
Search Space Sampling by Simulated Annealing for
Identifying Robust Solutions in Course Timetabling

Can Akkan
Sabancı Business School

Sabancı University
İstanbul, Turkey

can.akkan@sabanciuniv.edu

Ayla Gülcü
Dept. of Computer Science

Fatih Sultan Mehmet University
İstanbul, Turkey

agulcu@fsm.edu.tr

Zeki Kuş
Dept. of Computer Science

Fatih Sultan Mehmet University
İstanbul, Turkey

zeki.kus@stu.fsm.edu.tr

Abstract—For many combinatorial optimization problems, it
is important to identify solutions that can be repaired without
degrading solution quality in case changes in the data associated
with the constraints make the initial solution infeasible, while
ensuring that the new solution is not too different from the
initial one. We propose a novel approach for finding such
robust solutions based on a sample of solutions picked from the
search space traversed by a simulated annealing algorithm. The
sampled solutions are used to form a network of solutions. To
explore the practical performance of this approach, we solve
the widely studied curriculum-based course timetabling problem
of the International Timetabling Competition 2007. With these
benchmark instances, and sets of randomly generated disruption
scenarios, we analyze the performance of some network-based
estimators and show that the diversity of its neighbors is a
significant indicator of a solution’s robustness.

Index Terms—fitness landscape, simulated annealing, robust-
ness, flexibility, timetabling

I. INTRODUCTION

This paper investigates the use of a network created by a
large sample of solutions found through the search process of
a simulated annealing (SA) algorithm to estimate the relative
robustness of these solutions. In combinatorial optimization
there is a sizable literature on the analysis of search spaces. A
search space is defined for a given search process as a graph
of feasible solutions where two nodes are connected if one
can be reached from the other by a specific move operator.
In the fitness landscape analysis literature, as discussed in
a recent survey in [1], researchers focused on characterizing
optimization problems mostly to determine which algorithm
would be best suited to solving that problem, as well as
adapting the algorithms during their execution to improve their
performance, explaining unexpected algorithmic behavior in
retrospect, or dividing problems into theoretical complexity
classes. To the best of our knowledge, fitness landscape
analysis has not been used for identifying robust or flexible
solutions to combinatorial optimization problems. A work that
looks into the relationship between evolvability and robustness
in the context of natural systems, such as proteins and bacteria,
is reported in [2]. In the context of combinatorial optimization,
a robust solution is one that can be repaired when subject to
pre-defined types of disruption that render it infeasible such

This work was supported by TÜBİTAK grant 217M475.

that changes are kept to a minimum while obtaining high
quality solutions. These two concerns are equally relevant in
many re-optimization contexts. An initial schedule that can
be repaired with maximum schedule stability is said to have
high solution robustness. On the other hand, one that can be
repaired with minimal decline in the solution quality is said
to have high quality robustness [3]. The work presented here
addresses both solution and quality robustness, the first one
modeled as a constraint and the other as the objective of re-
optimization.

A fitness landscape [4] consists of the following three
elements: (i) a set X of solutions to the problem, (ii) a notion
X of neighborhood, nearness, distance, or accessibility on X ,
and (iii) a fitness function F : X → R. In most practical
combinatorial optimization problems it is inevitable to rely on
a sample of solutions for defining the set X , as the set of all
feasible solutions grows exponentially with the problem size.
In their survey, [1] points to three pieces of work on what
they call the retrospective measures, measures that involve
the actual execution of an optimization algorithm: (i) adaptive
walks [5]; (ii) consensus sequence plots [6]; (iii) estimating the
number and distribution of local optima by performing a steep-
est ascent search from a random sample of starting positions
[7]. We have chosen SA to find the solutions to be included in
the set X because we would like to estimate the robustness of
high quality solutions for the underlying optimization problem
and SA is a well-established metaheuristic with demonstrated
performance in many combinatorial optimization problems,
including the course timetabling problem. Thus, our approach
could be quite plausible for other combinatorial optimization
problems, as well. The neighborhood we make use of is based
on the Hamming distance between the solutions, and not a
specific move operator since our goal is to understand the
characteristics of the neighbors of a given solution in order to
estimate the robustness of that solution. Since the robustness
concept we adopt includes solution robustness, which we
model by a constraint on the Hamming distance between the
given solution and the one that repairs it, the topology of
the area within a maximum radius defined by the Hamming
distance around the given solution matters, not whether we
can move between these two solutions with a simple local
move. Such a distance measure between solutions is used for

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

graph coloring heuristics by [8], where it is confirmed that
high quality solutions are grouped in clusters within spheres
of specific diameter.

II. THE ROBUST COURSE TIMETABLING PROBLEM

A. The curriculum-based course timetabling problem

We have chosen to use the curriculum-based course
timetabling problem (CB-CTP) definition and instances devel-
oped for the International Timetabling Competition 2007 (ITC-
2007) [9], as they have become widely used benchmarking
instances. In the CB-CTP of ITC-2007, a solution is an
assignment of a period (day and time slot) and a room to
all lectures of each course which satisfies all of the hard
constraints, which are Lectures (all lectures of a course must
be scheduled to distinct periods), Conflicts (lectures of courses
in the same curriculum or taught by the same teacher must be
scheduled in different periods), Availabilities (if the teacher
of the course is not available to teach that course at a given
period, then no lectures of the course can be scheduled at that
period) and RoomOccupancy (two lectures cannot take place
in the same room in the same period). The soft constraints are
RoomCapacity (for each lecture, the number of students taking
the course must be less than or equal to the number of seats
of all the rooms that host its lectures), MinimumWorkingDays
(the lectures of each course must be spread into the given
minimum number of days), CurriculumCompactness (lectures
belonging to a curriculum should be in consecutive periods)
and RoomStability (all lectures of a course should be given in
the same room).

The objective function, referred to as the penalty and de-
noted by P , is computed as the weighted sum of the violation
of the soft constraints. Specifically, for the RoomCapacity
constraint, each student above the capacity counts as 1 point
of penalty. For the MinimumWorkingDays constraint, each
day below the minimum counts as 5 points of penalty. For
the CurriculumCompactness constraint, each isolated lecture
in a curriculum counts as 2 points of penalty. Finally, for
the RoomStability constraint, each distinct room used for the
lectures of a course, but the first, counts as 1 point of penalty.

B. Disruption scenarios

In a typical pre-enrollment timetabling process, an initial
timetable, S0, is prepared based on a set of constraints
provided by the professors and administrators. This timetable
is announced to the staff, giving them some time to submit
changes in constraints. The timetable is then re-optimized
and the students enroll in courses based on this timetable.
As discussed in [10], many different types of changes in
constraints are possible before enrollment, such as new courses
being added, others being canceled; some faculty arriving
or leaving; certain periods ceasing to be feasible for some
professors, or capacity of some rooms becoming insufficient
for some lectures due to an increase in the number of students.

Here we use the disruption scenarios that have been first
defined by [11]. These disruptions affect the feasibility of the
periods for lectures and availability or capacity sufficiency of

the rooms. By assuming disruptions that affect such limited
resources, we believe we introduce sufficient variety and
complexity. The types of disruptions that make up a scenario
are as follows:

IP disruptions: The purpose of this disruption is to repre-
sent a situation when an instructor i learns he/she cannot teach
at a period p to which one of her lectures is scheduled. Hence,
this disruption type is specified by the tuple 〈i, p〉. For each
disruption 〈i, p〉, unavailability constraints for all courses of
instructor i at period p are added.

CP disruptions: The purpose of this disruption is to rep-
resent a situation when an instructor learns he/she cannot
teach during a consecutive set of periods, and to make up for
this unavailability, offers a set of consecutive periods which
he designated as unavailable for the initial timetabling. This
disruption is specified by a tuple 〈c,P1,P2〉 for course c.
Given the set of feasible periods for course c, PCc , P1 ⊆ PCc
is a set of consecutive periods on the same day that become
infeasible for course c and at least one of these periods is used
by course c in S0. P2 ⊆ P\PCc is a set of consecutive periods
that become feasible for course c such that |P2| ≤ |P1|.
CS disruptions: In some universities, before students’ offi-

cial registration, trial registrations or surveys are carried out
to judge demand for courses. This disruption is introduced to
represent a situation in which the initially planned capacity of
a course is increased due to an estimated increase in demand.
It is assumed that the planned number of students for a course
is increased beyond the capacity of the room assigned to at
least one lecture of that course (recall that room capacity is a
soft constraint). This disruption is specified by a tuple 〈c, s〉,
where s is the new number of students for course c and all
events of this course are included in the set of room-disrupted
events.

RP disruptions: Classrooms are often used for purposes
other than classes, such as seminars, faculty meetings, etc.
The purpose of this disruption is to represent such a situation
in which a classroom becomes unavailable for scheduling
classes for the duration of the semester. It is assumed that
the availability of the room is lost for one or two consecutive
periods on the same day. This disruption is specified by
〈r, p, d〉, where p is the first period that room r becomes
unavailable, and d is the number of periods that become
unavailable.

A set of disruptions of these types is referred to as a disrup-
tion scenario. All disruptions in a given disruption scenario are
aggregated in two sets of disrupted lectures. Lectures e whose
assigned periods in S0 become infeasible due to IP and CP
disruptions are denoted as EP (the set of period-disrupted
lectures) with size δp. Lectures e whose assigned rooms in
S0 become either infeasible due to RP disruptions or have
insufficient capacity due to CS disruptions are denoted by
ER (the set of room-disrupted lectures) with size δr. Then,
the set of disrupted lectures, ED, equals EP ∪ ER and the
number disrupted lectures, δ, equals |ED|.

C. Robustness measure

The robustness objective is expressed as minimizing
E(R(S, YS)), the expected value of a disruption measure
R(S, YS), where S is a given solution and YS is the random
variable representing the disruptions.

Let, F(σi) be the set of all solutions that are feasible
with respect to a disruption scenario σi and D(S0, S1) be
the Hamming distance between assigned-period arrays for
all events Te(S0) and Te(S1) of these two solutions (hence,
D(S0, S1) is equal to the number of lectures that are assigned
to different periods in these two solutions). Then, we define
the following neighborhood set for a given solution S0 and
disruption scenario σi with δpi period-disrupted and δri room-
disrupted lectures:

N (S0, σi) = {S : D(S0, S) ≤ f(δpi , δ
r
i);S ∈ F(σi)} (1)

Thus, if solution S0 is disrupted by scenario σi, then switching
to any solution in N (S0, σi) would restore feasibility by
rescheduling at most f(δpi , δ

r
i) lectures to a different period,

where f : (N,N) → N. If there had been only period-
disruptions, the radius f(δpi , δ

r
i) could be a multiple of δp,

since every period-disrupted lecture must be moved to a dif-
ferent period. However, we also assume room-disruptions can
occur, which may be repaired by moving a lecture to a different
room without changing its period. Furthermore, the number of
lectures affected by room-disruptions could be relatively large,
as in the case of CS disruptions that may lead to the need for
rescheduling all lectures of the corresponding course, some
of which might be forced to a different period. So, given δp

and δr, we define f(δpi , δ
r
i) = fpδp + frδr, fp > 1, fr > 0.

For the computational results reported in Section V-D, we set
fp = 2, fr = 0.25. Then, we define the robustness measure
R(S0, σi) as:

R(S0, σi) = min
S∈N (S0,σi)

Φi(S, S0), where (2)

Φi(S, S0) = Pave · 1D(S,S0)>δpi
+ (P (S)− P (S0))+ (3)

where x+ := max(0, x) and Pave is the average per lecture
penalty for a randomly generated sample of solutions, and
calculated for each problem instance separately. The solution
sample, denoted by S, is the union of the initial populations
(each comprised of 40 solutions) of 30 runs of the MOGA al-
gorithm of [12]. Thus, Pave = (1/(|S||L|)

∑
S∈S P (S), where

L is the set of lectures. Pave should be seen as a penalty term
added so that solutions which only reschedule period-disrupted
events to different periods are favored. Thus, in addition to
quality robustness measured by (P (S)− P (S0))

+, R(S0, σi)
also incorporates a measure of solution robustness. Solution
robustness is further ensured by the constraint D(S0, S) ≤
f(δpi , δ

r
i) in defining N (S0, σi). If N (S0, σi) = ∅, then

R(S0, σi) is set to a large value, B. For the computational
experiments we set B = 1200, because the largest Φi(S, S0)
for a solution of the five ITC instances was 963.

Since a closed-form calculation of E(R(S, YS)) is not
possible, a set of randomly generated sample of disruption
scenarios, σ = {σ1, σ2, . . . , σN}, is used to calculate a sample

average R(S, σ) = (1/N)
∑N
i=1R(S, σi) as an estimate of

E(R(S, YS)), using a reasonably large N . This is known as
the Sample Average Approximation method [13].

D. SA Algorithm for Robustness Calculation

Calculation of R(S, σi) makes use of an SA algorithm that
repairs a given disrupted solution by minimizing the penalty
function subject to the maximum distance constraint. Since the
given solution is no longer feasible due to some disruptions
violating hard constraints, the SA algorithm needs to restore
the feasibility of the starting solution while at the same time
minimize the violation of the soft constraints. Hence, some
of the hard constraints in the CB-CTP are relaxed and their
violations are penalized with large weights. Since in the CB-
CTP there are only teacher unavailability constraints and the
disruptions introduce the unavailability of rooms at certain
periods, we distinguish these two types of availabilities as
TeacherAvailability and RoomAvailability constraints. As these
constraints may not be satisfied after a disruption, they are
relaxed and their violations are penalized with a large weight
(we used 100). The violations of the soft constraints with
respect to the current disruption set are also recalculated
to determine the penalty of the initial solution with respect
to the new constraints. In addition to these constraints, the
Distance constraint is introduced to ensure that given the
initial solution S0, and a solution generated in SA, S1,
D(S0, S1) ≤ f(δpi , δ

r
i).

Algorithm 1 SA algorithm

X ← produce starting solution()
2: {Tf , cr, nbr iter} ← set params()
{T0, nbr out, nbr inn} ← comp params(Tf , nbr iter)

4: Tcur ← T0

for counter ← 0 to nbr out do
6: for inner counter ← 0 to nbr inn do

X ′ ← GenerateRandomSoln(X)
8: if accept(X ′, X, Tcur) then

X ← X ′

10: end if
Tcur ← Tcur ∗ cr

12: end for
end for

In this SA algorithm one of the following random moves
is used in the GenerateRandomSoln function in line 7
(see Algorithm 1): (i) simple move, moving a lecture to
an empty position; (ii) swap move, swapping a lecture with
another lecture. These moves always satisfy the RoomOccu-
pancy and Lectures constraints. At each iteration, a lecture
(say l, scheduled at period t1) and a new position (period,
say t2, and room pair) are randomly selected. If there is
no lecture in the new position, then the selected lecture is
moved to that position, otherwise the lecture is swapped
with the one in the selected position. The accept function
in line 8 determines whether the new solution is accepted or
not. If the new solution violates the Distance or the Conflicts

TABLE I: Example: The timetabling instance

c Lc Pc Nc Tc Kc MWc

1 1, 2 1,2,3 25 tA cA 2
2 3 2,4 15 tB cA 1
3 4 1,4 30 tB cB 1

constraints, it is automatically rejected. Improving solutions
are always accepted, and non-improving solutions are accepted
with probability exp ((−P (X ′)− P (X)) /Tcur).

A real time initial temperature selection strategy is used that
employs a short burn-in period in which worsening moves
as well as improving moves are accepted [14]. After this
period, we set T0 = −1 ∗ avgδP/ ln(pacc), where avgδP
is the average worsening penalty observed during the burn-
in period, and pacc is the initial acceptance probability. Tf
is set using the parameter ρ, such that T0 = ρ × Tf . For
the parameter cr, we adopted from the literature the mostly
agreed upon value of 0.99. The number of outer iterations,
nbr out, in which the current temperature is cooled, and
the number of solutions sampled at each temperature level,
nbr inn, are computed as nbr out = ln(Tf/T0)/ ln(cr),
and nbr inn = nbr iter/nbr out, where nbr iter is the
total number of iterations which is calculated based on the
total CPU time allowed for the SA algorithm, which we set
to be 680 seconds (tested to be sufficient to converge to a
good solution). pacc and ρ were set by the parameter tuning
approach discussed in [11] to be 0.9 and 10,000, respectively.

E. An Example

We will assume a small timetabling problem in which we
need to schedule 3 courses, over a two-day long “week”,
each day having 2 periods. For each course c, we are given
the set of lectures Lc, the set of feasible periods Pc, the
number of students Nc, the teacher of the course Tc, the
curriculum it belongs to Kc, and the minimum working days
the course has to be scheduled in, MWc (see Table I). This
problem has a total of 80 feasible solutions. Each solution
i is represented by the array storing the assigned period for
lecture l, Ai(l), for l = 1, . . . , 4 and the room each lecture
is assigned, Ri(l). The robustness of solution S9, A9(l) =
{1, 3, 2, 4} R9(l) = {r1, r1, r2, r2}, with penalty P9 = 26, is
defined by the sets of disruptions of each disruption type. The
set of IP disruptions for S9 is {〈1, 1〉, 〈1, 3〉, 〈2, 2〉, 〈3, 4〉}.
The set of CP disruptions is {〈1, {1}, {4}〉, 〈1, {1, 2}, {4}〉,
〈1, {3}, {4}〉, 〈2, {2}, {1}〉, 〈2, {2}, {3}〉, 〈3, {4}, {1}〉}. The
set of RP disruptions is {〈r1, 1, 1〉, 〈r1, 2, 1〉, 〈r1, 1, 2〉,
〈r1, 3, 1〉, 〈r1, 4, 1〉, 〈r1, 3, 2〉, 〈r2, 1, 1〉, 〈r2, 2, 1〉, 〈r2, 1, 2〉,
〈r2, 3, 1〉, 〈r2, 4, 1〉, 〈r2, 3, 2〉}. Finally, the set of CS disrup-
tions is {〈1, 21〉, 〈1, 22〉, . . ., 〈1, 40〉}, since courses whose first
lecture is not assigned to the largest capacity room are exposed
to this disruption (see Section V-A). Disruption scenarios are
formed by combinations of these disruptions that result in at
least 3 disruptions such that at most 1 disruption of type RP ,
and at most 2 disruptions of each of the other types occur.

TABLE II: Example: Calculation of R for a disruption
scenario

(Ai(l), Ri(l)) CP+(l) W (1) P (Si) D(Si, S9) Φ1(Si, S9)

(1, r1) (3, r1) (2, r2) (1, r1) 13 13 0 10 2 36 1 10
(1, r1) (3, r2) (2, r2) (1, r1) 13 0 0 10 2 24 1 0
(1, r1) (3, r1) (2, r1) (1, r1) 13 13 0 10 2 36 1 10
(1, r1) (3, r2) (2, r1) (1, r1) 13 0 0 10 2 24 1 0
(1, r1) (3, r1) (2, r2) (1, r2) 13 13 0 0 2 26 1 0
(1, r1) (3, r2) (2, r2) (1, r2) 13 0 0 0 2 14 1 0
(1, r1) (3, r1) (2, r1) (1, r2) 13 13 0 0 2 26 1 0
(1, r1) (3, r2) (2, r1) (1, r2) 13 0 0 0 2 14 1 0
(1, r1) (3, r1) (4, r2) (1, r1) 13 13 0 10 2 36 2 29.5
(1, r1) (3, r2) (4, r2) (1, r1) 13 0 0 10 2 24 2 19.5
(1, r1) (3, r1) (4, r1) (1, r1) 13 13 0 10 2 36 2 29.5
(1, r1) (3, r2) (4, r1) (1, r1) 13 0 0 10 2 24 2 19.5
(1, r1) (3, r1) (4, r2) (1, r2) 13 13 0 0 2 26 2 19.5
(1, r1) (3, r2) (4, r2) (1, r2) 13 0 0 0 2 14 2 19.5
(1, r1) (3, r1) (4, r1) (1, r2) 13 13 0 0 2 26 2 19.5
(1, r1) (3, r2) (4, r1) (1, r2) 13 0 0 0 2 14 2 19.5

Of course, even for this small example there would be a
very large number possible disruption scenarios, so here we
demonstrate the robustness calculation for a single scenario,
say σ1, comprised of IP disruption 〈3, 4〉, CS disruption
〈1, 33〉, and RP disruption 〈r1, 2, 1〉. Thus δp1 = 1 and
δr1 = 2, and assuming fp = 2 and fr = 0.5, we get
f(δpi , δ

r
i) to be 2. Of the 80 feasible solutions for the problem

at hand, N (S0, σ1) has the 16 solutions listed in Table II,
where CP+(l) denotes the room capacity violation of lecture
l, W (c) is the number of work days for course c. For this
example, we set Pave = (1/80)

∑
i P (Si) = 19.5, using

all 80 solutions, rather than a sample of solutions. Then
Φ1(Si, S0) are calculated as shown in Table II, which results
in R(S9, σ1) = 0.

III. NETWORK-BASED ROBUSTNESS ESTIMATION

Given the fitness landscape definition in Section I, it is
natural to model it as a network in which each solution is
represented by a node and edges connect nodes based on
the chosen neighborhood definition. Given this network, our
objective is to develop a heuristic robustness estimator for
a given solution. All the tested estimators make use of the
information on the neighbors of the given solution (such as
its distances to the neighbors and the objective values of
these neighbors). Of course, these neighbors cannot be a full
enumeration of all the feasible solutions but we hope some
estimators based on this sample of neighbors do indicate how
robust the solution is. Given this approach, there are three
main algorithm design questions that need to be answered: (1)
how to generate the solutions; (2) how to select the sample of
solutions from among the generated solutions and how big this
sample should be; (3) what are some heuristic estimators that
are correlated with the robustness measure R.

We use SA for generating the solutions because we need
to explore the solution space of high quality solutions, so
that from among such solutions a decision maker could be
provided choices to trade-off solution quality and solution
robustness. To this end, SA is a good algorithmic choice
because it gradually converges to a good (hopefully optimal)

solution and it has been shown to find some of the best known
solutions to the ITC-2007 CB-CTP instances (see e.g. [15]
and [16]). For sampling among the solutions generated by the
SA algorithm, we have decided to only select from among the
accepted solutions (SA uses a probabilistic acceptance rule, see
Section IV). For determining which of these accepted solutions
get selected to the sample, we defined two parameters. The first
one, nc, is the number of collected solutions, and second one
is the step size, s. Then, starting with the solution accepted in
the last iteration of SA, going backwards and skipping every
sth accepted solution, a total of nc solutions are collected into
the sample. Note that the final sample size, n, could be slightly
less than nc because some of the collected solutions could be
identical. As discussed in Section V, we ran our experiments
with nc equals 50000 and 100000, and s equals 0 and 1.

For developing network-based robustness estimators, it is
important to acknowledge that for a given solution, it would
not be sensible to define a robustness estimator that is in-
dependent of the size of the disruption. Hence, here we
develop robustness estimators for given a maximum disruption
size. Letting G(N,E) denote the solution network, we let
the neighbors of node v be the set of nodes w such that
D(v, w) ≤ ρ, where ρ is the maximum number of events that
would need to be rescheduled to a different period in order to
respond effectively to a disruption scenario. Thus, the set of
edges E contains all pairs of nodes v, w with D(v, w) ≤ ρ.

Given G(N,E), we hypothesize the following regarding the
estimation of robustness of a given solution, v:

• The more the neighbors the better: If the search heuristic
is able to find many neighbors to v, then it would be more
likely to find feasible solutions to deal with disruptions.

• The lower the increase in the neighbors penalty the better:
If (P (w)− P (v))+ is small for the neighbors, w, of the
disrupted solution v, it would be more likely to repair v
with minimal increase in penalty.

• The more diverse neighbors the better: If neighbors of
v are at a diverse set of distances, this might indicate
repairing v when disruptions of different sizes occur
would be easier. Futhermore, if the neighbors have the
events assigned to different periods, it could be easier
to repair disruptions. For instance, if all neighbors have
event e scheduled at period p, then if a disruption makes
period p infeasible for event e, it may be less likely to
find a feasible solution to repair v.

A. Robustness estimators utilizing the maximum radius neigh-
borhood

The following set of estimators use the maximum radius
around the given solution, i.e. ρ = fpNp + frNr, where Np

and Nr are the maximum number of period-based and room-
based disruptions possible. To simplify notation, in the rest of

the paper we will denote N (v, 0, ρ) as N (v).

d(v) = |N (v)| (4)

pd(v) =
∑

w∈N(v)

1

1 + (P (w)−P (v))+

P (v)

(5)

div(v) =

∑
(u,w)∈EN (v)

D(u,w) +
∑

(u,w)∈MN (v)

ρ

ρ(d(v)(d(v)− 1)/2)
(6)

dc(v) =

ρ∑
d=0

1N (v,d)6=∅ (7)

where,

EN (v) = {(u,w) : u,w ∈ N (v) and (u,w) ∈ E)}
MN (v) = {(u,w) : u,w ∈ N (v) and (u,w) 6∈ E)}
N (v, d) = {w : D(v, w) = d}

Equation (4) gives the degree of node v in the solution net-
work. Equation (5) is the penalty-weighted degree of solution
v in the network. Equation (6) measures the diversity of the
neighbors of a given solution v. If the distance between two
neighbors is large, we conclude that they are diverse. Since the
network has a cutoff distance of ρ, if an edge does not exist
between two nodes it implies that the distance between these
nodes is at least ρ + 1. Given this definition, div(v) ∈ [0, 1]
and the more diverse the neighbors of v are, the closer it gets
to 1. Equation (7) gives the number of distances at which there
exists a neighbor for solution v, and hence it is a measure how
different the neighbors are.

Furthermore, for all neighbors w of solution v (i.e. w ∈
N (v)), let Pu(v) denote the set of unique penalty values
P (w) . Furthermore, let PDu(v) represent the set of unique
(P (w), D(v, w)) tuples. Then, we hypothesize that size of
these sets, as measures of diversity among the neighbors of
solution v, could be good estimators of its robustnesss:

dup(v) = |Pu(v)| (8)
upd(v) = |PDu(v)| (9)

Note that we do not define a similar estimator for the degrees,
as |Du(v)|, where Du(v) is the set of unique distance values
D(v, w) for w ∈ N (v), because that would be equal to dc(v)
defined in (7).

B. Robustness estimators inspired by the fitness landscape
literature

For us the topology of the area around a selected solution
is important. Among the topological features of fitness land-
scapes and the associated measures discussed in the survey
of [1], the following bear some relevance to the robustness
objective being addressed in this work.

Fitness distribution in search space: This concerns how the
fitness values are distributed across the search space, in terms
of the frequency of different fitness values, taking into account
the position of these fitness values within the search space.

Ruggedness: This is about the level of variation in fitness
values in a fitness landscape. If neighboring solutions have

very different fitness values, then the result is a rugged
landscape. A basin of attraction B of a local optimum sl

is defined by [7] as a set of points s1 . . . sk of the search
space, such that a steepest descent algorithm (assuming a
minimization problem) starting at si (1 ≤ i ≤ k) ends at
the local optimum sl in a finite number of steps. A smooth
landscape would be one with a single large basin of attraction
or a flat landscape.

Neutrality: Neutrality refers to having neighboring solutions
with equal fitness values. A plateau is defined as a set Sp such
that ∀sp ∈ Sp, F (sp) = a, where a is a constant, and F (s) is
the fitness of solution s [17]. Several measures are suggested
in the literature for neutrality, such as average neutrality ratio
and average fitness gain [18].

Evolvability: Evolvability is related to an algorithm’s ability
to evolve the set of generated solutions. [19] describes evolv-
ability with particular reference to genetic algorithms as the
ability of a population to produce offspring that are fitter than
their parents.

Deceptiveness: The presence of misleading information is
known as deception. Fitness distance correlation is one of the
most widely used measures developed to predict deceptive-
ness, and it was first developed for genetic algorithms [20].

Most of the research highlighted above regarding fitness
landscapes limit their attention to NK-landscapes problems,
which are specially designed for this purpose (see [21] for
an overview), or unconstrained optimization problems (such
as the binary quadratic programming problem [22]). In large
real-life combinatorial optimization problems it would be
practically impossible to enumerate the entire search space for
a given move, which necessitates sampling of the solutions.

Using the insights gained by looking into the literature
briefly discussed above, we have defined the following metrics
as potential robustness estimators:
Neutrality degree: Equals the size of the set of neutral neigh-
bors.

nd(v) = |N ν(v)| (10)

where, due to our robustness measure discussed in Sec-
tion II-C, we have chosen to define the set of neutral neighbors
as follows:

N ν(v) = {w : w ∈ N (v), P (w) ≤ P (v)} (11)

Neutrality ratio: Equals the ratio between neutrality degree
and the degree of the solution (similar to measure with the
same name in [18]).

nr(v) = |N ν(v)|/|N (v)| (12)

Neutral zone depth: This measure is inspired by the neutral
walk of [23]. It is equal to the maximum distance from node
v, starting with 0, up to which there exists at least one solution
with penalty less than or equal to P (v) at every distance.

nzd(v) = max{j : ∃wi s.t. D(v, wi) = i,

P (wi) ≤ P (v), ∀ 0 ≤ i ≤ j}
(13)

Neutral zone spread: This is the number of distances up to δ,
for which there is at least one neighbor of v with penalty less
than or equal to P (v). Note that, by definition, nzs ≥ nzd.

nzs(v) =|{i : ∃wi s.t. D(v, wi) = i,

P (wi) ≤ P (v), 0 ≤ i ≤ δ}|
(14)

Average fitness loss: This is similar to average fitness gain of
[18], which is proposed as a measure of evolvability.

afl(v) =
∑

w∈N (v)

(P (w)− P (v))
+
/d(v) (15)

Fitness-distance correlation: Introduced by [20] to measure
search difficulty for predicting the performance of genetic
algorithms, in which distances are measured to the global
optimum. fdc(v) is defined as the Pearson correlation coef-
ficient between D(v, w) and P (w) for w ∈ N (v). A close
to 0 correlation would mean there is a mix of high and low
penalty solutions at all distances to the solution, and therefore
is likely to be an indicator of robustness for solution v.

IV. THE SIMULATED ANNEALING ALGORITHM FOR
SAMPLING SOLUTIONS

As stated above, we have obtained the solutions used in
building the solution networks by running an SA algorithm.
SA not only produced a very large set of solutions but
also these solutions are quite diverse due to the randomized
characteristic of the SA that gradually converges to a set
of good solutions. The SA algorithm (see Algorithm 1) is
essentially set up as was done in [15], which proved to produce
very good solutions for the ITC2007 CB-UCT problem. Two
local moves were used to randomly generate a solution from a
given one in each iteration. These are the simple move and the
swap moves. In each iteration, for a randomly selected lecture,
a period and a room (a “position”) are randomly selected from
among all feasible positions (all hard constraints, except for
the Conflict are met). If there is no lecture already scheduled at
that position, a simple move is made, otherwise a swap move
is made (only if such moves are feasible). If the move produces
a violation of the Conflict constraints, it is rejected. Otherwise,
if the new solution has a lower penalty value than the previous
one, it is accepted. If it has a higher penalty value, it is
accepted with probability exp ((−P (X ′)− P (X)) /Tcur).

Since ITC-2007 instances have been extensively researched,
we benefited from the findings of earlier studies. [15] found
that geometric cooling schedule with a cooling rate of 0.99
(cr) gives the best results. [24] showed that as long as the
cooling rate is close to 1 the performance of the algorithm is
not sensitive to minor changes in its value. Here we used the
real-time strategy of [14], which was discussed in Section II-D,
to set T0. We set cr to 0.99 and pacc to 0.7 by the parameter
optimization we reported in [25].

The number of iterations in which the temperature is up-
dated, nbr out iter, and the number of randomly generated
solutions at each temperature, nbr inner iter are set so that
total CPU time is equivalent to the time limit set at the ITC-
2007 competition, which was 215 seconds.

When we ran the SA algorithm the number of accepted
solutions for the ITC-2007 instances ranged between 463,311
and 987,339. These are quite sufficient numbers for setting
up large solution networks. As we discussed above, when we
set nc = 100K and s = 1 we select 100,000 solutions from
among the last 200,000 accepted solutions.

V. COMPUTATIONAL STUDY

A. Generating the problem instances

A problem instance is comprised of the timetabling instance
of ITC-2007, a disruption scenario, and a feasible solution for
the ITC-2007 instance. We selected five timetabling instances
because they are the most constrained (thus potentially diffi-
cult) instances in terms of conflict intensity, teacher availabil-
ity, and room occupancy [26]. Specifically, ITC5 and ITC12
are the timetabling instances with the highest conflict intensity;
ITC2 and ITC5 are the top two in terms of lowest teacher
availability; and finally ITC1 and ITC7 have the highest room
occupancy. For each ITC-2007 instance and its solution S0,
the disruptions are randomly generated as follows:

1) IP : 〈i, p〉 First an instructor i is chosen randomly. Given
i, first a course of that instructor is chosen randomly, and
then a lecture of the selected course is chosen randomly.
The period, p at which the selected lecture is scheduled
in S0 is designated as infeasible for instructor i. Period p
becomes unavailable for all courses of instructor i. There
can be at most one 〈i, p〉 disruption for any instructor i.

2) CP : 〈c,P1,P2〉 First an instructor, and then a course
c of that instructor are chosen randomly. Let p denote
the period of a randomly selected lecture of course c. If
the previous period is feasible for the course, then the
starting period of P1 is set as p−1, otherwise as p. Then
if p+ 1 is feasible, then the ending period of P1 is set
as p+ 1, otherwise as p. So the size of P1 is 1,2 or 3.
Then, the number infeasible periods for course c at each
day is calculated. If none of the days has at least |P1|
infeasible periods, the day with the maximum number
of infeasible periods is selected. Otherwise, if there is
at least one day with |P1| or more infeasible periods,
one such day is randomly selected. Given the chosen
day, a set of consecutive infeasible periods starting with
the first infeasible period of that day are assigned to
P2, such that |P2| ≤ |P1|. There can be at most one
〈c,P1,P2〉 disruption for a given course c.

3) RP : 〈r, p, d〉 A room r is randomly selected. Duration
d is generated from the discrete uniform distribution
DU(1, 2). Given d, period p is randomly generated so
that if d = 2, periods p and p+ 1 are both on the same
day. There can be at most one 〈r, p, d〉 disruption for a
given room r.

4) CS: 〈c, s〉 First, a course c is randomly chosen, so
that its first lecture, ec, is not assigned to the room
with the largest capacity, CPmax (this could have
been any lecture of the course, but for the sake of
convenience we choose its first lecture). Then, the

new number of students, s, is randomly drawn from
DU(lowlim + 1, lowlim + gap), where lowlim =
max(NS(c), CP (ρ(ec)) and gap = min(CPmax −
lowlim,NS(c)). There can be at most one 〈c, s〉 dis-
ruption for a given course c.

The number of RP disruptions is drawn from DU(0, 1)
while the others are drawn from DU(0, 2) so that the total
number of disruptions in a disruption scenario is at least 3.

B. Generated networks

In this section we provide a set of descriptive statistics on
the solution networks, which confirm that the selected ITC-
2007 instances are significantly different from each other for
the purposes of this research. In the following discussion,
each network generated for ITCi is denoted by Nnc,s

i . For
all four networks associated with each of the five instances,
Table III reports a set of statistics on the penalty values and
degrees of the solutions. Based on these statistics, one can
make several important observations. First, for all instances
and networks, the actual number of nodes in the network,
n, is very close to nc, showing that SA rarely visited the
same solution in the search process. Second, both in terms
of their values and variability, we see significant differences
between the instances, not only in terms of penalties but
also degrees. ITC1 has no variability in penalty values and
the degrees have relatively small variability for all networks,
with small positive skewness. ITC2 has some small variability
and positive skewness for both penalty and degree of nodes.
Another significant characteristic of ITC2 networks is the
difference in the mean penalty of the networks (75.25 for
N50,0

2 as opposed to 213.9 for N100,1
2). This suggests that

convergence to low penalty values occurred relatively late
in the SA search process. ITC5 has smaller variability in
penalties, compared to ITC2, whereas the degrees are several
orders of magnitude larger than those for ITC2. As a matter
of fact, ITC5 stands out with extremely large degrees. We
also observe that the only networks with negatively skewed
degree distributions are three of the four networks built for
ITC5. ITC7, on the other hand, differs from the previous
instances in having negatively skewed penalty distributions for
all four of its networks and has the largest positive skewness
values for the degree distributions among all five instances.
As was the case for ITC2, ITC7 networks have significant
difference between their mean penalty values (297.7 for N50,0

7

as opposed to 890.7 for N100,1
7), but unlike ITC2 networks

the average degree of the networks drop significantly from
98.11 to 20.19. Combining this information with the skewness
of the degrees, we can conclude that ITC7 networks has
some of the smallest degrees among all networks combined
with significant number of solution with poor penalty values.
ITC12 networks have negative penalty skewness and positive
degree skewness as was the case for ITC7, but unlike ITC7
the degrees are quite large and solution quality difference
between the solutions forming these networks is significantly
less. Based on these observations we can conclude that there

TABLE III: Statistics on the penalty and degree distributions

Penalty Degree

Network n Min. Q2 Mean Max. Skew Min. Q2 Mean Max. Skew

N50,0
1 49733 6 6 6 6 - 16 36.0 37.2 82 0.87

N50,1
1 49743 6 6 6 6 - 10 17.0 17.88 40 0.86

N100,0
1 99443 6 6 6 6 - 21 36.0 36.74 82 0.87

N100,1
1 99460 6 6 6 6 - 9 17.0 17.89 41.0 0.92

N50,0
2 48747 75 75 75.25 80 3.13 27 72.0 75.32 220 0.96

N50,1
2 49302 75 78 124.9 248 0.47 13 50.0 52.86 172 0.61

N100,0
2 98644 75 78 124.9 248 0.47 27 101.0 106.7 343 0.61

N100,1
2 99281 75 223 213.9 429 −0.13 13 46.0 49.2 172 1.05

N50,0
5 48540 405 405 406.9 424 1.93 8276 46160 44910 48330 −3.61

N50,1
5 49165 405 418 420.2 472 0.48 105 29150 22490 37710 −0.71

N100,0
5 98299 405 418 420.2 472 0.48 213 58300 44960 75500 −0.71

N100,1
5 99090 405 445 448.7 578 0.45 26 1506 12070 39700 0.62

N50,0
7 49867 39 323 297.7 647 −0.28 11 54 98.11 1310 3.59

N50,1
7 49959 39 565 504.5 1023 −0.34 4 16 30.56 641 5.04

N100,0
7 99864 39 566 504.8 1024 −0.34 9 32 61.82 1310 5.07

N100,1
7 99959 39 851 890.7 2467 0.24 2 11 20.19 641 7.08

N50,0
12 48467 378 410 404.6 449 −0.13 196 796 3203 12320 1.22

N50,1
12 49280 378 433 427.9 494 −0.33 77 288.0 926.8 6233 2.34

N100,0
12 98377 378 433 428 494 −0.33 156 578 1823 12320 2.36

N100,1
12 99218 378 469 466.4 571 −0.22 46 186.0 530.8 6233 3.69

is considerable diversity in the characteristics of the networks
formed for these instances.

C. Solutions selected for analysis

For each instance, a set of 60 solutions have been selected
to carry out correlation analysis between the network-based
robustness estimators and the robustness measure. The purpose
of the selection procedure was to obtain a diverse set of
solutions from each network. While ensuring this diversity,
we also wanted to have the selected solutions appear in all
four networks for each instance, if possible. For ITC7, and
ITC12, all 60 solutions, for ITC1, ITC2, and ITC5, 55, 38,
and 46 solutions, respectively, appeared on four networks. The
remaining solutions appeared on two networks.

Solution characteristics that were taken into account to
achieve the desired diversity were penalty values and the
degree of nodes. Frequency tables were formed of all solutions
based on intervals of these characteristics, and then a solution
was selected from the solutions that fall into selected intervals.
The selections were made from among the solutions with
penalties that are close to the minimum penalty value, Pmin,
found by the SA algorithm. The Pmin values for ITC1, 2, 5,
7, and 12 are 6, 75, 405, 39, and 378, respectively.

For ITC1, since all solutions in the networks had the same
penalty, solutions were grouped by their degrees and then
solutions were selected from each of the subsets of solutions
with a range of degrees. For instance, for N50,0

1 these degrees
were equal to 21, 25, 35, 45, 55, 65 and 75+ and were 10, 15,
20, 25, 30, 35, 37 for N50,1

1 . For the other instances, for each

TABLE IV: Penalty and degree intervals used to select the
sample of solutions from N50,0

2 and N50,1
7

N50,0
2 – P : 75 76 77 78 79 80

[13, 32] [13, 32] [13, 32] [33, 52] [33, 52] [53, 72]
[73, 92] [73, 92] [73, 92] [93, 112] [93, 112] [73, 92]
[173, 192] [133, 152] [113, 132]

N50,1
7 – P : 39–40 41-42 43–44 45–46 47-48 49–50

[4, 53] [4, 53] [4, 53] [4, 53] [[4, 53] [4, 53]
[54, 103] [54, 103] [104, 153] [104, 153] [54, 103] [54, 103]
[104, 153]
[154, 203]

penalty interval (in the case of ITC2 individual penalty values),
we sampled one solution from the smallest degree interval,
and the second solution from the largest degree interval. In
addition, we chose some solutions from an intermediate degree
with small penalty values (often, as the case for N50,0

2 , these
were the among the largest subset of solutions). In a few
cases when a degree interval contained only already selected
solutions, we moved to the adjacent degree interval for the
same penalty interval. For the networks N50,0

2 and N50,1
2 , the

subsets of solutions were formed by individual penalty values
and degree intervals, since all solutions in these networks had
one of the penalties in {75, 76, 77, 78, 79, 80}. The intervals
used for N50,0

2 and N50,1
7 are given in Table IV, where

the top row for each network contains the penalty intervals,
and the remaining rows contain the degree intervals used for
the corresponding penalty interval. One solution is randomly
picked from each penalty-interval, degree-interval pair, while
ensuring that it appears in as many networks as possible.

D. Performance of the estimators

In order to evaluate the performance of the robustness
estimators, we have first calculated the correlation coefficients
of all estimators among themselves and with R. As discussed
in the previous section, for ITC1 all collected solutions had the
same penalty value, and therefore for some of the estimators,
the corresponding correlation was undefined. Some of the
estimators were strongly correlated with each other in all
networks and all instances, in which case we selected one
of them for further analysis. Specifically, from d and pd, we
chose d, and from dup and upd, we chose dup. Then, among
remaining ones, fdc had consistently close to zero correlations
with R for all networks. For the others, Spearman’s correlation
coefficient values are reported in Table V.

Recalling that lower R values indicate better robustness, we
observe that, as we initially hypothesized, increased degree (d)
and diversity of neighbors measured by div both are mostly
negatively correlated with R for all networks and instances
(the few exceptions for d are three ITC12 networks, and
two ITC5 networks for div). On the other hand, correlation
analysis clearly showed that a single estimator cannot be a
reliable indicator of the robustness of a solution. Thus, in
the next stage, we used linear regression modeling to gain
more insight regarding the performance of these indicators and

TABLE V: Correlation of selected estimators with R

Network d nd nr nzd afl div dc dup

N50,0
1 −0.12 −0.12 NA NA NA −0.22 −0.06 NA

N50,1
1 −0.11 −0.11 NA NA NA −0.22 0.07 NA

N100,0
1 −0.16 −0.16 NA NA NA −0.25∗ −0.13 NA

N100,1
1 −0.15 −0.15 NA NA NA −0.24∗ −0.01 NA

N50,0
2 −0.26 −0.27 −0.14 0.36[0.14 −0.3∗ 0.1 0.09

N50,1
2 −0.22 −0.26 −0.14 0.25 0.14 −0.25 −0.09 0.11

N100,0
2 −0.33] −0.18 0.2 0.08 −0.21 −0.21 −0.05 −0.16

N100,1
2 −0.33] −0.18 0.24∗ 0.26[−0.25∗ −0.16 −0.23∗ −0.15

N50,0
5 −0.13 −0.23 −0.23 0.09 0.19 0.14 0.05 0.2

N50,1
5 −0.21 −0.26∗ −0.28∗ 0.02 0.21 0.09 −0.16 −0.28∗

N100,0
5 −0.09 −0.13 −0.15 0.08 0.17 −0.11 0.11 −0.16

N100,1
5 −0.1 −0.13 −0.16 0.02 0.17 −0.01 −0.1 0.1

N50,0
7 −0.14 −0.01 0.11 −0.02 −0.11 −0.12 −0.01 0.1

N50,1
7 −0.14 −0.01 0.12 −0.02 −0.12 −0.13 0.05 0.1

N100,0
7 −0.14 −0.01 0.11 −0.02 −0.11 −0.12 −0.01 0.1

N100,1
7 −0.14 −0.01 0.12 −0.02 −0.12 −0.13 0.05 0.1

N50,0
12 0.02 −0.04 −0.17 0.07 0.16 −0.12 0.15 0.11

N50,1
12 −0.01 −0.09 −0.12 0.15 0.1 −0.21 0.24 0.07

N100,0
12 0.02 −0.04 −0.17 0.07 0.16 −0.12 0.15 0.11

N100,1
12 0.02 −0.04 −0.16 0.1 0.15 −0.11 0.18 0.14

] : p < .01, [: p < .05, ∗ : p < .10

obtained the best regression model for each network. The p-
values associated with the coefficients of the indicators used
as the independent variables, along with the p-values of the
F-statistic for the significance of the overall regression model,
are reported in Table VI for each of these regression models.
For each ITC instance, the model with the smallest p-value
for the F-statistic is highlighted with gray shading.

Although having different regression models for different
ITC-2007 instances might seem to be a weak result, consider-
ing the goals of this research, given the results in Table VI, we
can make the following observations: For all instances, except
for ITC7, there is at least one statistically significant regression
model with F-statistic p-value less than α = 0.10. For these
four instances, the best regression models are obtained using
networks N50,1

1 , N100,0
2 , N50,0

5 and N50,1
12 . Thus, there is

no indication of network size 100K being better than 50K.
All of these four models have one diversity measure: div,
appears in three of them and dup appears in one. div is
the most frequently used estimator, since the other estimators
in these four models are d and nd that appear two times,
nr, nz, afl, and dup that appear one time. Overall, we can
conclude that diversity (mostly measured by div) seems to
be a significant factor affecting robustness. Noting that nd
(neutrality degree) is closely related to the degree of a node,
we observe that d or nd are significant estimators in three
of the four models, suggesting that number of neighbors is
closely related with robustness, as well. Overall, all models
have some combination of the estimators that are designed

TABLE VI: Linear regression model p-values

Neutrality/fitness-related Diversity-related
Network F stat. βd βnd βnr βnzd βafl βdiv βdc βdup

N50,0
1 0.056 0.049 0.020

N50,1
1 0.051 0.043 0.017

N100,0
1 0.062 0.085 0.031

N100,1
1 0.071 0.099 0.035

N50,0
2 0.025 0.025 0.089

N50,1
2 0.104 0.121 0.167

N100,0
2 0.000 0.010 0.000 0.010

N100,1
2 0.000 0.013 0.000 0.015

N50,0
5 0.047 0.029 0.065

N50,1
5 0.097 0.416 0.190

N100,0
5 0.284 0.285

N100,1
5 0.345 0.345

N50,0
7 0.156 0.118 0.132

N50,1
7 0.179 0.123 0.146

N100,0
7 0.156 0.118 0.132

N100,1
7 0.171 0.123 0.146

N50,0
12 0.239 0.095 0.086 0.319 0.097

N50,1
12 0.072 0.038 0.035 0.043 0.063

N100,0
12 0.239 0.095 0.086 0.319 0.097

N100,1
12 0.072 0.038 0.035 0.043 0.063

to quantify the number, diversity and neutrality of neighbors,
however the specific estimators within these categories change
with different instances.

Looking back into the network statistics discussed in Sec-
tion V-B, we can gain valuable insights into why the statistical
results on ITC7 turned out be unsatisfactory. No other network
has such small degrees and so many solutions with inferior
penalty values. For instance, comparing the statistics for
networks N50,1

12 and N50,1
7 , we see that N50,1

7 has significantly
smaller degree solutions. Average degree of N50,1

7 is 30.56 and
skewness is 5.04 suggesting most of the solutions have degrees
below the mean, whereas the minimum degree of N50,1

12 , 77, is
more than double the average for N50,1

12 . In addition, the range
of penalty values for N50,1

7 is significantly larger, [39− 1023]
as opposed to [378− 494] for N50,1

12 . Figure 1 shows the first
collected solution for ITC7 had approximately 22 times the
best penalty value (Pmin) and SA took too long to converge
to good P values. For other ITC instances SA was able to
collect a very large sample of good solutions.

VI. CONCLUSIONS

We have looked into whether metrics that are calculated
from a large network of solutions sampled from the solution
space of a SA algorithm for the curriculum-based course
timetabling problem can be used as estimators of how robust
some of these solutions are. Statistical analysis carried out on
the performance of 12 estimators for well-known benchmark
instances of the problem suggests that combined use of metrics
that measure the number, neutrality/fitness and diversity of

0

10

20

0 10000 20000 30000 40000 50000

Solution Nbr

P
/P

m
in

ITC

2

5

7

12

Fig. 1: Penalty convergence comparison for the solutions
used in N50,1

i networks for i = 2, 5, 7, 12

neighbors of a solution provide statistically significant estima-
tors of robustness of that solution. Among these metrics the
ones that measure diversity of the neighbors stand out to be
more consistently useful.

Identifying robust solutions is an important concern for
many combinatorial optimization problems. Search heuristics
expend significant computational effort, finding a large number
of solutions, in order to find an optimal or near-optimal
solution, and any potential valuable information that could be
driven from those solutions regarding robustness is lost when
those solutions are thrown away. The approach presented here
is a first attempt to capture information from these solutions.

Since SA is a local search-based metaheuristic, the obser-
vations here are likely to be relevant for local search, but
further research into other local search algorithms could be
done to test sensitivity of the findings to different local search
algorithms. The results associated with instance ITC7 suggests
insufficient search of the parts of the solution space with high
quality solutions, could reduce the effectiveness of the net-
work metrics, so different local search algorithms or modified
versions of the SA algorithm could improve the performance
in such cases. Furthermore, it could be interesting to see
if sampling solutions more widely provides better insights.
Thus, one might look into other heuristic search strategies
such as population-based evolutionary computation and swarm
optimization. Finally, similar algorithmic approaches should
also be tested on other combinatorial optimization problems.

REFERENCES

[1] K. M. Malan and A. P. Engelbrecht, “A survey of techniques for
characterising fitness landscapes and some possible ways forward,”
Inform. Sciences, vol. 241, pp. 148–163, 2013.

[2] T. Hu, J. L. Payne, W. Banzhaf, and J. H. Moore, “Robustness,
evolvability, and accessibility in linear genetic programming,” Lect.
Notes Comput. Sc., vol. 6621, pp. 13–24, 2011.

[3] W. Herroelen and R. Leus, “Robust and reactive project scheduling: a
review and classification of procedures,” Int. J. Prod. Res., vol. 42, pp.
1599-1620, 2004.

[4] P. F. Stadler, “Fitness landscapes,” Lect. Notes Phys., vol. 585, pp.183–
204, 2002.

[5] S. Kauffman and S. Levin, “Towards a general theory of adaptive walks
on rugged landscapes,” J. Theor. Biol., vol. 128, pp.11–45, 1987.

[6] G. Ochoa, R. Qu, and E. K. Burke, “Analyzing the landscape of a graph
based hyper-heuristic for timetabling problems,” Proc. 11th Ann. Conf.
Genetic Evol. Comput. [GECCO ’09], pp. 341–348, Montreal, Québec,
Canada, 2009.

[7] J. Garnier and L. Kallel, “How to detect all maxima of a function,” in:
Theoretical Aspects of Evolutionary Computing, L. Kallel, B. Naudts,
and A. Roger,s Eds. Berlin Heidelberg: Springer, 2001, pp.343–370.

[8] D. C. Porumbel, J. K. Hao, and P. Kuntz, “A search space “cartography”
for guiding graph coloring heuristics,” Comput. Oper. Res., vol. 37, pp.
769–778, 2010.

[9] B. McCollum, et al., “Setting the research agenda in automated
timetabling: The second international timetabling competition,” IN-
FORMS J. Comput., vol. 22, pp. 120–130, 2010.

[10] A. E. Phillips, C. G. Walker, M. Ehrgott, and D. M. Ryan, “Integer
programming for minimal perturbation problems in university course
timetabling,” Ann. Oper. Res., vol. 252, pp. 283–304, 2017.

[11] C. Akkan, A. Gülcü, and Z. Kuş, “Minimum penalty perturbation heuris-
tics for curriculum-based timetables subject to multiple disruptions”,
unpublished.

[12] C. Akkan and A. Gülcü, “A bi-criteria hybrid Genetic Algorithm with
robustness objective for the course timetabling problem”, Comput. Oper.
Res., vol. 90, pp. 22–32, 2018.

[13] A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello, “The sample
average approximation method for stochastic discrete optimization,”
SIAM J. Optimiz., vol. 12, pp. 479–502, 2002.

[14] K. I. Smith, R. M. Everson, and J. E. Fieldsend, “Dominance measures
for multi-objective simulated annealing,” Proc. IEEE Congress Evol.
Comput., vol. 1, pp.23-30, 2004.

[15] R. Bellio, S. Ceschia, L. Di Gaspero, A. Schaerf, and T. Urli, “Feature-
based tuning of simulated annealing applied to the curriculum-based
course timetabling problem,” Comput. Oper. Res., vol. 65, pp. 83–92,
2016.

[16] A. Bettinelli, V. Cacchiani, R. Roberti, P. Toth, “An overview of
curriculum-based course timetabling,” TOP, vol. 23, iss. 2, pp. 313–349,
2015.

[17] I. Moser, M. Gheorghita, and A. Aleti, “Identifying features of fitness
landscapes and relating them to problem difficulty,” Evol. Comput., vol.
25, pp. 407–437, 2017.

[18] L. Vanneschi, Y. Pirola, and P. Collard, “A quantitative study of
neutrality in GP boolean landscapes,” Genetic Evol. Comput. Conf.
[GECCO ’06], pp. 895–902, 2006.

[19] L. Altenberg,“The evolution of evolvability in genetic programming,” in:
Advances in Genetic Programming, K. E. Kinnear Jr, Ed., MIT Press,
2004, pp. 47–74.

[20] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” Proc. 6th Int. Conf. Genetic
Alg., pp. 84–192, 1995.

[21] L. Altenberg, “NK fitness landscapes,” Handbook of Evolutionary Com-
putation, Chp. B2.7.2, Oxford Univ. Press, 1997.

[22] P. Merz, “Advanced fitness landscape analysis and the performance of
memetic algorithms,” Evol. Comput., vol. 12, pp. 303–325, 2004.

[23] C. M. Reidys, M. Christian, P. F. Stadler, “Neutrality in fitness land-
scapes,” Appl. Math. Comput., vol. 117, pp. 321–350, 2001.

[24] S. Ceschia, L. Di Gaspero, and A. Schaerf, “Design, engineering, and
experimental analysis of a simulated annealing approach to the post-
enrollment course timetabling problem,” Comput. Oper. Res., vol. 39,
pp. 1615–1624, 2012.

[25] A. Gülcü and C. Akkan, “Robust university course timetabling problem
subject to single and multiple disruptions,” Eur. J. Oper. Res., vol. 283,
pp.630-646, 2020.

[26] A. Bonutti, F. De Cesco, L. Di Gaspero, and A. Schaerf, “Benchmark-
ing curriculum-based course timetabling: formulations, data formats,
instances, validation, visualization, and results,” Ann. Oper. Res., vol.
194, iss. 1, pp. 59–70, 2012.

