 2 HR-MAGA

Input: 3D environment, hazardous areas and uncertainties:maps; start point:
St; end point : Ed; value of recursive depth :v

Parameters: number of waypoints optimized for each recursion: num;

Output: 3 agents with the smallest loss value in current layer: newpath.

v=v-—1

: trajectories(l : 3,1 : num) <~ P-MAGA (maps, St, Ed)

if v == 0 then

return trajectories(l: 3,1 : num)

end if

update maps to improve resolution

for : =1 to 3 do

for j =1 to num do

obtain the coordinates of the starting point St;; and the end-
ing point Ed;; of the j-th segment of the i-th agent path in
trajectories

10: if St;; or Ed;; are in the uncertain area of new maps then

11: reinitialize St;; or F2d;; as the coordinate closest to the original

point and outside the uncertain area on maps
12: end if
13: use HR-MAGA(maps, St;;, Ed;j,v) to recursively optimize
the j-th segment of the i-th agent to get 3 paths with the smallest
loss value path(j, 1 : 3)

14: end for

15:  newpath(i) < Integration(path(l : num,1 : 3))

16: end for

17: return newpath(1 : 3)

VRN h RN

IV. EXPERIMENTAL RESULT

In the experiment, we model a series of matrix from the
digital elevation maps which are available from the Geo Base
[31]. In the simulation process, the algorithm can construct
virtual maps of different precision layers by sampling dig-
ital elevation maps at different frequencies. And then, we
factitiously add the dangerous areas to the map, and the
hazardous areas are marked with yellow. This section first



shows the results of the path planning of HR-MAGA at various
levels in the recursive process, showing the outstanding global
planning ability of the algorithm. We analyze the relationship
between the size of the agent and the convergence speed of
the algorithm, and illustrate the necessity of using hierarchical
recursion. Then, we compare the experimental results and
prove the efficient search ability of HR-MAGA.

A. Parameter analysis
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Fig. 5: Analysis of HR-MAGA parameters: (a) The relation-
ship between the number of waypoint and iterations of algo-
rithm convergence. (b) Evaluation of global path optimization
by each layer

To better evaluate the relationship between the length of
the agent and the convergence of HR-MAGA, we normalize
the average iteration loss value of the 40 experimental results
according to Eq. (12)

mean_loss; — min(mean_loss)

*
loss; =

max(mean_loss) — min(mean_loss) (12)
where mean_loss; represents the mean value of the i-th
iteration loss function obtained by performing 40 repeated
experiments.

According to Eq. (13), we evaluate the optimization of the
path by HR-MAGA at each layer.

loss_layer’ =1+ loss_layer; — max(loss_layer)

max(loss_layerl) — min(loss_layerlg

where loss_layerl represents the loss value in the initial
hierarchical iterative optimization process, and loss_layer
represents the loss value in the deeper optimization process.
loss_layer; means the smallest loss value in the population
at the i-th iteration.

Fig. 5(a) shows the relationship between the number of
points optimized at each layer and the iterative evolution
of HR-MAGA. When the number of optimized waypoint
exceeds 8, the convergence speed of the algorithm is greatly
affected. In EAs, the calculation scale of each iteration is
usually large. Therefore, reducing the number of waypoint
optimized each time through hierarchical recursive methods
can greatly improve the real-time efficiency of HR-MAGA.
According to Eq. (13), Fig. 5(b) analyzes the respective
optimization quantities at three levels. The results show that as

the recursion level deepens, the part of global optimization is
gradually decreases. And compared with the second layer, the
normalization optimization of the third layer decreases sharply.

TABLE I: Parameter setting in the experiment

Parameter | Definition Values
G Number of generations 200
Pop Population size 256
Lgize Size of the Lattice-like environment L 7 x 7
P. Crossover rate 0.5
P, Mutation rate 0.3
v value of recursive depth 3
num number of waypoints optimized for each recursion 3
length Individual encoding length 27
weight w1 wo w3z 1:10:15

B. Parameter setting

Our experiments are conducted in Matlab programing envi-
ronment, and a series of related parameters used in our imple-
mentation are listed in Table I. To increase the convergence
speed, the number of optimized waypoint per level num is
set to 3 refer to the results in Fig. 5(a), and the recursive
hierarchical layer in HR-MAGA is set to 3. Therefore, the
agent coding length is equal to 27, which is calculated by
the layer-th power of num. In the comparative methods, the
length of the individual is also set to 27. Setting the same
optimization point in the path guarantees the consistency of
the calculation scale required in each encoding and decoding
process. Referring to MAGA [26], the parameter Lg;,. is set
to 7, and to ensure the optimal performance of GA [6], the
parameter Pop is set to 256, which is consistent with the
original GA instead of 49.

C. Analysis of HR-MAGA algorithm

Fig. 6 shows the experimental optimization results of HR-
MAGA at different layers. The yellow part of the figure
represents the dangerous area, and the purple rectangular
area represents the deep uncertainty. The experimental results
show that the planning path of HR-MAGA in the hierarchical
planning process becomes more and more refined. At the
initial optimization level, the path optimization results are
more focused on the global optimality. Deeper optimization
is more focused on the refinement of the path. In dealing with
the uncertainty factor, HR-MAGA can effectively process the
burst situation in real time by correcting the local path, as
shown in Fig. 6(b)(c).

D. Comparison against other methods

To evaluate the performance of HR-MAGA, we conduct
experiments on four different 3D map environments. The com-
parison of GA, P-MAGA and HR-MAGA is shown in Fig. 7.
In different map environments, all methods show good results.
These approaches have strong similarity, as we find the results
of the two methods have partial overlap, which is largely due
to the fact that the two methods are ideologically consistent. It
is hard to distinguish the advantages and disadvantages of the
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two algorithms directly from the optimized path on the map.
So we analyze the convergence curves of various methods
through 40 independent experiments. The experimental results
are normalized according to Eq. (12).
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Fig. 7: 3D visualization of obtained paths by GA, P-MAGA
and HR-MAGA: (a) Kinbasket lake, BC, Canada. (b) St-John,
NL, Canada. (c) virtual map. (d) Banff, AB, Canada.

In Fig. 8(a), HR-MAGA has an absolute advantage in con-
vergence speed, mainly due to the use of hierarchical recursion
to make the number of sub-path points optimized for each
time small. Although the use of hierarchical recursion requires
optimization of multi-segment sub-paths, the complexity of
each sub-path in calculating the loss function value in coding
and decoding is proportional to the number of optimized way-
points. Therefore, when the number of waypoints optimized
by the last planned path is the same, the optimization of the
multi-segment sub-path by HR-MAGA is the same as the total
amount of calculation of P-MAGA and GA in each iterative
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(©
Fig. 6: Examples of optimization results of HR-MAGA at various layers: (a) Optimized path in the first layer. (b) Optimized
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Fig. 8: Performance comparison of GA, P-MAGA and HR-
MAGA: (a) Comparison of convergence curves of GA, P-
MAGA and HR-MAGA. (b) Comparison of optimal loss
function values of GA, P-MAGA and HR-MAGA.

process. Comparing the convergence curves of red and purple,
we can obviously see that using P-MAGA can achieve the con-
vergence result quickly. Of course, the main reason is that we
use a self-learning process in P-MAGA, which speeds up the
evolution of outstanding individuals. By comparing P-MAGA
and HR-MAGA, the experiment illustrates the effectiveness of
the hierarchical recursive strategy. Similarly, the hierarchical
recursive strategy can be also used for EAs.

In Fig. 8(b), the variance of HR-MAGA is smaller than
P-MAGA and GA in 40 independent experiments. This as-
pect means the stability of path optimization results. In four
different 3D maps, HR-MAGA algorithm shows a good per-
formance in three environments. A poor performance appears
in one of the environments. The reason is that after the path
is recursively segmented, there is some loss in the global
optimality of the path.

V. CONCLUSIONS

In this paper, we present a path planning method for UAVs
in the complex real 3D map which considers both dynamic
properties of the environment and the physical limitations of
the UAV. First, we design a set of optimization objectives,
constraints, and experiments in the 3D dynamic environment.
Through the multi-agent competition method and the self-



learning strategy, the P-MAGA we use has higher search
efficiency than GA. Based on this, the real-time efficiency
of the algorithm has been greatly improved by hierarchical
recursion strategy. The experimental results show that the
optimization at a deeper level makes the path more refined.
And compared with P-MAGA and GA, the HR-MAGA has
great advantages in search efficiency, and the solution quality
is also competitive.
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